Hypergrafové removal lemma a Szemérediho
|
|
- Václav Bláha
- před 5 lety
- Počet zobrazení:
Transkript
1 Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných k-tic prvků z V. Jako K n (k) označme úplný k-uniformní hypergraf na n vrcholech, tj. V ( K n (k) ) = {,..., n} a E ( K n (k) ) = {e {,..., n}, e = k}. Věta (Hypergrafové removal lemma). Pro každé k > 0 a α > 0 existují β > 0 a n 0 takové, že každý k-uniformní hypergraf G s n n 0 vrcholy bud obsahuje alespoň βn k+ podhypergrafů isomorfních K (k) k+, nebo existuje X E(G) velikosti nevýše αn k tž. G X neobsahuje žádný podhypergraf isomorfní K (k) k+. Pro k = 2 je to Removal lemma pro trojúhelníky (Věta 2) z druhé přednášky. Lemma 2. Pro každé δ > 0 a k > 0 existuje n tž. platí následující. Jestliže n n a A {,..., n} k má velikost alespoň δn k, pak existuje x A a d 0 tž. x + (d, 0, 0,...) A, x + (0, d, 0,...) A,... Důkaz. Necht α = δ. Necht β > 0 a n 2(2k) k 0 jsou odpovídající konstanty z hypergrafového removal lemma. Necht n = max(n 0, /β). Necht G je k-uniformní hypergraf s vrcholy {v c,i : c k, i n} {v k+,i : i kn} a hranami definovanými následovně: v,x v 2,x2... v k,xk je hrana, jestliže (x,..., x k ) A.
2 pro j k, v,x... v j,xj v j+,xj+... v k,xk v k+,z je hrana, jestliže (x,..., x j, z x... x j x j+... x k, x j+,..., x k ) A. Položme x = (x,..., x k ) a d = z x... x k. Pak {v,x, v 2,x2,..., v k,xk, v k+,z } indukuje K (k) k+ právě tehdy, když x A, x+(d, 0, 0,...) A, x+(0, d, 0,...) A,... Takový podhypergraf K (k) k+ nám tedy dává požadované řešení, jestliže d 0. Označme jako T množinu podhypergrafů K (k) k+ s d = 0; máme T = A n k, tvrzení tedy platí, jestliže G obsahuje více než n k podhypergrafů K (k) k+. Necht G obsahuje nejvýše n k < n (2kn)k+ = V n (G) k+ β V (G) k+ podhypergrafů K (k) k+. Dle Věty existuje X E(G) velikosti nejvýše α V (G) k = δ 2 nk taková, že G X neobsahuje žádný podhypergraf K (k) k+. Povšimněme si, že hypergrafy v T jsou navzájem hranově disjunktní, a protože každý z nich musí obsahovat hranu z X, dostáváme X T. To je spor, jelikož T = A δn k. 2 Aritmetické posloupnosti v hustých podmnožinách čísel Věta 3 (Szemerédi). Pro každé γ > 0 a k > 0 existuje n tž. platí následující. Jestliže n n a B {,..., n} má velikost alespoň γn, pak b, b + d,..., b + kd B pro nějaká b, d > 0. Důkaz. Necht δ = ( γ a zvolme n 2 tak, aby platilo Lemma 2 a n 4k 2 /γ. Položme A = {(x,..., x k ) : x +2x kx k B}. Odhadněme velikost 4k 2 ) k γ A: pro každé b B můžeme zvolit x 2,..., x k b k 2 libovolně a dopočítat x tak, aby x + 2x kx k = b; jestliže b 2k 2, dostáváme tedy alespoň b k 2 k (2k 2 ) k b k prvků z A. Proto A (2k 2 ) k b B,b2k 2 b k b k (2k 2 ) k b B,bγn/2 ( γ ) k n k {b B : b γn/2} (2k 2 ) k 2 ( γ ) k γ 4k 2 2 nk = δn k. 2
3 Dle Lemma 2 tedy existuje x A a d 0 tž. x + (d, 0, 0,...) A, x+(0, d, 0,...) A,... Necht a = x +2x kx k. Pak a B, a+d B,..., a + kd B. Věta 4. Existují libovolně velká přirozená čísla N a množiny A {0,..., N } neobsahující 3-prvkovou aritmetickou posloupnost tž. A N. 6 log2 N Důkaz. Necht n je přirozené číslo. Položme d = 2 n a N = (2d) n. Povšimněme si, že log 2 N = n( + log 2 d) = n 2. Pro 0 k n(d ) 2, položme S k = { x {0,..., d } n : x = k}. Jelikož Sk je podmnožina sféry, S k neobsahuje 3-prvkovou aritmetickou posloupnost (tj. pro každé x, z S k platí x+ z S 2 k ). Navíc {0,..., d } n n(d ) 2 d k=0 S k, a proto existuje k tž. S k n > n(d ) 2 + dn 2 /n. Zafixujme takové k. Pro x = (x,..., x n ) {0,..., 2d 2} n zadefinujme f( x) = n i= (2d ) i x i. Zjevně f( x) {0,..., N }. Dále si povšimněme, že f je bijekce a pokud x, y, z {0,..., d } n, pak f( x) + f( y) = f( x + y) a 2f( z) = f(2 z). Proto f(s k ) neobsahuje 3-prvkovou aritmetickou posloupnost a f(s k ) = S k > d n 2 /n. Zvolíme-li A = f(s k ), dostáváme A N > dn 2 /n (2d) = n n2 n d 2 4 > n+log 2 d 4 =. 2n 6 log2 N 3 Hales-Jewettova věta Necht A je nějaká konečná množina. Budeme se zabývat k-ticemi prvků z A obarvenými pomocí c barev, tedy funkcí f : A k [c]. Množinu A k si můžeme představit jako k-rozměrnou krychli. Nyní nadefinujeme kombinatorickou přímku v této krychli. Necht p = (a,..., a k ) je k-tice tž. a i A { } a pro alespoň jedno a i platí a i =. Pro a A definujme p(a) jako k-tici získanou z p nahrazením všech hodnoutou a. Kombinatorická přímka popsaná p je definována jako p(a) = {p(a) : a A}. Příklad: necht A = {, 2, 3} a k = 2, A 2 je tedy dvojrozměrná tabulka o rozměrech 3 3. Možné kombinatorické přímky jsou např. p = (, ) dávající přímku p (A) = {(, ), (, 2), (, 3)}, p 2 = (, 2) dávající přímku p 2 (A) = {(, 2), (2, 2), (3, 2)} a p 3 = (, ) dávající přímku p 3 (A) = {(, ), (2, 2), (3, 3)}. 3
4 Věta 5 (Hales-Jewett). Pro každé n a c existuje k tž. pro množinu A velikosti n a každé obarvení A k pomocí c-barev existuje monochromatická kombinatorická přímka. Důsledek 6. Pro každé c a d existuje n tž. v libovolném obarvení čísel,..., n pomocí c barev existuje monochromatická aritmetická posloupnost délky d. Důkaz. Necht A = {,..., d} a k je konstanta z Hales-Jewettovy věty pro A a c. Položme n = kd. Každé k-tici (a,..., a k ) prvků A přiřad me barvu čísla a + a a k. Necht p je popis monochromatické kombinatorické přímky, která existuje dle Hales-Jewettovy věty, takže čísla p(0), p(),..., p(d ) mají všechna stejnou barvu. Tato čísla tvoří aritmetickou posloupnost s krokem rovným počtu v p. K důkazu Hales-Jewettovy věty budeme potřebovat další definice. Necht p je k-tice prvků A {,..., d }, v níž se každý symbol,..., d vyskytuje alespoň jednou. Pak p(a,..., a d ) je k-tice získaná z p nahrazením všech i hodnotou a i, a množinu {p(a,..., a d ) : (a,..., a d ) A d } označujeme jako d-rozměrný podprostor generovaný p. Necht x a y jsou různé prvky A. Říkáme, že k-tice a = (a,..., a k ) a b = (b,..., b k ) jsou xy-podobné, jestliže pro každé i bud a i = b i nebo {a i, b i } = {x, y}. Říkáme, že jsou xy-sousední, jestliže jsou xy-podobné a liší se pouze v jednom prvku. Pro k -tici c a k 2 -tici e jako c e označme jejich zřetězení; c e je tedy (k + k 2 )-tice. Lemma 7. Pro každé k, n, c existuje K tž. pro množinu A velikosti n a různé prvky x, y A platí následující. Necht f : A K [c] je libovolné obarvení. Pak existuje k-rozměrný podprostor generovaný nějakou K-ticí p takový, že f(p( a)) = f(p( b) pro každé xy-sousední a, b A k. Důkaz. Necht K 0 = 0 a K i = K i +c nk+k i pro i, a necht K = K k. Pro i = k, k,...,, 0 nalezneme (K K i )-tici p i definující (k i)-rozměrný podprostor, splňující následující podmínku: ( ) Pro každou K i -tici c A K i f( cp i ( a)) = f( cp i ( b). a pro každé xy-sousední a, b A k i platí Pak p = p 0 splňuje podmínku lemmatu. Jako p k položíme prázdnou 0-tici. Předpokládejme, že už jsme zkonstruovali p i+ a konstruujeme p i pro nějaké i < k. Pro j = 0,..., K i+ K i označme jako s j (K i+ K i )-tici mající na prvních j pozicích x a na zbylých y. Necht ϕ j je obarvení A K i+k i definované pro c A K i a e A k i jako ϕ j ( c e) = f( c s j p i+ ( e)). Dostáváme tak K i+ K i + obarvení A K i+k i pomocí c barev. Různých obarvení této množiny c barvami je ale pouze 4
5 c A Ki+k i c nk+k i = K i+ K i, dvě z těchto obarvení jsou tedy stejná; tedy ϕ j = ϕ j2 pro nějaké j < j 2. Necht q i je (K i+ K i )-tice mající na prvních j pozicích x, na dalších j 2 j pozicích i, a na zbylých K i+ K i j 2 pozicích y. Jako p i položme zřetězení q i p i+. Tvrdíme, že p i splňuje podmínku ( ): uvažme libovolné xy-sousední a, b A k i. Jestliže se a a b liší na pozici různé od první, pak ( ) pro p i plyne ze ( ) pro p i+ (z a a b odstraníme jejich společný první prvek v a za c zřetězíme q i (v)). Necht se tedy a a b liší na první pozici a tedy a = x e a b = y e pro nějaké e. Pak f( cp i ( a)) = f( cp i (x e)) = f( cq i (x)p i+ ( e)) = f( c s j2 p i+ ( e)) = ϕ j2 ( c e) = ϕ j ( c e) = f( c s j p i+ ( e)) = f( cq i (y)p i+ ( e)) = f( cp i (y e)) = f( cp i ( b)). Důkaz Hales-Jewettovy věty. Postupujeme indukcí dle n = A. Pro n = je tvrzení triviální, necht tedy n 2. Necht k je konstanta Hales-Jewettovy věty pro n a c a necht K je odpovídající konstanta z Lemma 7. Ukážeme, že Hales-Jewettova věta platí pro libovolné obarvení f : A K [c]. Necht p je K-tice generující k-rozměrný podprostor A K takový, že f(p( a)) = f(p( b) pro každé xy-sousední a, b A k. Z toho plyne, že f(p( a)) = f(p( b) pro každé xy-podobné a, b A k. Nadefinujme obarvení g množiny (A \ {x}) k předpisem g( a) = f(p( a)). Z indukčního předpokladu existuje v tomto obarvení monochromatická přímka q = (q,..., q k ). Položme p = p(q,..., q k ). Tvrdíme, že toto je monochromatická přímka v původním obarvení A K. Pro a A \ {x, y} máme f(p (a)) = f(p(q(a))) = g(q(a)) = g(q(y)) = f(p(q(y)) = f(p (y)). Navíc, p (x) a p (y) jsou xy-podobné, a proto f(p (x)) = f(p (y)). 5
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda
Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Zdeněk Dvořák 12. prosince 2017 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení
Vybíravost grafů, Nullstellensatz, jádra
Vybíravost grafů, Nullstellensatz, jádra Zdeněk Dvořák 10. prosince 2018 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace
Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
1 Seznamová barevnost úplných bipartitních
Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou
Golayův kód 23,12,7 -kód G 23. rozšířený Golayův kód 24,12,8 -kód G 24. ternární Golayův kód 11,6,5 -kód G 11
Golayův kód 23,12,7 -kód G 23 rozšířený Golayův kód 24,12,8 -kód G 24 kód G 23 jako propíchnutí kódu G 24 ternární Golayův kód 11,6,5 -kód G 11 rozšířený ternární Golayův kód 12,6,6 -kód G 12 dekódování
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran, kde
Kapitola 5 Grafy 5.1 Definice Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran E ( V 2), kde ( ) V = {{x, y} : x, y V a x y} 2 je množina všech neuspořádaných dvojic prvků množiny
Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:
Lineární zobrazení Nechť (V, +, ) a (W, +, ) jsou dva vektorové prostory nad týmž tělesem (T, +, ). Nechť f : V W je zobrazení splňující následující podmínky: ( u, v V)(f(u + v) = f(u) + f(v)), ( s T )(
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno
Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =
Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla
Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
1 Nenulové toky. 1.1 Úvod. 1.2 Definice
1 Nenulové toky 1.1 Úvod Naším výchozím bodem bude grafová dualita. Nechť G je graf s daným vnořením v rovině, které určuje jeho duální graf G. V rámci duality si navzájem odpovídají například následující
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Další NP-úplné problémy
Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
3. přednáška 15. října 2007
3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení
Lebesgueovsky neměřitelné množiny
Lebesgueovsky neměřitelné množiny Jonathan Verner jonathan.verner@matfyz.cz, http://jonathan.verner.matfyz.cz Motivace Lebesgueova míra nám umožňuje porovnávat velikost objektů. Na rozdíl od pojmu mohutnosti
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
Příklady z Kombinatoriky a grafů I - LS 2015/2016
Příklady z Kombinatoriky a grafů I - LS 2015/2016 zadáno 1.-4. 3. 2016, odevzdat do 8.-11. 3. 2016 1. Zjistěte, které z následujících funkcí definovaných pro n N jsou v relaci Θ(), a vzniklé třídy co nejlépe
Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1
Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné
Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní
Základy teorie množin
1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina
Výroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
LIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Vrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
Jak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
Přednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny
FUNKCIONÁLNÍ ANALÝZA 1 PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2016/2017 PŘÍKLADY KE KAPITOLE VI K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ]
1. část 1. (u 1, u 2, u, u 4 ) je kladná báze orientovaného vektorového prostoru V 4. Rozhodněte, zda vektory (u, 2u 1 + u 4, u 4 u, u 2 ) tvoří kladnou, resp. zápornou bázi V 4. 0 2 0 0 0 0 0 1 0 2 0
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)
C Ať C je [n, k] q kód takový, že pro každé u 1,..., u n ) C je také u 2,..., u n, u 1 ) C. Jinými slovy, kódová slova jsou uzavřena na cyklické posuny. Je přirozené takový kód nazvat cyklický. Strukturu
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Lineární algebra : Lineární zobrazení
Lineární algebra : Lineární zobrazení (6. přednáška František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 20. května 2014, 22:40 1 2 6.1 Lineární zobrazení Definice 1. Buďte P a Q dva lineární prostory
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
MATEMATIKY. Přednášel: Prof. RNDr. Jaroslav Nešetřil, DrSc. Zapsal: Michal Hrušecký
Poznámky z přednášek z DISKRÉTNÍ MATEMATIKY Přednášel: Prof. RNDr. Jaroslav Nešetřil, DrSc. Zapsal: Michal Hrušecký zimní semestr 2003/2004 Obsah 1 Přednáška z 1. 10. 2003 1 2 Přednáška z 22. 10. 2003
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Teorie množin Pavel Podbrdský
Teorie množin Pavel Podbrdský V matematice se s pojmem množina setkáváte na každém kroku. Jistě jste obeznámenispojmemmnožinyvšechpřirozenýchčísel,množinyvšechbodůvrovině,... Cílem této přednášky bude
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
Úvod do teorie her. 6. Koaliční hry
Úvod do teorie her 6. Koaliční hry Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2018 ÚTIA AV ČR Různé formy her Známé formy her jsou: rozvinutá, strategická, koaliční. Pro danou množinu hráčů N = {1,...,
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Texty k přednáškám z MMAN3: 3. Metrické prostory
Texty k přednáškám z MMAN3: 3. Metrické prostory 3. července 2012 1 Metrika na množině, metrický prostor Pojem vzdálenosti dvou reálných (komplexních) čísel, nebo bodů v rovině či prostoru je známý ze
9. Vícerozměrná integrace
9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující
1. přednáška 1. října Kapitola 1. Metrické prostory.
1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018
67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m.
13. přednáška 13. ledna 2010 Důkaz. M = n=0 a nz n a N = n=0 b nz n tedy buďte dvě mocninné řady, které se jako funkce shodují svými hodnotami na nějaké prosté posloupnosti bodů z k C konvergující k nule.
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to