Zobrazení. Geografická kartografie Přednáška 4
|
|
- Jitka Soukupová
- před 9 lety
- Počet zobrazení:
Transkript
1 Zobrazení Geografická kartografie Přednáška 4
2 kartografické zobrazení způsob, který každému bodu na referenční ploše přiřazuje právě jeden bod na zobrazovací ploše (výjimkou jsou ovšem singulární body) různá zobrazení jsou nevyhnutelná, aby se zkreslení (úhly, délky a plochy) neměnilo nahodile a vztah mapy k referenční ploše byl zákonitý a vytvářel vhodný obraz zobrazení jsou určeny pomocí zobrazovacích rovnic vlevo bývají souřadnice v rovině mapy, vpravo funkce souřadnic na referenční ploše tvar těchto funkčních závislostí se mění podle vlastností zobrazení zobrazovací rovnice vznikly zpravidla odvozením z požadavků na zobrazení zobrazovací rovnice: x=f(φ,λ), y=f(φ,λ) 3 parametry: délky, plochy, úhly nelze sestrojit mapu, kde by byly všechny parametry zachovány
3 Kartografické zobrazení převod referenční na zobrazovací plochu referenční plocha elipsoid, rovina koule (poloha bodu je vyjádřena v ϕ a λ) zobrazovací plocha (poloha obrazu bodu v x a y nebo ρ a ε ) rovina plášť válce plášť kužele celkem existuje asi 300 zobrazení (z toho asi 50 je jednoduchých a 250 obecných) v praxi se však používá jen několik desítek zobrazení v atlasech jich bývá 5-10
4 Klasifikace kartografických zobrazení 1) podle zobrazovací plochy jednoduchá (pravá, prostá) převedení referenční roviny přímo do zobrazovací plochy obecná (konvencionální, smluvní) konstrukci nelze názorně vysvětlit prostřednictvím zobrazovací plochy geodetická speciální typy zobrazení se složitým matematickým výpočtem, používají referenční elipsoid
5 Klasifikace kartografických zobrazení 2) podle polohy konstrukční osy normální (polární) poloha mapy světa, mapy polárních oblastí příčná (transverzální) poloha používá se nejméně, mapy polokoulí šikmá (obecná) poloha
6 Klasifikace kartografických zobrazení 3) podle vlastností z hlediska zkreslení plochojevná (stejnoplochá, ekvivalentní) úhlojevná (stejnoúhlá, konformní) vyrovnávací (kompenzační) včetně délkojevných (ekvidistatních) zobrazení podle poledníků podle rovnoběžek
7 Jednoduchá kartografická zobrazení společné vlastnosti převod referenční plochy na jednoduché zobrazovací plochy (viz výše rovina nebo pláště válce či kužele) v zobrazovacích rovnicích se vyskytuje pouze jedna proměnná tedy každá z rovinných souřadnic se dá vyjádřit funkcí jediné sférické (zeměpisné) souřadnice v normální poloze přímkové obrazy poledníků kruhové či přímkové obrazy rovnoběžek protínání těchto obrazů pod pravými úhly (tzv. ortogonální zobrazení)
8 Jednoduchá kartografická zobrazení azimutální normální příčná šikmá válcová kuželová normální příčná šikmá normální příčná šikmá
9 Azimutální zobrazení společné vlastnosti: zobrazení referenční plochy do roviny (tečné či teoreticky i sečné v různých polohách) dotykový bod zároveň konstrukčním pólem souřadnicová osa v obrazu základního poledníku zobrazovací rovnice udávají polární rovinné souřadnice ρ a ε obrazy poledníků v normální poloze tvoří trs paprsků (polopřímek) vycházejících z pólu (úhel mezi poledníky je stejný v mapě jako na glóbu) obrazy rovnoběžek v normální poloze tvoří soustředné kružnice se středem v pólu (pól je zobrazen jako bod ) pro území kruhového charakteru nejvíce pro polární oblasti obecné rovnice ρ = r* f(δ) ε = λ
10 Gnómonická projekce Thales z Milétu, 7. stol. př. n. l. jedná se o projekci ze středu Země poledníky a ortodromy (tedy všechny hlavní kružnice) se zobrazují jako přímky rovnoběžky se zobrazují jako kuželosečky (v normální poloze kružnice) nelze zobrazit rovník promítá se do nekonečna vzdálenosti rovnoběžek od středu rychle narůstají zkreslení od pólů k rovníku narůstá využívá se pro navigační účely a pro zákres ortodrom do jiných zobrazení se překreslí průsečíky se zeměpisnou sítí zobrazovací rovnice ε = λ ρ = tg δ
11 Gnómonická projekce
12 Stereografická projekce Hipparchos z Nikeje, 2. st. př. n. l. jedná se o projekci z bodu protilehlého dotykovému úhlojevné všechny kružnice na glóbu se zobrazují opět jako kružnice (přímkové obrazy hlavních kružnic, které procházejí dotykovým bodem, jsou speciální případy nekonečného poloměru kružnice) vzdálenosti rovnoběžek se od středu mapy postupně zvětšují poloměr obrazu rovníku je 2r (r je poloměr polokoule) nelze zobrazit celý svět využití v geodézii a astronomii zobrazovací rovnice ρ = 2r * tg δ/2 ε = λ
13 Ortografická projekce Appollonius, 3. stol. př. n. l. jedná se o projekci z nekonečně vzdáleného bodu délkojevné podle rovnoběžek plošné zkreslení narůstá k rovníku v příčné poloze poledníky jako části elips a rovnoběžky jako rovnoběžné přímky v obecné poloze obojí jako elipsy vzdálenosti mezi obrazy rovnoběžek se rychle zmenšují od středu k okrajům lze zachytit maximálně jednu polokouli pro zobrazení jiných vesmírných těles zobrazení je podobné pohledu pozorovatele ze Země zobrazovací rovnice ρ = r * sin δ ε = λ
14 Ortografická projekce
15 Lambertovo zobrazení Johann Heinrich Lambert (1772 ) plochojevné často užívané ve školních atlasech (15% map) v příčné a obecné poloze mají obrazy poledníků i rovnoběžek složité křivky lze zobrazit celou Zemi, obvykle se však zobrazuje pouze polokoule, dále je obraz již značně zkreslený vzdálenosti mezi obrazy rovnoběžek se pozvolna zmenšují od středu k okrajům zobrazovací rovnice ρ = 2r * sin δ/2 ε = λ
16 Postelovo zobrazení Guillaume Postel (1581) konstrukčně nejjednodušší délkojevné podle poledníků tedy vzdálenosti rovnoběžek jsou v jakékoliv poloze zobrazovací plochy na středním poledníku stejné umožňuje zobrazit celou Zemi v jiné než normální poloze jsou poledníky a rovnoběžky velmi složité křivky zobrazovací rovnice ρ = r * arc δ ε = λ
17 Breusingovo zobrazení Arthur Breusing, 1892 geometrický průměr Lambertova (plochojevné) a stereografického zobrazení (úhlojevné) z rovnic pro ρ typické vyrovnávací (kompenzační) zobrazení úhlové zkreslení je menší než u Postelova, ale plošné zkreslení větší užití u map malých měřítek zobrazovací rovnice ε = λ 2r sin 2r tg 2 2
18
19 Válcová zobrazení společné vlastnosti: zobrazovací plochou je plášť válce válec buď ovíjí referenční plochu podél některé hlavní kružnice (tečný válec) nebo jej protíná ve dvou vzájemně paralelních vedlejších kružnicích téhož poloměru (sečný válec) dříve pro mapy světa, avšak u pólů většinou velká zkreslení, nahrazena v atlasech obecnými zobrazeními dotyková kružnice se volí tak, aby tvořila osu zobrazovaného pásu území většinou v normální poloze, v příčné poloze pro zobrazení dvojúhelníků na glóbu a pro geodetická zobrazení
20 Válcová zobrazení válcovým projekcím se říká perspektivní zobrazení válcová používá se pravoúhlých rovinných souřadnic x a y rovník jako přímka (osa x) a základní poledník jako přímka (osa y) kolmá na rovník obrazy poledníků v normální poloze tvoří úsečky rovnoběžné s osou y, obrazy rovnoběžek v normální poloze tvoří úsečky rovnoběžné s osou x a jejich délka je rovna délce obrazu rovníku či zachované rovnoběžky v příčné a šikmé poloze vytvářejí obraz zeměpisné sítě složité křivky obecné rovnice x = r * arcλ (tečný válec) x = r * arcλ * cos ϕ 0 (sečný válec) y = r * f(ϕ)
21 Marinovo zobrazení Marinos z Tyru (120) použito však již Archimédem ve 3. st. př.n.l. někdy nazýváno čtvercové zobrazení tečný válec délkojevné podél poledníku a rovníku velké zkreslení u pólů v příčné poloze se používá pro glóbové pásy zobrazovací rovnice x = r * arc λ y = r * arc φ
22 z Marinova zobrazení jsou odvozeny Cassiniho-Soldenerovo vznik 1745 pomocí Marinova zobrazení v příčné poloze na elipsoidu byly vytvořeny katastrální mapy (v měřítku 1 : 2 880) českých zemí v 19. stol., použito několik válců (tedy tzv. víceplošné zobrazení) Obdélníkové zobrazení sečný válec (φ 0 = ± 40 ) délkojevné v polednících a ve dvou sečných rovnoběžkách tedy obrazy rovnoběžek se zkrátí, ale obrazy poledníků zůstanou zachovány kompenzační
23 Lambertovo zobrazení Johann Heinrich Lambert (1772) jedná se o ortografickou projekci na plášť válce plochojevné délkojevné podél rovníku nepoužívá se, protože má u pólů velké úhlové zkreslení zobrazovací rovnice x = r * arc λ y = r * sin φ
24 plochojevnost v Lambertově zobrazení se zachová, jestliže afinně zkreslíme mapu tak, že souřadnici x násobíme koeficientem n a souřadnici y hodnotou 1/n položíme-li se n = cos φ 0, budou délkově zachovány rovnoběžky ± φ 0. tedy zobrazovací rovnice jsou x = r * arcλ * n y = r * sinφ * 1/n vzniknou tak další zobrazení: Behrmannovo, Čtvercové plochojevné,
25 Behrmannovo zobrazení Walter Behrmann (1909) aplikace Lambertova zobrazení pro φ 0 = ± 30 získá se početní úpravou Lambertova zobrazení, kdy se rovnoběžky cos φ 0 krát zkrátí a poledníky 1/cos φ 0 krát prodlouží mapa světa je oproti Lambertovu zobrazení užší a vyšší zůstává tedy plochojevnost délkojevnost podél sečných rovnoběžek (φ 0 = ± 30 ) úhlové zkreslení menší než u Lambertova z. zobrazovací rovnice x = r * arcλ * cos φ 0 y = r * sinφ / cosφ 0
26 Čtvercové plochojevné válcové zobrazení aplikace Lambertova zobrazení pro n hodnota zhruba odpovídá φ 0 = ± 37 z.š. 2 tedy také plochojevné polokoule se zobrazí do čtverce, mapa světa je tedy obdélník s poměrem stran 2:1
27 Mercatorovo zobrazení Gerhard Mercator (1569) úhlojevné, využívá se mj. pro geodetické mapy velké plošné zkreslení loxodroma jako přímka, ortodroma jako oblouk póly nelze zobrazit, kompletní zobrazení by zabralo nekonečně dlouhý pás o šířce zobrazeného rovníku vzniklo z potřeb námořní dopravy námořní mapy navigační letecké mapy zobrazovací rovnice x = r * arcλ y r log e log cot g 2
28 Wetchovo zobrazení středové promítání (gnómonická projekce) na tečný válec vzdálenosti rovnoběžek prudce narůstají směrem od rovníku nelze zobrazit póly na pohled podobné Mercatorovu zobrazovací rovnice x = r * arcλ y = r * tgφ
29 Gallovo zobrazení James Gall (1885) délkojevné v sečných rovnoběžkách φ 0 = ± 45 vzniká promítáním na sečný válec (φ 0 = ± 45 ) z protilehlého bodu na rovníku (tedy obdoba stereografické projekce) vyrovnávací (kompenzační) zobrazovací rovnice x = r * arcλ * cos φ 0 y = r * (1+ cos φ 0 ) * tgφ/2
30 Braunovo zobrazení jedná se o Gallovo zobrazení pro tečný válec (φ 0 = 0) stereografická projekce na plášť válce délkojevné podél rovníku v porovnání s Gallovým je zobrazení širší a nižší zobrazovací rovnice x = r * arcλ y = 2r * tgφ/2 další válcová zobrazení Gauss Krügerovo UTM
31 Kuželová zobrazení společné vlastnosti: vznikají zobrazením referenční plochy na plášť kužele (zobrazovací plocha), přičemž mají s referenční plochou společnou buď jednu nebo dvě vzájemné soustředné vedlejší kružnice tyto kružnice mohou a nemusí být dotykové, v případě dvou zachovaných kružnic se nemusí jednat o sečný kužel v normální poloze je délkově zachovaná nějaká rovnoběžka obrazy poledníků tvoří trs paprsků (polopřímek) procházejících počátkem souřadnicového systému (kartografickým pólem) obrazy rovnoběžek tvoří části soustředných kružnic se středem v počátku souřadnic
32 Kuželová zobrazení v příčné (nepoužívá se) a šikmé poloze jsou obrazy poledníků a rovnoběžek složité křivky používají se poměrně často (v normální poloze), především pro mapy částí světadílů ve středních zeměpisných šířkách v obecné poloze pro protáhlá území podél vedlejších kružnic (ČSR, Japonsko) zobrazovací rovnice udávají polární rovinné souřadnice ρ a ε bodu v mapě tak, že osu souřadnice tvoří polopřímka ležící v obrazu základního poledníku, ovšem počátek souřadnic nemusí ležet v pólu (leží v obrazu vrcholu kužele - kartografický pól) obecné rovnice ρ = r * f(δ) ε = n * λ kde 0 < n < 1 n závisí na parametrech zobrazení
33 Ptolemaiovo zobrazení Ptolemaios (1. stol. př. n. l.) tečný kužel obrazem pólu je část kružnice délkojevné podél poledníků délkojevné podle dotykové rovnoběžky φ 0 velmi používané pro geografické mapy (až 40 % map ve Školním atlasu) zkreslení přibývá rychleji k pólu než k rovníku zobrazovací rovnice ε = n * λ, kde n = cos δ 0 ρ = r * [tgδ 0 arc(δ- δ 0 )]
34 Lambertovo zobrazení Johann Heinrich Lambert (1772) plochojevné obrazem pólu je bod délkojevné v rovnoběžce φ 0 (není však dotyková) velké úhlové zkreslení, proto se využívá málo vzdálenosti rovnoběžek se směrem od bodového obrazu zmenšují
35 Delisleovo zobrazení Josef Nicholaus de l Isle (1745) 2 délkojevné rovnoběžky (φ 1 a φ 2 ), nejsou ale sečné délkojevné podle poledníků a tedy vzdálenosti mezi rovnoběžkami stejné obrazem pólu je část kružnice vyrovnávací plochy a úhly zkresluje méně než Ptolemaiovo
36 Gaussovo zobrazení Karl Friedrich Gauss (publikováno Lambertem v r. 1772, zavedeno 1822) úhlojevné obrazem pólu je bod délkojevné podél φ 0 (dotyková) široké využití: v geodézii a v letectví (na elipsoidu) v šikmé poloze bylo použito pro podrobné topografické mapy našeho území (tzv. Křovákovo zobrazení) Mezinárodní letecká (aeronavigační) mapa 1 : Mezinárodní mapa světa 1 :
37 Mezinárodní mapa světa mezinárodní geografické konference Albrecht Penck ( ) 2500 mapových listů v měřítku 1 : v r vytvořena pravidla pro tvorbu od roku 1980 už není tvorba požadována nedokončena
38
39 Obecná kartografická zobrazení společné vlastnosti: zobrazovací plochou nemusí být rovina, plášť válce ani plášť kužele převod referenční plochy do roviny se provádí matematicky nebo geometricky tak, že se jednoduché plochy buď vůbec nepoužije nebo se použije více takových ploch současně v normální poloze obsahuje alespoň jedna zobrazovací rovnice dvě proměnné, a to ϕ a λ některá nemají zobrazovací rovnice vůbec používají se nejčastěji pro mapy světa na jednom listu a většinou v normální poloze většinou se jedná o plochojevná, vyrovnávací zobrazení v normální poloze bývají obrazy rovníku a středního (základního) poledníku přímkové, navzájem kolmé
40 Obecná zobrazení I. Nepravá Pseudoazimutální vznikají z azimutálních afinní transformací křivkové obrazy poledníků a rovnoběžek Pseudocylindrická (pseudoválcová) přímkové obrazy rovnoběžek a křivkové poledníků Pseudokonická (pseudokuželová) kruhové obrazy rovnoběžek a křivkové poledníků
41 Hammerovo zobrazení Ernest von Hammer (1892) pseudoazimutální z Lambertova zobrazení v příčné poloze y-souřadnice průsečíků sítě se ponechají a x-souřadnice se dvojnásobí (obrazy poledníků se přečíslují na dvojnásobek) plochojevné vzájemný poměr poloos je možné měnit svět zobrazen do elipsy rovnoběžky se zobrazují jako křivky modifikace, kde póly se zobrazí jako křivky se nazývá Wagnerovo zobrazení
42 Hammerovo nepravé azimutální zobrazení
43 Aitowovo zobrazení David Aitow, Rusko, 19. stol. pseudoazimutální afinní transformace Postelova zobrazení podobné Hammerovu zobrazení, ale navíc délkojevné podél rovníku a středního poledníku vyrovnávací
44 Sansonovo nepravé válcové zobrazení Nicolas Sanson (velké užití), ale autor Jean (Johan) Cossin pseudocylindrické vychází z Marinova zobrazení tak, že se přímkové obrazy rovnoběžek zkrátí po obou stranách, aby byly zachována délkojevnost jejich rozdělením na stejné díly se dosáhne průsečíků s poledníky obrazy poledníků jsou poloviny sinusoid (Sinusoidální zobrazení) plochojevné délkojevné podél všech rovnoběžek a středního poledníku u pólu velké úhlové zkreslení, používají se většinou pouze výřezy
45 Sansonovo zobrazení
46 Mollweidovo nepravé válcové zobrazení Karl Brandan Mollweide pseudocylindrické obrazy rovnoběžek jsou přímkové, kolmé na střední poledník, zhušťují se k pólům střední poledník je přímkový, ostatní eliptické plochojevné délkojevné podél φ 0 = ±45,767 svět v elipse (2:1)
47 Mollweidovo nepravé válcové zobrazení
48 Eckertovo nepravé válcové zobrazení Max Eckert, 1906 (celkově 6 zobrazení) pseudocylindrické základní poledník a oba póly se zobrazují jako úsečky o ½ délce rovníku poledníky mají sinusoidální průběh a dělí od rovníku zhušťující se rovnoběžky na stejné díly (jako u Sansonova zobrazení) tvarem připomíná sud plochojevné délkojevné podél φ 0 = ±49,268
49 Eckertova nepravá válcová zobrazení nejsou ekvivalentní jsou ekvivalentní
50 Bonneovo nepravé kuželové zobrazení Rigobert Bonne, 1752 pseudokonické vznikne z Ptolemaiova zobrazení zkrácením obrazů rovnoběžek tak, aby byly délkojevné jejich rozdělením na stejné části (viz Sansonovo zobrazení) vzniknou průsečíky s poledníky obrazy rovnoběžek jsou tedy délkojevné, poloměry podle Ptolemaiova vzorce střední poledník délkojevný, póly bodové plochojevné při φ 0 ve vyšších zeměpisných šířkách má tvar srdce a při φ 0 = 0 se jedná o Sansonovo zobrazení pro φ 0 = 90 se nazývá Wernerovo Stabeovo dříve pro mapy světadílů
51 Bonneovo nepravé kuželové zobrazení
52 Obecná zobrazení II. Polykónická vznikla, protože u kuželových zobrazení není mimo jednu až dvě zachované rovnoběžky nic dalšího délkojevného obzvláště směrem k druhému pólu silně narůstá zkreslení polykónická zobrazení zobrazují každou rovnoběžku na samostatný kužel tedy více různých kuželů obrazy rovnoběžek tvoří nesoustředné kružnice základní poledník je přímkový
53 Americké polykónické zobrazení Ferdinand Rudolph Hassler, 19. stol. obrazy rovníku a středního poledníku jsou přímkové a délkojevné obrazy rovnoběžek (části kružnic) jsou délkojevné póly se zobrazí do bodu délkojevné podle všech rovnoběžek a středního poledníku velké zkreslení při okrajích, používá se jen střední část tvar jablka modifikace: anglické zobrazení, více zploštělá ve vertikálním směru použito pro Topografickou mapu GŠ ČSA 1 : 1 mil.
54 Zobrazení CNIIGAiK G. A. Ginzburg (Centralnyj naučnoisledovatelskij institut geodezii, aerofotosjomky i kartografii) vypočten na základě požadovaného zkreslení nemá zobrazovací rovnice, pouze tabulkové hodnoty souřadnic x,y, odpovídající obrazům průsečíků zeměpisné sítě póly i rovnoběžky křivkové použito v ŠAS v 70. letech, více variant nic jevného, kompenzační
55 Grintenovo kruhové zobrazení Alphons J. van der Grinten (1904) obraz světa do kruhu o poloměru π.r rovník a střední poledník - v průměrech, vzájemně kolmé rovnoběžky i poledníky jsou části kružnic vyrovnávací zkreslené oblasti pólů se na mapách světa ořezávají a do obdélníku se naopak dokresluje zeměpisná síť (tedy např. Aljaška bývá zobrazena 2x)
56 Obecná zobrazení III. Víceplošná zmenšují zkreslení pomocí rozdělení zobrazovaného území na menší části na každý sférický lichoběžník je použito zobrazení se samostatnou souřadnicovou soustavou např. glóbus rozdělen na rovnoběžkové či poledníkové pásy a každý pás je zobrazen na novou zobrazovací plochu mapy nelze sestavit vedle sebe bez mezer nejčastěji: koule na mnohostěny hvězdicové mapy (planisféry) poledníkové pásy pro glóbus sférický lichoběžník do roviny kuželu, válce
57 Víceplošná zobrazení polyedrická k tvorbě víceplošných glóbů, ze sférických lichoběžníků jejichž složením vznikne polyedr mnohoválcová pro glóbusové pásy (Gauss- Krügerovo zobrazení, UTM) pankónická např. 4 kužely (a tedy 4 kuželové pásy) Delislova zobrazení
58 Obecná zobrazení IV. Neklasifikovaná smíšená průměry souřadnic u dvou různých zobrazení dělené sítě různé polohy zobrazovacích ploch (více středních poledníků) tak, aby geografické celky (např. kontinenty) zapadly do částí sítě (mají společný například rovník) jedno zobrazení členěno na více částí kombinované sítě založeny na dvou nebo více sítích sestrojených v různých zobrazeních tak, aby bylo možné přiložit mapy částí zemského povrchu k sobě podél některé části zeměpisné sítě dvě či více zobrazení na sebe spojitě navazují
59 Neklasifikovaná zobrazení Bartholomewovo kombinované a dělené vzniklo z Postelova a Bonneova zobrazení Berghaussovo hvězdicové zobrazení dělené střed tvoří Postelovo zobrazení podobné je Petermannovo zobrazení (8 cípů)
60 Neklasifikovaná zobrazení Ortoapsidální zobrazení (armadillo) úhlojevné ve znaku České kartografické společnosti Leeovo zobrazení úhlojevné, svět do trojúhelníku Mollweidovo zobrazení v Goodově úpravě
61 Geodetická zobrazení slouží pro geodetické účely (tedy přesné vyměřování) a mapování velkých měřítek úhlojevná aby nezkreslovala úhly jakožto základní měřičský prvek vycházejí z referenčních elipsoidů (nikoli z koule) zvláštnosti v označování souřadnic: x má význam y, y má význam x Gaussovo-Krügerovo Křovákovo UTM
62 Gauss-Krügerovo zobrazení odvozeno Gaussem (19.stol.), propracováno Krügerem úhlojevné válcové příčné zobrazení elipsoidu do roviny bez použití referenční koule 1952 pro Topografickou mapu ČSSR a státy Varšavské smlouvy (využívá Krasovského elipsoidu) na jeden válec se zobrazí úzký pás území, protáhlý podél dotykového poledníku systém sférických dvojúhelníků po 6 (od 1 válce dotýkajícího se podél poledníku)
63 Gauss-Krügerovo zobrazení dvojúhelník je vymezený dvěma poledníky s intervalem 6 délkové zkreslení max 1,00057, na 1 : se tedy neprojeví zeměpisné délky se udávají vzhledem ke greenwichskému poledníku základní poledník přímkový a délkojevný rovník nedélkojevný a přímkový obrazy poledníků sinusoidy, rovnoběžek paraboly v rovnicích značí x vzdálenost od obrazu rovníku, y od poledníku
64 Křovákovo zobrazení Gaussovo úhlojevné kuželové zobrazení v šikmé poloze převádějící Besselův elipsoid na referenční kouli (R = 6 380,7 km - Gaussova koule) tato koule má s elipsoidem jediný dotykový bod, délkově je zachována rovnoběžka elipsoidu (φ 0 =49,5 ) koule opět konformně zobrazena na sečný kužel v obecné poloze maximální délkové zkreslení od 0,9999 až po 1,0001, tedy délka 1 km se mění maximálně o 1 dm, což se např. v mapě s měřítkem 1:1000 prakticky neprojeví
65 Křovákovo zobrazení v Československu zavedeno poprvé v roce 1922 nejprve pro katastrální mapy, později i pro mapy tzv. definitivního vojenského mapování zeměpisné délky se udávají vzhledem k Ferrskému poledníku kartografický pól: ϕ= ,7, λ= ,4 (nad Tallinem) v mapách postačuje zobrazit poledníky přímkami a rovnoběžky soustřednými kružnicemi (správně se však jedná v obou případech o složité křivky) pomocí zobrazení se převáděly trigonometrické body I. řádu jednotné sítě československé do roviny vznikla tedy soustava rovinných souřadnic pro tzv. československou jednotnou trigonometrickou síť katastrální (JTSK) od roku Základní mapa ČSSR
66
67 UTM (Universal Transverse Mercator) úhlojevné válcové příčné sečné Mercatorovo zobrazení dříve pro vojenské mapy USA a NATO, dnes běžné od Gauss-Krügerova se liší: používá elipsoid WGS84 pro lepší rozdělení zkreslení nejsou základní poledníky pásů délkojevné (1,0004 kratší) používá se pouze pro území mezi 80. rovnoběžkami pro polární oblasti od UPS (Universal Polar Stereographic)
68 UTM
69
70 Volba zobrazení Velikost území s narůstající velikostí území se zvětšuje zkreslení v okrajových částech mapy mapy menších území - jednoduchá zobrazení (azimutální nebo kuželová) pro mapy Země - nepravá nebo mnohokuželová zobrazení Tvar území malé hodnoty zkreslení jsou co nejblíže k dotykovým nebo sečným křivkám okrouhlá území - azimutální zobrazení protáhlá území - kuželová nebo válcová zobrazení Geografická poloha území rovníkové oblasti - válcová v normální poloze oblasti mírného pásu (zvláště jsou-li rozložena podél rovnoběžek) - kuželová v normální poloze obecně geografické mapy - vyrovnávací zobrazení polární vrchlíky - azimutální zobrazení v normální poloze
71 Volba zobrazení Obsah mapy topografické a navigační mapy - úhlojevná zobrazení automapy a dopravní mapy délkojevná zobrazení kartogramy a mapy pro srovnání ploch - plochojevná zobrazení Účel mapy mapy katastrální a topografické - úhlojevná zobrazení přehledné mapy - co nejméně zkreslený obraz referenční plochy atlasy a soubory tematických map - srovnatelné druhy zobrazení a nebo stejná zobrazení
PŘEHLED JEVNOSTI ZOBRAZENÍ
Úhlojevná (konformní Plochojevná (ekvivalentní Délkojevná (ekvidistatntí Vyrovnávací (kompenzační PŘEHLED JEVNOSTI ZOBRAZENÍ (azimutální Stereografická (cylindické Mercatorovo zobrazení (loodroma jako
Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)
Matematické metody v kartografii Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Kruhová zobrazení Společné vlastnosti: Síť poledníků/rovnoběžek tvořena pouze kruhovými oblouky Středy rovnoběžkových
Matematické metody v kartografii. Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.)
Matematické metody v kartografii Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.) 1. Jednoduchá azimutální zobrazení Společné vlastnosti: Jednoduché zobrazení, zobrazuje na tečnou rovinu
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 9 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Polykónická zobrazení někdy také mnohokuželová zobecnění kuželových zobrazení použito je nekonečně mnoho
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 8 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Nepravá zobrazení zachovávají některé charakteristiky jednoduchých zobrazení (tvar rovnoběžek) některé
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 5 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Válcová zobrazení obrazem poledníků jsou úsečky, které mají konstantní rozestupy obrazem rovnoběžek jsou
Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13)
Matematické metody v kartografii Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(3) Volba kartografického zobrazení Parametry ovlivňující volbu
Matematické metody v kartografii. Nepravá zobrazení. Polykónická zobrazení. (11.)
Matematické metody v kartografii Nepravá zobrazení. Polykónická zobrazení. (11.) 1. Společné vlastnosti nepravých zobrazení Jedna ze souřadnicových funkcí je funkcí zeměpisné šířky i délky Obrazy rovnoběţek:
Matematické metody v kartografii. Jednoduchá válcová zobrazení. Válcové projekce. Gaussovo zobrazení. (6.+7.)
Matematické metody v kartografii Jednoduchá válcová zobrazení. Válcové projekce. Gaussovo zobrazení. (6.+7.) 1. Jednoduchá zobrazení Společné vlastnosti: Zobrazovací plocha představována pláštěm kužele,
Základy kartografie, topografické plochy
Základy kartografie, topografické plochy morava@karlin.mff.cuni.cz Katedra didaktiky matematiky MFF UK, Praha Aplikace matematiky pro učitele, 3. ledna 2012 Základní pojmy Kartografie věda zabývající se
Matematické metody v kartografii. Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma.
Matematické metody v kartografii Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma. . Přehled důležitých křivek V matematické kartografii existují důležité křivky, které jdou po
Celkem existuje asi 300 zobrazení, používá se jen několik desítek.
ÁKLADY KARTOGRAFIE RO SŠ KARTOGRAFICKÉ OBRAENÍ Kartografické zobrazení je způsob, který každému bodu na referenčním elipsoidu resp. referenční kouli přiřazuje body v rovině. Určení věrných obrazů bodů
MATEMATICKÁ KARTOGRAFIE
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL 5 NEPRAVÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie Modul
Transformace dat mezi různými datovými zdroji
Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace
10. SOUDOBÉ TOPOGRAFICKÉ MAPY
102 10. Soudobé topografické mapy 10. SOUDOBÉ TOPOGRAFICKÉ MAPY V této kapitole se seznámíme se dvěmi soudobými státními mapovými díly topografické povahy. Bude se jednat o vojenskou topografickou mapu
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce
1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení.
Obsah 1 Nepravá zobrazení 2 3 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5 Zobrazení Evropy Nepravá zobrazení: jednoduché nepravé kuželové ρ = f (U), ɛ = g(v ) = nv ρ = f
Matematická kartografie. Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT. Referenční plochy
Matematická kartografie Buchar.: Matematická kartografie 10, ČVUT; Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT Referenční plochy referenční elipsoid (sféroid) zploštělý rotační elipsoid Besselův
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v
Zobrazování zemského povrchu
Zobrazování zemského povrchu Země je kulatá Mapy jsou placaté Zemský povrch je zvlněný a země není kulatá Fyzický povrch potřebuji promítnout na nějaký matematicky popsatelný povrch http://photojournal.jpl.nasa.gov/jpeg/pia03399.jpg
Základy kartografie. RNDr. Petra Surynková, Ph.D.
Univerzita Karlova v Praze Matematicko-fyzikální fakulta RNDr., Ph.D. petra.surynkova@mff.cuni.cz www.surynkova.info Kartografie Vědní obor zabývající se znázorněním zemského povrchu a nebeských těles
Kartografie I. RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava
Kartografie I Matematické a geometrické základy kartografických děl RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava Podkladové materiály pro
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 7 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 válcové konformní zobrazení v transverzální poloze někdy také nazýváno transverzální Mercatorovo nebo Gauss-Krügerovo
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 3. ročník S3G ROZPIS TÉMAT PRO ŠK. ROK 2018/2019 1) Kartografické zobrazení na území ČR Cassiny-Soldnerovo zobrazení Obecné konformní kuželové zobrazení Gauss-Krügerovo
Úvodní ustanovení. Geodetické referenční systémy
430/2006 Sb. NAŘÍZENÍ VLÁDY ze dne 16. srpna 2006 o stanovení geodetických referenčních systémů a státních mapových děl závazných na území státu a zásadách jejich používání ve znění nařízení vlády č. 81/2011
Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.)
Matematické metody v kartografii Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) 1. Členění kartografických zobrazení: Existuje velkémnožstvíkarografických zobrazení. Lze je členit
GIS a pozemkové úpravy. Data pro využití území (DPZ)
GIS a pozemkové úpravy Data pro využití území (DPZ) Josef Krása Katedra hydromeliorací a krajinného inženýrství, Fakulta stavební ČVUT v Praze 1 Papírová mapa Nevymizela v době GIS systémů (Stále základní
GIS Geografické informační systémy
GIS Geografické informační systémy Kartografie Glóbus představuje zmenšený a zjednodušený, 3rozměrný model zemského povrchu; všechny délky na glóbu jsou zmenšeny v určitém poměru; úhly a tvary a velikosti
Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Podpořeno z projektu FRVŠ 584/2011. Křovákovo zobrazení Křovákovo zobrazení
ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou
ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.
SOUŘADNICOVÉ SYSTÉMY. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník SOUŘADNICOVÉ SYSTÉMY GEOID, REFERENČNÍ ELIPSOID, REFERENČNÍ KOULE S JTSK S - 42 WGS 84 TRANSFORMACE SUŘADNICOVÝCH SYSTÉMŮ REFERENČNÍ SYSTÉMY
4. Matematická kartografie
4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od
Geodézie a pozemková evidence
2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Geodézie Přednáška. Souřadnicové systémy Souřadnice na referenčních plochách
Geodézie Přednáška Souřadnicové systémy Souřadnice na referenčních plochách strana 2 každý stát nebo skupina států si volí pro souvislé zobrazení celého území vhodný souřadnicový systém slouží k lokalizaci
Stavební geodézie. Úvod do geodézie. Ing. Tomáš Křemen, Ph.D.
Stavební geodézie Úvod do geodézie Ing. Tomáš Křemen, Ph.D. Stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek,
Planetární geografie zadání 9. 12. 2009 Vzdálenosti na Zemi odevzdání 17. 12. 2009
Samostatný úkol 5 Planetární geografie zadání 9. 12. 2009 Vzdálenosti na Zemi odevzdání 17. 12. 2009 Obsah Zadání samostatného úkolu Teoretický základ Pokyny k vypracování (včetně vzorového řešení) Příloha
Astronomická pozorování
KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové
MATEMATIKA rozšířená úroveň
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.
Geodézie pro architekty. Úvod do geodézie
Geodézie pro architekty Úvod do geodézie Geodézie pro architekty Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek, P. a kol.: Stavební
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Pro mapování na našem území bylo použito následujících souřadnicových systémů:
SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ. Gauss-Krügerovo zobrazení UTM
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ Gauss-Krügerovo zobrazení UTM 1 Předmluva Mapování v novém Křovákově kuželovém konformním zobrazení mělo dobrou přesnost a značné výhody, ale ty měly využití jen lokální
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI
GIS Geografické informační systémy Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI jan.gaura@vsb.cz http://mrl.cs.vsb.cz/people/gaura Kartografie Stojí na pomezí geografie a geodezie. Poskytuje vizualizaci
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních
Souřadnicové systémy na území ČR. Státní mapové dílo ČR
Souřadnicové systémy na území ČR Státní mapové dílo ČR 1 Závazné referenční systémy dle 430/2006 Sb. Nařízení vlády o stanovení geodetických referenčních systémů a státních mapových děl závazných na území
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.
ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i
. Opakovací kurs středoškolské matematiky podzim 2015
. Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl
82736-250px-coronelli_celestial_globe Geografie=Zeměpis geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl a posud do jisté míry jest sporný Topografie
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné
GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie.
GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie. Květoslava Prudilová Jan Šafařík přednášková skupina P-G1G1, učebna C311 zimní semestr 2018-2019 21. listopad 2018 Základní
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY Radek Dušek, Jan Mach Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta, Ostravská univerzita, Ostrava Gymnázium Omská, Praha Abstrakt
Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Rovnice RNDr. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Grafické řešení soustav rovnic a nerovnic VY INOVACE_0 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Soustav lineárních rovnic Soustavou
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné
Topografické mapy nové koncepce
Topografické mapy nové koncepce Státní mapová díla (9) po r. 1989 změna vojensko-politické situace rozhodnutí státní reprezentace k připojení NATO (přistupuje stát a vláda, ne armáda) nařízení náčelníka
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
Geoinformatika. IV Poloha v prostoru
Geoinformatika IV Poloha v prostoru jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Složky geografických
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
Srovnání konformních kartografických zobrazení pro zvolené
Srovnání konformních kartografických zobrazení pro zvolené území (návod na cvičení) 1 Úvod Cílem úlohy je srovnání vlastnosti jednoduchých konformních zobrazení a jejich posouzení z hlediska vhodnosti
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení
Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení Kartografie přednáška 1 Kartografie obor zabývající se zobrazováním zakřivené části Zemského povrchu do rovinné
Euklidovský prostor Stručnější verze
[1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)
Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy
Závazné referenční systémy dle 430/2006 Sb. Souřadnicov adnicové systémy na území Nařízen zení vlády o stanovení geodetických referenčních systémů a státn tních mapových děl d l závazných z na území státu
MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM
WORLD GEODETIC SYSTEM 1984 - WGS 84 MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Soustava základních geometrických a
6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
Perspektiva jako matematický model objektivu
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Semestrální práce z předmětu KMA/MM Perspektiva jako matematický model objektivu Martin Tichota mtichota@students.zcu.cz
Souřadnicové systémy Souřadnice na referenčních plochách
Geodézie přednáška 2 Souřadnicové systémy Souřadnice na referenčních plochách Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Souřadnicové systémy na území
17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah Jednoduchá zobrazení 1 Jednoduchá zobrazení 2 Obsah Jednoduchá zobrazení 1 Jednoduchá zobrazení 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref.
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Environmentální vzdělávání rozvíjející
ELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
ELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném
OPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21
OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...
154GUI1 Geodézie pro UIS 1
154GUI1 Geodézie pro UIS 1 Přednášející: Ing. Tomáš Křemen, Ph.D; Místnost: B905 Email: tomas.kremen@fsv.cvut.cz WWW: k154.fsv.cvut.cz/~kremen Literatura: [1] Ratiborský, J.: Geodézie 10. 2. vyd. Praha:
Historie. Zlomek mamutího klu s rytinou mapy (krajiny), nalezeno pod Pálavskými vrchy, stáří 25-27 tis. let
Brno, 2014 Ing. Miloš Cibulka, Ph.D. Přednáška č. 1 Digitální kartografie Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
GEODÉZIE. Co je vlastně geodézie?
Co je vlastně geodézie? Doslovný význam řeckého slova GEODESIE je dělení půdy, země. Geodesie se zabývá měřením, výpočtem a zobrazením částí povrchu zemského, určením tvaru a velikosti země. Základní úlohou
Edita Kolářová ÚSTAV MATEMATIKY
Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................
MATEMATIKA+ MAMPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAMPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 3 úloh. Časový limit pro řešení didaktického
Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc
Téma: Světlo a stín Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Objekty na nebeské sféře září ve viditelném spektru buď vlastním světlem(hvězdy, galaxie) nebo světlem odraženým(planety, planetky, satelity).
Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace
Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace Zeměměřický úřad, Jan Řezníček Praha, 2018 Definice matematická pravidla (rovnice) jednoznačné přidružení souřadnic k prostorovým informacím
BA03 Deskriptivní geometrie
BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
Kartografické projekce
GYMNÁZIUM CHRISTIANA DOPPLERA Zborovská 45, Praha 5 Ročníková práce z deskriptivní geometrie Kartografické projekce Vypracoval: Nguyen, Viet Bach, 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů
Funkce. Vlastnosti funkcí
FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Osvětlování a stínování
Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti
Úvod do předmětu geodézie
1/1 Úvod do předmětu geodézie Ing. Hana Staňková, Ph.D. IGDM, HGF, VŠB-TU Ostrava hana.stankova@vsb.cz A911, 5269 1 Geodézie 1/2 vědní obor o měření části zemského povrchu, o určování vzájemných vztahů
Konstrukce teleskopů. Miroslav Palatka
Přednášky - Přístroje pro astronomii 1 Konstrukce teleskopů Miroslav Palatka Palatka SLO/PA1 2011 1 Reflektory Zrcadlové teleskopy Palatka SLO/PA1 2011 2 Ideální optická soustava BOD-BOD, PŘÍMKA-PŘÍMKA,
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva
11. Geometrická optika
Trivium z optiky 83 Geometrická optika V této a v následující kapitole se budeme zabývat studiem světla v situacích, kdy je možno zanedbat jeho vlnový charakter V tomto ohledu se obě kapitoly podstatně
Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0
Geometrie pro FST 2 Pomocný učební text František Ježek, Světlana Tomiczková Plzeň, 28. srpna 2013, verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie pro FST 2, který vyučujeme