Interakce prostorů IIIv 7
|
|
- Kamila Macháčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Převod bodů diskrétního prostoru do perspektivního zrakového - stručně Interakce prostorů IIIv 7 Bohumír Tichánek Když uděláte ze čtverce kruh, pak naleznete vše tajné * * * George Ripley ( ) Převod z diskrétní bodové sítě do Euklidova prostoru není možný. Snažím se o převod do nejzákladnějšího prostoru - do vnímaného perspektivního prostoru, ve prospěch zraku a sluchu. Každému bodu se dodrží jeho vzdálenost od počátku a kartézské souřadnice. (Odstavec ROZPOR je zařazený ke konci textu). Pojmy * * * Diskrétní prostor - obsahuje rozlišené body. Jejich souřadnice jsou výhradně celočíselné a vzdálenosti se určují počtem svislých a vodorovných kroků. Délka kroku se nehodnotí, jen počet. Takovým prostorem je i šachovnice. Kvadratický prostor - osové souřadnice Euklidova prostoru má umocněné na druhou. Perspektivní prostor - je daný zrakovým i sluchovým vnímáním člověka. Obr. 1. Diskrétní prostor určí vzdálenost, mezi dvěma posicemi, počtem kroků. V 2D prostoru má posice právě jiné čtyři posice sousední, do kterých lze bod přesunout jedním krokem (taximetrika): nahoru, dolů, vlevo, vpravo. Obr. 2. Má-li jistý bod stejnou vzdálenost od počátku v diskrétním a v Euklidově prostoru, pak ale nemá stejné souřadnice. Výjimkou jsou jen body, které leží na osách x a y. Tudíž diskrétní prostor neposlouží jako skladiště bodů pro přepočet do Euklidova prostoru
2 Obr. 3. Lze přepočítat body z posic diskrétního prostoru, tentokrát do kontinua kvadratického prostoru? Obr. 4. Bod T [1, 3] je od počátku [0, 0] vzdálený 4 kroky. Vzdálenost 4 má v prostoru diskrétním, a stejně tak v nabízeném kontinuu. Také kartézské souřadnice [1, 3] má v obou prostorech stejné. Převod bodu C [2, 3] mezi oběma prostory. Prostor s kvadratickým cejchováním os navazuje na diskrétní prostor a touto spoluprací se podstatně odlišuje od Euklidova lineárního prostoru. Slučitelnost prostorů nabízí řešení: chod Vesmíru se odehrává v diskrétním prostředí a z něho každý tvor dostává, do svého vědomí, informace o umístění hmoty. Přepočítané ve prospěch zrakového vnímání. Další matematická úprava kvadratického prostoru směřuje k optimálnímu vystižení zážitků perspektivy. Tvor je vždy umístěný v počátku souřadnic, odkud vnímá prostor perspektivně rozložený. Obr
3 Obr. 6. Zobrazení situace tvora - pozorovatele ve světě. Jako ideální kružnice vidí právě ty, které mají střed v počátku. Počátkem je mu vždy ta posice v prostoru, na které se on sám právě nalézá. Ať obsazuje kteroukoliv posici prostoru, např. bod J, vždy zjišťuje svůj první krok o stejné délce. Z toho získává základní názor, že celý svět je lineární. Jenže správnost takového názoru na světový prostor ať dosvědčí úspěšná matematizace. A to bez zavádění iracionálních čísel - vždyť nemají určitou svou velikost. V lineárním Euklidově prostoru se někdy nabízejí iracionality. Tehdy není délka jednoznačně určená, narozdíl od smyslového zážitku. Řešitelé se musí domluvit, kterou jinou racionální délku použijí. Bez dohody by nejspíš každý zvolil jinou délku, z nekončícího počtu desetinných míst iracionální délky. Dosud naše civilizace předpokládá skutečnost této geometrie a vzniklé matematiky, když uvažuje rozložení hmoty v našem světě. Euklidova geometrie, a k ní příslušná matematika, však nekorespondují s vnímaným světem. Tvor sleduje perspektivní svět, odvozený buďto z Euklidova lineárního prostoru - anebo z diskrétního prostoru. Převod z diskrétního prostoru, do kvadratického kontinua, nevyžaduje iracionální čísla - nezobrazuje nenalezitelnou odmocninu ze dvou, apod. Podle Occamovy břitvy je snížení dvou druhů čísel na jeden zásadní výhodou. Tento odstavec nabídl nemožnost Euklidova prostoru, ve kterém by byla rozmístěná hmota. Obr. 7. Převedení sítě diskrétního prostoru do sítě kvadraticky přepočteného prostoru. Každý bod dodržuje vzdálenost od počátku a souřadnice svislé a vodorovné osy
4 Obr. 8. Při převodu bodů z diskrétního do perspektivního prostoru se všechny body umísťují na kružnicích s celočíselným poloměrem. Zrak má odvozovat velikost objektu ze zorného úhlu, pod kterým pozorovatel vidí objekt. Vlevo jsou vodorovné úsečky, uspořádané pod sebou. Svou délkou vyjadřují velikosti zorných úhlů - v příslušných vzdálenostech od počátku. Znamenají velikost objektů, jak se pozorovateli jeví v celočíselných vzdálenostech. Obr. 9. Horní pravítko naznačuje, že ve větší vzdálenosti od počátku se úsečky - zorné úhly - zkracují skoro až lineárně. Dolní pravítko ukazuje, že v blízkosti počátku se délky zmenšují nelineárně. Souhlasně s pohledem kamery, která by byla postavená přímo v útvaru pochodujících lidí. Postavy, při své chůzi rovnoměrnou rychlostí směrem ke kameře, se zvětšují zprvu lineárně, ale těsně u kamery vidíme jejich zrychlené zvětšování. To je zde v obrázku připomínáno nelineárním nárůstem délky pro úsečky, blízké počátku. ROZPOR: V kvadratickém prostoru, jejž tato práce sleduje, se liší vzájemná vzdálenost sousedních bodů ležících na společné kružnici. Naopak naše perspektivní vnímání blízkých objektů takovou nerovnoměrnost nemívá. To však nevyvrací názor této práce - důležitost převodu pro zrakový zážitek. Nevylučuje se navržený způsob, jak získávat zrakové údaje. K tomu dva důvody: 1. Nejmenší dvě kružnice takový rozpor nemají. Teprve velké kružnice jej mají zdůrazněný. To připomíná zrakový zážitek pozorovatele, jemuž se zmenšují vzdálené objekty, vycházející na obzoru. Viz další práce o Měsíci a Slunci a souhvězdích. 2. Dokonalý obraz, který vnímáme, nemůže biologický orgán oko zajistit. Mozek vždy podstatně upravuje zrakové údaje. K tomu práce s mnoha citacemi o práci zraku - hledání virtuální reality
5 Obr. 10. Dosavadní perspektivu nám ukazuje snímek natažených kolejí. Obr. 12. Obrázek ukazuje převod svislých čar k pozorovateli v počátku [0]. Horní obrázek ukazuje čtverce jako kružnice diskrétního prostoru. To proto, že body obvodu mají ke středu svého obrazce vždy stejnou vzdálenost - vyjadřováno počtem kroků. Na dolním obrázku jsou body překreslené do perspektivy středového pozorovatele. Známý poznatek - když pozorovatel vidí opodál kružnici, nakreslenou na podlaze, nevnímá ji ani jako kružnici, ani jako elipsu. Obr. 11. Body z diskrétního prostoru směřují do geometrie perspektivního vnímání. Dodrží jak vzdálenost od počátku, tak souřadnice ortogonálního systému
Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1
Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod
Rozkošná Maja v geometrii
citát pro dnešní den: Slova, jdoucí ze srdce, hřejí tři zimy Rozkošná Maja v geometrii gnosis9.net -> gnosis.cz Rubrika: Záhady a otazníky (03.01.2010) Školení lidé, znalí i skrytých věcí Vesmíru, si můžou
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Světový nelineární prostor 7
verze 10. 7. 2009 19. 5. 2014 Světový nelineární prostor 7 Bohumír Tichánek Newton, tvůrce klasické mechaniky, která se stala základem mechanického materialismu, věřil ve stvořitele. Vedle horlivého zastánce
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Základní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Cvičení z matematiky - volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu
p ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
Veličiny charakterizující geometrii ploch
Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně
Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová
Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Člověk a jeho svět. ČJ a literatura
VZDĚLÁVACÍ OBLAST: Vzdělávací obor: Stupeň: Období: Ročník: Očekávané výstupy omp e t e n c e čivo Mezipředmětové vztahy oznámky používá přirozená čísla k modelování reálných situací, počítá předměty v
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1
Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní
ROČNÍKOVÁ PRÁCE. Užití lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Užití lineární perspektivy Vypracoval: Michal Černý Třída: 4. C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu
Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
2.8.6 Parametrické systémy funkcí
.8.6 Parametrické sstém funkcí Předpoklad:, 0,, 50, 60 Stejně jako parametrická rovnice zastupuje mnoho rovnic najednou, parametrick zadaná funkce zastupuje mnoho funkcí. Pedagogická poznámka: Názornost
4.2.9 Vlastnosti funkcí sinus a cosinus
4..9 Vlastnosti funkcí sinus a cosinus Předpoklady: 408 Grafy funkcí y = sin a y = cos, které jsme získali vynesením hodnot v minulé hodině. 0,5-0,5 - Obě křivky jsou stejné, jen kosinusoida je o π napřed
Deskriptivní geometrie I zimní semestr 2017/18
Deskriptivní geometrie I zimní semestr 2017/18 Rys č. 2 Lineární perspektiva, zrcadlení Pokyny pro vypracování platné pro všechny příklady Pokud není v zadání příkladu uvedeno jinak, zobrazujte pouze viditelné
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást
Cvičení z matematiky - volitelný předmět
Volitelný předmět : Období ročník : Cvičení z matematiky - volitelný předmět 3. období 8. ročník Učební texty : Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro,... Očekávané výstupy předmětu
Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
Základní škola Náchod Plhov: ŠVP Klíče k životu
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 5. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování a aktivizace
Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
3 Elektromagnetické vlny ve vakuu
3 Elektromagnetické vlny ve vakuu Od mechanických vln s pružinkami a závažími se nyní přesuneme k vlnám elektromagnetickým. Setkáváme se s nimi na každém kroku radiové vlny, mikrovlny, světlo nebo třeba
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
37. PARABOLA V ANALYTICKÉ GEOMETRII
37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné
Tvorba technická dokumentace
Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: VY_42_INOVACE_02_G
Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: IV/2 Inovace
TEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Vzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr
Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování
CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma
Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.
Extremální úlohy v geometrii
Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr
- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně
Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.
Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní
Ve čtyřrozměrném prostoru
Ve čtyřrozměrném prostoru Bohumír Tichánek Výpočet úhlopříčky 4D krychle Diskrétní zrak ve 4D prostoru Vznik čtyřrozměrné krychle Osm povrchových krychlí Symetrie 4D krychle Rozvinutý tvar 4D krychle Podložit
2.1.5 Graf funkce I. Předpoklady: 2104
..5 Graf funkce I Předpoklad: 0 Pedagogická poznámka: Největší změnou oproti klasickému řazení v gmnaziální sadě, je spojení dílů o rovnicích a funkcích. Představa grafu umožňuje studentům daleko lépe
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
TECHNICKÁ DOKUMENTACE
TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice.
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika, fyzika Téma: Cyklistický převod výpočet délky řetězu a převodového poměru Věk žáků:
Mechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
Použité zdroje a odkazy: Nápověda Corel Draw X6, J. Švercl: Technické kreslení a deskriptivní geometrie pro školu a praxi
Označení materiálu: Autor: Mgr. Ludmila Krčmářová VY_32_INOVACE_PoGra1709 Tematický celek: Corel DrawX6 Učivo (téma): Kótování v Corel Draw Stručná Charakteristika: Využití nástrojů CD vhodných na kótování
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:
Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,
1. Zadání Pracovní úkol Pomůcky
1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar
Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a
4.. Funkce kotangens Zopakuj všechny části předchozí kapitoly pro funkci kotangens. c B a A b C Tangens a kotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá
Rysč.2 ZobrazeníobjektuvLP,zrcadlení
Deskriptivní geometrie I zimní semestr 2012/13 Rysč.2 ZobrazeníobjektuvLP,zrcadlení Zadání pro druhý rys jsou dvojího typu: Ve variantě 1 3 je třeba kromě samotného objektu zobrazit i jeho zrcadlový obraz
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Matematika - 4. ročník Vzdělávací obsah
Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Popis základního prostředí programu AutoCAD
Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD CÍL KAPITOLY: CO POTŘEBUJETE ZNÁT, NEŽ ZAČNETE PRACOVAT Vysvětlení základních pojmů: Okno programu AutoCAD Roletová
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
Testy do hodin - souhrnný test - 6. ročník
Kolik procent škol jste předstihli Škola: Název: Obec: BCEH ZŠ a MŠ, Slezská 316 Slavkov - 6. ročník ČESKÝ JAZYK Máte lepší výsledky než 7 % zúčastněných škol. MATEMATIKA Máte lepší výsledky než 7 % zúčastněných
JEVIŠTNÍ PERSPEKTIVA TABULKA 19
OBSAH tabulka strana Předmluva 6 Úvod 7 Základní pojmy v perspektivě 1 8 Výška oka sedícího diváka 2 9 Průčelná perspektiva centrální, pozorovací bod je na ose symetrie, základna prochází stranou BC 3
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy