První výraz na pravé straně rovnice se označuje jako standardní reakční Gibbsova energie r G o. ν ln a
|
|
- Jiřina Vacková
- před 7 lety
- Počet zobrazení:
Transkript
1 Rekční ztem vnvážná knstnt Rekční ztem je vzth mez ekční Gbbsvu enegí slžením ekční směs ř zvlené teltě Tent vzth získáme dszením výzu chemcký tencál d vnce µ µ + RT ln G µ P becnu ekc G G µ L symblzuje sučn řes všechny slžky ekce µ RT RT ln ln Pvní výz n vé stně vnce se znčuje jk stnddní ekční Gbbsv enege G G µ Rekční ztem G G + RT ln Pz n zdíl mez G G : Stnddní ekční Gbbsv enege má význm zdílu Gbbsvy enege sustvy, ve kteé se uskuteční ekce v jedntkvém zshu, řčemž výchzí látky dukty dné ekce jsu ve svém stnddním stvu V symblu stnddní ekční Gbbsvu eneg má jž klscký význm knečné změny Stnddní ekční Gbbsv enege je nlgí stnddní ekční entle Rekční Gbbsv enege udává, jk se změní Gbbsv enege sustvy, ve kteé se uskuteční ekce v jedntkvém zshu všem ř knstntním slžení ekční směs (lze s ředstvt 60
2 tk, že říslušná ekce běhne v tk velkém mnžství ekční směs, že uskutečnění ekce v jedntkvém zshu slžení směs ktcky nezmění) V vnváze ltí G G 0 RT ln Př zvlené teltě musí být sučn ktvt jedntlvých slžek v vnvážné ekční směs umcněných n říslušné stechmetcké kefcenty knstntní Tent sučn se znčuje jk vnvážná knstnt G RT ln mě vnvážné knstnty defnvné mcí vnvážných ktvt tzv vé temdynmcké knstnty, budeme užívt knstnty vyjádřené mcí jných vnvážných velčn Různé vyjádření vnvážných knstnt jejch vzth k vé temdynmcké vnvážné knstntě P ekce bíhjící v ztku budeme čst užívt knstntu vyjádřenu mcí vnvážných eltvních kncentcí c c c el, cel, γ cel, γ c γ 61
3 Bude-l ekce bíht ve zředěném ztku, u kteéh lze ředkládt deální chvání, bude knstnt c ttžná s vu temdynmcku vnvážnu knstntu P ekce bíhjící v lynné fáz užíváme knstntu vyjádřenu mcí vnvážných eltvních tlků neb knstntu vyjádřenu mcí vnvážných mláních zlmků el, fel, fel, el, φ el, φ φ P knstntu ltí nlgcké závěy jk knstntu c Fugctní kefcenty φ závsí n tlku sustvy, tedy kmě telty též závsí n tlku sustvy (není vu knstntu) Bude-l se sustv chvt deálně, tzn že všechny slžky bude lttφ 1, k el, el, el el el ředstvuje celkvý eltvní tlk vnvážné ekční směs, se znčuje jk mlvé čísl ekce udává, jk se změní látkvé mnžství sustvy, ve kteé se uskuteční ekce v jedntkvém zshu el 62
4 Př slnění jedné ze dvu následujících dmínek bude ltt Budu-l se nvíc lynné slžky chvt deálně, k vnvážná knstnt bude ttžná s vu temdynmcku knstntu Tkt defnvné vnvážné knstnty jsu velčny bezzměné Učení vnvážné knstnty 1 Ze vzthu G RT ln G lze vyčítt ze slučvcích stnddních ekčních Gbbsvých enegí jedntlvých slžek ekce sl G (L ) nlgcky jk stnddní ekční tel ze slučvcích teel ( L ) G sl G Stnddní slučvcí Gbbsv enege látky L je defnván jk stnddní ekční Gbbsv enege ekce, ř kteé vznkne 1 ml tét látky řím z vků, řčemž vky musí být ř zvlené teltě stnddním tlku ve své nejstálejší dbě Stnddní slučvcí Gbbsvy enege vků v jejch nejstálejší dbě jsu nulvé ř jkéklv teltě Stejně jk stnddní slučvcí tel jsu stnddní slučvcí Gbbsvy enege tbelvány G lze též stnvt eementálně ze stnddníh vnvážnéh nětí glvnckéh článku (vz Elektcheme) 2 Z defnčníh vzthu tedy stnvením slžení vnvážné ekční směs 6
5 Závslst vnvážné knstnty n teltě G RT ln 1 d G R dt T Vn t Hffv ekční zb v dfeencálním tvu d ln dt dln dt H RT 2 Rvnvážná knstnt tedy s stucí teltu ste u endtemních ekcí ( H 0 ) klesá u etemních ekcí ( H 0 ) < > Integální tv vn t Hffvy ekční zby z ředkldu, že H nezávsí n teltě ln T2 T1 1 T2 T H 1 R 1 Vlv vnějších dmínek n slžení vnvážné směs 1 Vlv telty Rvnvážné slžení je učen vnvážnu knstntu t je funkcí telty, tedy změnu telty lze vlvnt slžení vnvážné směs - vz výše 2 Vlv tlku Tlkem lze vlvnt vnvážné slžení u ekcí, jchž se účstní lynné slžky jejch mlvé čísl je nenulvé 64
6 P becnu ekc v deální lynné směs L ln 0 dln dln ln el el ln el ln Σ < 0 Σ > 0 Σ 0 ln el U ekcí s kldným mlvým číslem s stucím tlkem klesá, tzn ř vyšším tlku se vnváh suvá směem k výchzím látkám, u ekcí se záným mlvým číslem je tmu nk Vlv řídvku č debání někteé ze slžek ekce Přídvkem č debáním někteé slžky ekce změníme hdntu sučnu, tzn ušíme vnváhu Rekce musí tudíž běhnut v tkvém směu, by dný sučn nbyl ět hdnty vnvážné knstnty dnu ekc Psunutí vnváhy ve směu duktů dcílíme buď řídvkem někteé z výchzích látek č nk debáním někteéh z duktů 65
7 Le Chteleův nc kce ekce: Pušení vnváhy změnu vnějších dmínek (kce) vyvlá děj (ekc) směřující ke zušení vlvu vnějšíh záshu Rekce, jchž se účstní evné látky Plynné slžky jsu v vnvážné knstntě zstueny eltvním fugctm, slžky v ztku k ktvtm P tuhé látky můžeme též fmálně zvést ktvty vzthem µ µ + RT ln Stnddním stvem tuhé látky je čstá látk ř stnddním tlku Chemcký tencál tuhých látek všk závsí n tlku jen netně Stv tuhé látky lze tedy vžvt z stnddní ř tlku dlšném d stnddníh tlku z ktvtu tuhé látky budeme dszvt jedntkvu hdntu Př CCO (s) CO(s) + CO 2 (g) f CO f el,co CCO 2 el,co 2 66
2. ROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE
. RVNVÁŽNÉ LKTRDVÉ DĚJ (lektchemcké články - temdynamcké aspekty) lektchemcký článek = sustava dvu plčlánků neb-l elektd. lektda = elektchemcký systém alespň dvu fází, z nchž jedna je vdč I. třídy - tedy
Chemické rovnováhy v analytické chemii
Teretcké zákld nltcké cheme PřF UK, ZS 06/07. Chemcké rvnváh v nltcké chem úklem nltcké cheme je vhdným chemckým č fzkálně chemckým půsením n vzrek vvlt pzrvtelnu změnu, z jejíž vlstnst velkst lze usuzvt
2.2. Klasifikace reverzibilních elektrod
.. Klsifikce evezibilních elektd Revezibilní elektd je elektd, n níž se ustvuje vnváh říslušnéh zvtnéh cesu (ř. Cu e Cu) dsttečně ychle. Díky tmu elektd nbude v kátké dbě svéh definvnéh vnvážnéh tenciálu,
4. Termodynamické vlastnosti vícesložkových fází
Terdynk terálů verse.03 (1/006) 4. Terdyncké vlstnst víceslžkvých fází V druhé třetí kptle jse se věnvl terdyncký vlstnste ndvduálních látek rvnváhá v jednslžkvých systéech. V prx se všk dlek čstěj setkáváe
Významnou roli mohou hrát kinetické faktory!!!!!
5. CHEMICKÉ ROVNOVÁHY Temodynmk umožňuje ředovědět, může-l ekce obíht sontánně vyočítt ovnovážné složení z ůzných odmínek zjt, je-l výhodnější ovádět dnou ekc z vyšších nebo nžších telot, z vyšších nebo
Δ sl H o 298 (H 2 O, l) = -285,8 kj mol -1. [Δ sl H o 298 (glukosa) = - 1,27 MJ mol -1 ]
TERMODYNAMIKA 1. Sustava bsahující 1,0 ml mnatmickéh ideálníh plynu vykná evezibilně následující kuhvý děj: stav 1 3 4 V/dm 3 // T/K,4 // 73,4 // 546 44,8 // 546,4 // 73 Vypčítejte tlak sustavy v jedntlivých
1. Základní pojmy a principy
ermdynamka materálů verse.03(/006). Základní my a rncy ěkteré my, které budeme v následuícím textu hně užívat, su čast cháány síše ntutvně, v některých knhách nesu ednznačně defnvány a kud an, ak se ech
Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto
Gymnázium Vyské Mýt nám. Vaňrnéh 163, 566 01 Vyské Mýt Vysvětlení vzniku rvnvážnéh stavu při chemické reakci Některé chemické reakce prbíhají puze v jednm směru. Jejich rychlst je nejvyšší na začátku,
13. DISPERZNÍ SOUSTAVY
3. DISPERZNÍ SOUSTAVY 3. Rzdělvací funkce Statstcké zdělení velkst částc ve vdné emulz je ppsán dfeencální zdělvací funkcí ve tvau F( a exp ( b s knstantam a 3,6.0 m a b 6.0 5 m. Vypčítejte a plmě částc,
Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný
Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod
Termodynamický popis chemicky reagujícího systému
5. CHEMICKÉ ROVNOVÁHY Všechny chemcké rekce směřují k dynmcké rovnováze, v níž jsou řítomny jk výchozí látky tk rodukty, které všk nemjí jž tendenc se měnt. V řdě řídů je všk oloh rovnováhy tk osunut ve
6. Bilance energie v reagujících soustavách. Modely homogenních reaktorů v neisotermním režimu.
6. Blance energe v reaguících sustavách. Mdely hmgenních reaktrů v nestermním režmu. Význam výměna a rekuperace tepla v chemckých prcesech Výhdy a nevýhdy adabatckéh (nestermníh) reaktru Syntéza amnaku,
Celková energie molekuly je tedy tvořena pouze její energií kinetickou.
Ideální lyn 7. 9. stletí, kdy vládl řesvědčení, že klasická mechanika ředstavuje dknalý nástrj r is našeh světa, byli vědci velmi udiveni zvláštním chváním lynů, které tent stav hmty výrazně dlišval d
Kupní smlouva číslo: č. zhotovitele: 3396/2013/169. Město Bohumín Masarykova 158 735 81, Bohumín Ing. Petrem Víchou, starostou města
Kupní smluv čísl: č. zhtvitele: 3396/2013/169 I. Smluvní strny 1.1. Kupující: Sídl: Zstupený: zástupce pvěřený k jednání ve věcech: IC: DIČ: Dňvý režim: Bnkvní spjení: C.účtu: Tel.č.: 1.2. Prdávjící: Sídl:
Dráhy planet. 28. července 2015
Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný
Napětí horninového masivu
Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán
ROZLOŽENÍ HMOTNOSTI TĚLESA VZHLEDEM K SOUŘADNICOVÉMU SYSTÉMU
ROZLOŽENÍ HMONOS ĚLESA VZHLEDEM K SOUŘADNCOVÉMU SYSÉMU Zatímc hmtu hmtnéh bdu chaakteivala jediná fikální veličina a sice hmtnst m u tělesa je nutn kmě tht paametu nát plhu středu hmtnsti a paamet definující
6. Bilance energie v reagujících soustavách. Modely homogenních reaktorů v neisotermním režimu.
6. Blance energe v reaguících sustavách. Mdely hmgenních reaktrů v nestermním režmu. Blance celkvé energe zahrnue: vntřní energ mechancku energ (knetcku energ ptencální energ... Přeměny edntlvých druhů
VĚČNÉ EVANGELIUM (Legenda 1240)
0 Jroslv Vrchcký I. (sbor tcet) Con moto tt.ii. dgo 0 VĚČNÉ EVNGELIUM (Legend 0) JOCHIM Kdo v dí n dě l, jk tí mrč Leoš Jnáček ny? Půl hvě zd m je skryt host nd o blč ný. Moderto Zs n děl nd be ze tí str
Teorie technologických procesů
Vyská škla báňská Techncká unverzta Ostrava Tere technlgckých prcesů učební text Rstslav Dudek, Krstna Peřnvá, Jarslav Kalusek Ostrava 01 Recenze: Prf.Ing. Karel Stránský, Dr.Sc. Mgr. Jan Veřmřvský Název:
Co se předpokládá: - student si pamatuje molární hmotnosti uhlíku, dusíku, kyslíku, vodíku
1. - 2. cvčení Téma: - vyjádření kncentrace ve směsích (mlární, hmtnstní a bjemvé zlmky, mlalta, látkvá kncentrace), střední mlární hmtnst, parcální tlak, - stavvé chvání tekutn - stavvá rvnce deálníh
Molární toky výstupní (mol/s) Molární toky vstupní (mol/s) V=konst. i i. ki V. V, k
4. Blance v stemních sustavách s chemcku eakcí. mulace hmtnstní blance p vsádkvé a půtčné sustavy v ustáleném a dynamckém stavu. Základní mdely chemckých eaktů p hmgenní sustavy. Mlání tky vstupní (ml/s)
Jednosložkové soustavy
Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů
5.1 Termodynamický popis chemicky reagujícího systému
5. CHEMICKÉ ROVNOVÁHY Všechny chemcké rekce směřují k dynmcké rovnováze, v níž jsou řítomny jk výchozí látky, tk rodukty, které všk nemjí jž tendenc se měnt. V řdě řídů je všk oloh rovnováhy tk osunut
Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce
» Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna
E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah)
GALVANICKÉ ČLÁNKY E = E red,rvý E red,levý E D = E red,rvý E ox,levý E D G = z E E E S = z = z T E T T Q= T S [] G = z E rg E E rs = = z, r rg T rs z = = T E T T T E E T T ν i E = E ln i z i mimo rovnováhu
ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení
PedDr. Jze Beňušk ZOBRAZOÁNÍ ODRAZEM NA KULOÉ PLOŠE neb Kd se v zrcdle vidíme převrácení Kulvá zrcdl - jsu zrcdl, jejichž zrcdlící plchu tvří část pvrchu kule (kulvý vrchlík). 1. Duté kulvé zrcdl - světl
TĚŽIŠTĚ TĚLESA (hmotný střed tělesa)
ĚŽIŠĚ ĚLEA (htný střed těes) ěžště těes jeu teé udee nčvt je půsště výsedne tíhvýh s ( ) půsííh n jedntvé eeent těes Rděíe- těes n eeentání částe htnst de je pčet část tvří tíhvé sí půsíí n jedntvé částe
a i r r dg = Σµ i dn i [T, p] T V T p integrace pro r H = konst, r H = a + bt, r H = a + bt + ct 2 rozsah reakce stupeň přeměny i i
(T): dg Σµ dn [T, ] G G + TΣ ν R ln,mmo ovnováhu R ν ln, v ovnováze R ln ( ) F R Tln G TΣ T ln T H RT ntege o H kon, H + bt, H + bt + T ln T V U RT (): ln V RT T Rovnovážná konnt z exementálníh dt: ϕ γ
Rekuperace rodinného domu v Přestavlkách
Rekuperace rdinnéh dmu v Přestavlkách Pjem: Rekuperace, nebli zpětné získávání tepla je děj, při němž se přiváděný vzduch d budvy předehřívá teplým dpadním vzduchem. Teplý vzduch není tedy bez užitku dveden
KUMSP00F2J2F. SMLOUVA ^ J: o poskytnutí dotace z rozpočtu Moravskoslezského kraje
KUMSP00FJF -. -:;.. A ; :\! ' SMLUVA J: pkytntí dte z rzpčt Mvklezkéh kje I. SMLUVÍ STRAY. Mvklezký kj e ídlem:. říjn 7, 70 tv ztpen: Iftf RSDR Svtmírem Remnem Báfflte I(x. 709069 * ffl t m m DIČ: Z709069
c. 1 ke Smlouvě o poskytování služeb, číslo; 1805/2014/KŘ /dále jen dodatek"/
KUMSPSI76A. < " " " evrpský scální *** fnd V ČR EVRPSKÁ UNIE PERAČNÍ PRGRAM" PDPRUJEME - LIDSKÉ ZDRJE VAŠI BUDUCNST A ZAMĚSTNANST www.esfcr.cz c. ke Sluvě pskytvání služeb, čísl; 805/204/KŘ /dále jen ddatek"/
Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní.
75 Hledání kružnic I Předpklady: 750, kružnice z gemetrie Př : Kružnice je dána becnu rvnicí x y x y plměr Rzhdni, zda na kružnici leží bd A[ ; ] + + + 6 + = 0 Najdi její střed a Obecnu rvnici musíme upravit
Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
2.4. Rovnováhy v mezifází
2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze
Í Í ř ť é č é Č é é č é Ť Ť č é Ť Ť é Í ť Ť Š é č é é Í Ě č č é é Ť č Ó ň é é Ť Í Í Ť é é Í ň č é é Ž é é č č é Ó č Ó é č Ú é é Ť é Ť Ť Ť Ť é ť ňč ň é
Ů ú é Ť Ť Ť č č Ť é Í Ť č é č é é č Á Í Í é ň ú Ó č é Ť č Ť Ť č č é č é č ň č é é Ý Ě Ů Ť Ť Č Ť é Ť é č Ť Ť Ť Ť ů č Ť č Ť é č é ť č é Ť Ť Ý č é Ť č é Ť é é č éť é Ť Ť é Ť é č é é é č é é é é é Ť ň Ť é
Ý Š Ě ř ž ó š ř ž ř ř ď ř ť ď ž ř ř Ž ř ř ú š ř ř ú š Ž ř ř Ý Ú ř ú ž ř Ř Ě Ě ř ž ž ř Ť ř ř ř š ů ů ů ů ů Ú ů Ě ř ř ž ř ů ž ř Ž ř ř ř ř ř ř ř Ž ú Ž ž ř š ř ř ň ř ř ů ř ů ů ř ř š ř ú ú ř Ť š ž Ť ř Ž ř ř
Raoultův zákon, podle kterého je při zvolené teplotě T parciální tlak i-té složky nad roztokem
DVOUSLOŽKOVÉ SYSTÉMY lkace Gbbsova zákona fází v f s 2 3 1 4 2 2 4 mamálně 3 roměnné, ro fázový dagram bchom otřeboval trojrozměrný 1 3 4 graf, oužíváme lošné graf, kd volíme buď konstantní telotu (zotermcký
Výslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
Ideální plyn. Z tohoto jednoduchého popisu plynou další zásadní vlastnosti ideálního plynu :
Ideální lyn 7. 9. stletí, kdy vládl řesvědčení, že klasická mechanika ředstavuje dknalý nástrj r is našeh světa, byli vědci velmi udiveni zvláštním chváním lynů, které tent stav hmty výrazně dlišval d
Teplota a její měření
1 Teplta 1.1 Celsiva teplta 1.2 Fahrenheitva teplta 1.3 Termdynamická teplta Kelvin 2 Tepltní stupnice 2.1 Mezinárdní tepltní stupnice z rku 1990 3 Tepltní rzdíl 4 Teplměr Blmetr Termgraf 5 Tepltní rztažnst
ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE
*UOHSX008357X* UOHSX008357X ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE PŘÍKAZ Č. j.: ÚOHS-S0114/2016/VZ-07578/2016/521/MŽi Brn 26. únra 2016 Úřad pr chranu hspdářské sutěže příslušný pdle 112 zákna č. 137/2006
PLASTICITA A CREEP PLASTICITA III
Plasticita III / PLATICITA A CRP PLATICITA III Zbyně Hubý zbyne.huby huby@fs.cvut.cz Plasticita III / Pdmíny asticity mezní stavy Plasticita III / Pdmíny asticity mezní stavy paamet atuálníh napěťvéh stavu
použijte Debyeův- Hückelův limitní zákon. P (Ba 3 (PO 4 ) 2 ) = 3, , M r (Ba 3 (PO 4 ) 2 ) = 601,9. [- m= 1,26 mg]
ELEKTROCHEMIE 1. Pr vdné rztky AlCl 3 a Al 2 (SO 4 ) 3 celkvé látkvé kncentraci,2 ml dm -3 vypčítejte intvu sílu, střední mlární kncentraci a střední aktivitu. Střední aktivitní keficienty elektrlytů v
1 ROVNOVÁHA BODU Sestavte rovnice rovnice rovnováhy bodu (neznámé A,B,C) Určete A pro konstrukci z příkladu
Sbírka bude dplňvána. Příští dplněk budu příklady na vnitřní síly v diskrétních průřeech. Připmínky, pravy, návrhy další příklay jsu vítány na rer@cml.fsv.cvut.c. mbicí sbírky je hlavně jedntně definvat
sluč H o 298 (C 2 H 4, g) = 52,7 kj mol -1 sluč H o 298 (CO 2, g) = -394,5 kj mol -1 sluč H o 298 (H 2 O, l) = -285,8 kj mol -1. [Q p = ,5 kj]
TERMODYNAMIKA 1. Sustava bsahující 1,0 ml mnatmickéh ideálníh plynu vykná reverzibilně následující cyklický děj: stav 1 3 4 V/dm 3 // T/K,4 // 73,4 // 546 44,8 // 546,4 // 73 Vypčítejte tlak sustavy v
V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln
Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv
SMR 1. Pavel Padevět
SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně
1.7.4 Rovnováha na páce I
7 Rvnváha na áce I Překlay: 70 Př : Urči mmenty i výslený mment sil na brázku, ku latí = 60 N = 0 N, r = 0,m, r = 0,9m M = r = 60 0, N m = 8 N m M = r = 0 0,9 N m = 8 N m Síly na brázku se snaží táčet
2.9.14 Věty o logaritmech I
.9.1 Věty o itmech I Předpokldy: 910 Pedgogická poznámk: Tto náledující hodin e djí tihnout njednou, pokud oželíte počítání v tbulce někteé příkldy n konci příští hodiny. Přijde mi to tochu škod, nžím
tel , Dle rozdělovníku ROZHODNUTÍ
n B HÝĚ Hvn 2, hýně, 253 Hstivie Vše znčk: Spis.zn.: 3175/ASv/17/h Č.j.: 3246/ASv/17/h Vyizuje: Aen Svbdvá De zděvnku Te: 31167 595 i: svbdv@hyne.z V hýni dne 11. 12. 217 RHDUTÍ uděen výjiky ze stvebn
r o je jednotkový vektor průvodiče :
Elektické le ve vakuu Přesněji řečen, budeme se věnvat elektstatickému li, tj. silvému li vyvlanému existencí klidvých nábjů. (Z mechaniky všem víme, že jmy klidu a hybu jsu elativní, závisejí na vlbě
uzavřená podle 1746 odst. 2 občanského zákoníku níže uvedeného dne, měsíce a roku mezi následujícími smluvními stranami
Smluva revitalizaci, svícení, bnvě, údržbě a prvzvání distribuční sustavy elektrické energie sítě veřejnéh světlení na základě metdy Energy Perfrmance and Quality Cntracting uzavřená pdle 1746 dst. 2 bčanskéh
DODATEK č.2 ke smlouvě o dílo číslo: 02718/21. 28. října 117, 702 18 Ostrava
KPE86 PERAČÍ PRGRAM ŽVTÍ PRTŘEDÍ EVRPKÁ E Fnd držn Pr vd, vzdh přírd Vřjná zkázk č. 2/205 DDATEK č.2 k mlvě díl číl: 0278/2 ^ K LEZKÝ KRAJ - KRAJKÝ ÚŘAD MLVÍ TRAY: ČÍL MLVY (DDATK. Mrvklzký krj ídlm: Ztpn:
BILANCE ENTALPIE V SYSTÉMU S CHEMICKOU REAKCÍ
BIL LPI SYSÉU S IKOU KÍ eé eaty aují té vždy v neztení ežu tj v eatu exstují teltní zdíly negenní teltní le a tedy telta eatu lší d telty átení neb telty nástu P eé ea té vždy vzná < neb zaná > velé nžství
VYBRANÉ KAPITOLY Z FYZIKÁLNÍ CHEMIE studijní opora
Vyská škla báňská Tehnká unvezta Ostava Fakulta metaluge a mateálvéh nženýství VYRNÉ PITOLY Z FYZIÁLNÍ CHEMIE studjní a stna Peřnvá Lenka Řeháčkvá Ostava 03 Vybané katly z fyzkální heme Reenze: d. Ing.
ELEKTRICKÝ VÝKON A ENERGIE. spotřebičová orientace - napětí i proud na na impedanci Z mají souhlasný směr
ZÁKLADNÍ POJMY ELEKRCKÝ ÝKON A ENERGE Okamžitá hdnta výknu je deinvána: p u.i [,, A] sptřebičvá rientace - napětí i prud na na impedanci Z mají suhlasný směr výkn p > 0 - impedance Z je sptřebičem elektrické
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
doplňkové a dodatkové veličiny ideální směs parciální molární veličiny fugacita maximální obsah vody v plynu Gibbs Duhemova rovnice příklady na
dňvé a ddatvé večny deáí sěs arcáí ární večny ugacta aáí bsah vdy v ynu bbs Duheva rvnce říady na rcvčení Sěs ynů Závs árníh beu na sžení dňvý be ddatvý be 3 Ddatvé večny - vyadřuí dchyu d deáí sěs X E
uбdajuй rоaбdneб cоi mimorоaбdneб uбcоetnуб zaбveоrky a oddeоleneб evidence naбkladuй a vyбnosuй podle zvlaбsоtnубho praбvnубho prоedpisu.
Cо aбstka 143 SbУбrka zaбkonuй cо. 377 /2001 Strana 7965 377 VYHLAб Sо KA Energetickeбho regulacоnубho uбrоadu ze dne 17. rоубjna 2001 o Energetickeбm regulacоnубm fondu, kterou se stanovуб zpuй sob vyбbeоru
Kinetika spalovacích reakcí
Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak
= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.
5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické
1. ROZDĚLENÍ A CHARAKTERISTIKA FÁZOVÝCH ROZHRANÍ 1.1 Fázová rozhraní 1.2 Fázová rozhraní z molekulárního hlediska
FYZIKÁLNÍ CHEMIE FÁZOVÝCH ROZHRNÍ. ROZDĚLENÍ CHRKERISIK FÁZOVÝCH ROZHRNÍ. Fázvá zhaní. Fázvá zhaní z lekuláníh hledka.. Mezlekulání nteakce u = knt. 6 (.-) a b u = +. (.-) 6 bje 4 π = 4 π d = 6 3 3 vch
5. Mechanika tuhého tlesa
5. Mechanika tuhéh tlesa Rzmry a tvar tlesa jsu ast pi ešení mechanických prblém rzhdující a pdstatn vlivují phybvé úinky sil, které na n psbí. akvá tlesa samzejm nelze nahradit hmtným bdem. Úinky sil
GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU
Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,
Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERITY O TECHNOLOGY AKULTA TROJNÍHO INŽENÝRTVÍ ÚTAV AUOMOBILNÍHO A DOPRAVNÍHO INŽE- NÝRTVÍ ACULTY O MECHANICAL ENGINEERING INTITUTE O AUTOMOTIVE ENGINEERING OJNICE
( ) ( ) ( )( ) ( ) 2.2.11 Slovní úlohy vedoucí na lineární rovnice II. Předpoklady: 2210
2.2.11 Slvní úlhy veucí na lineární rvnice II Přepklay: 2210 Př. 1: Jara stává zaměstnavatele kažý měsíc k stravenek v hntě 50 Kč. Zapiš výrazem klik peněz může utratit za běy: a) kažý měsíc, b) tent měsíc,
V. Soustavy s chemickou reakcí dokončení
V. Soustavy s chemckou eakcí dokončení Cheme Ústav ocesní a zacovatelské technky FS ČVU v Paze 1 5.5 Chemcká ovnováha vatných eakcí c A c R c B c S c A(t) c B(t) c R(t) c S(t) c AEQ c BEQ c REQ c SEQ c
R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
KLUZNÁ LOŽISKA DĚLENÁ konstrukce
KLUZNÁ LOŽISKA DĚLENÁ strue. Rzevřeí 7. Dé fxčíh výstupu. Šíř fxčíh výstupu 8. Tušť xáíh žs. Vzdáest fxčíh výstupu 9. Kuzá ph rd. žs. Fxčí výstupe 0. Kuzá ph x. žs 5. Šíř žs. Mzí dráž 6. Výběh mzí drážy.
Aplikované chemické procesy
Aplkované chemcké pocesy Blance eaktoů Chemcký eakto Základní ysy chemckého sou učovány těmto faktoy: způsob přvádění výchozích látek a odvádění poduktů, způsob povádění eakce (kontnuální nebo dskontnuální)
MODELY HYDRAULICKÉ SOUSTAVY VODNÍ ELEKTRÁRNY. Ing. Zdeněk Němec, CSc. VUT v Brně, Fakulta strojního inženýrství, Ústav automatizace a informatiky
ODEY YDRAUICKÉ SOUSAVY VODÍ EEKRÁRY Ing. Zeněk ěme, CS. VU v Bně, Fakua sjní nženýsví, Úsav aumazae a nfmaky. yauká susava, mžns mevání yauku susavu ze v suvss s vné ubnu zumíme sub yenký bjeků p přív
ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE PŘÍKAZ. Č. j.: ÚOHS-S0096/2016/VZ-06824/2016/522/PKř Brno: 22. února 2016
*UOHSX0084T2L* UOHSX0084T2L ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE PŘÍKAZ Č. j.: ÚOHS-S0096/2016/VZ-06824/2016/522/PKř Brn: 22. únra 2016 Úřad pr chranu hspdářské sutěže příslušný pdle 112 zákna č. 137/2006
VÝPIS Z KATASTRU NEMOVITOSTÍ prokazující stav evidovaný k datu 11.07.2014 10:40:43
prkazující stav evidvaný k datu 11.07.2014 10:40:43 Okres: CZ0647 Znjm Obec: 594156 Hrušvany nad Jevišvku Kat.území: 648809 Hrušvany nad Jevišvku List vlastnictví: 521 A Vyhtven bezúplatně dálkvým přístupem
Ť Í ň š Ť ň Ú Ú Ť č č č č ň ů š Ť ňš č š ť Ť š š č š ň č š č ť č š č Ť Ž Ť Ť š č Í š š ť š Ť ň č š Í ňč ň č š ň Ž č č ú č ť ď č Ť Ť ň ň š Ť č š ů ň ň Ů Í š š ň š ť Ů ň č Ž Ž ť č č Í Ď ť Ťč š ť š Ž Ď Ž
2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
URČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Ť ě Í Ú č č č š ťí č ž ě ž ě ě š ě ť ě ěť č ť ť č č ž Ť ě Ť š ě Ť ť ě ž Ť Í Ť š ň č š ě ě š ě Č š č č č čť Ť ě ě ňž č Ť Ý š ž ž š ě ěť ě ě ž ž ť ě ě Ť
Č ž č Ť ž Ť Ť ž ě ě ě Ť č ň ž ž ě š ž Ě ň ž č č ú Ť ž Ť Ť ě Ť ě š ě ž ě ž Ť Č ě Ť ž ž Ť š ž Ť č ěť Č č ž ČČ ž Ť ě Í Ú č č č š ťí č ž ě ž ě ě š ě ť ě ěť č ť ť č č ž Ť ě Ť š ě Ť ť ě ž Ť Í Ť š ň č š ě ě š
AAA AUTO Group zveřejnila své neauditované konsolidované. hospodářské výsledky za první čtvrtletí roku 2010
AAA AUTO Grup zveřejnila své neauditvané knslidvané hspdářské výsledky za první čtvrtletí rku 2010 Praha / Budapešť, 31. května 2010 Dle hspdářských výsledků za první čtvrtletí rku 2010, které splečnst
FYZIKA I. Newtonovy pohybové zákony
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová
PRAVIDLA PRO ŽADATELE A PŘÍJEMCE PODPORY. v Operačním programu Životní prostředí pro období 2014 2020
PRAVIDLA PRO ŽADATELE A PŘÍJEMCE PODPORY v Operačním prgramu Živtní prstředí pr bdbí 2014 2020 Verze 5.0 Znění účinné d: 14. 10. 2015 Identifikace dkumentu Evidenční čísl: Zpracván dne: 9. 10. 2015 Verze
Univerzita Karlova v Praze Pedagogická fakulta
Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje
Možnosti a druhy párování
Mžnsti a druhy párvání E S O 9 i n t e r n a t i n a l a. s. U M l ý n a 2 2 1 4 1 0 0, P r a h a www.es9.cz Strana 1 (celkem 9) Autmatické hrmadné párvání... 3 Imprt bankvních výpisů (1.2.1.5)... 3 Párvání
- 2 -
VYSOKÉ UČENÍ TECHNICKÉ V B R NĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽ E NÝ RSTV Í Ú STAV STROJÍRE NSKÉ TE C HNOLOG IE M M A FA CULTY OF ECHA NICA L ENGINEERING INSTITUTE OF NUFA CTURING TECHNOLOGY
Ě Č ě Š Í Č Ě ě č ň
Ť É Í Ě Č ě Š Í Č Ě ě č ň Í č č č Á Ť č Ť Í ť č Ť č č ě ě ž ě Ť Í ě Ž č ě ě ě ž Ž Í š ť Ď ž č ě ě š Ť ě ě Ě ě š ě ě č Í ž ě ě š Ž šš ž Í Ť Ž ž ě ž Ť Ť ž ď č š ž ž Í Ť š ě Ť ě ž č ď č č ž Í č š Ž Ž Í č
ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou
ÚČINNOST KOTLE 1. Cíl páce: Roštový kotel o jmenovtém výkonu 100 kw, vybavený automatckým podáváním palva, je učen po spalování dřevní štěpky. Teplo z topného okuhu je předáváno do chladícího okuhu pomocí
Oxidačně-redukční reakce (Redoxní reakce)
Seminář z nlytické chemie idčně-redukční rekce (Redoxní rekce) RNDr. R. Čbl, Dr. Univerzit Krlov v Prze Přírodovědecká fkult Ktedr nlytické chemie Definice pojmů idce částice (tom, molekul, ion) ztrácí
České vysoké učení technické v Praze, Fakulta strojní. DPŽ + MSK Jurenka, příklad I. Dynamická pevnost a životnost. Jur, příklad I
1/10 Dynmická pevnst živtnst Jur, příkld I Miln Růžičk, Jsef Jurenk, Mrtin Nesládek jsef.jurenk@fs.cvut.cz /10 ktr intenzity npětí příkld 1 Jk velké mhu být síly půsbící n nsník n dvu pdprách s převislými
OPAKOVÁNÍ Z 5. ROČNÍKU
OPKOÁNÍ Z 5. ROČNÍKU ❺ Letecká dvlená na Gran Canaria stjí v dbě jarních rázdnin 18 990 Kč r dsělu sbu a 8 999 Kč r dítě. Je mžn si řikuit výlet strvě v ceně 799 Kč r dsělu sbu a 599 Kč r dítě. Klik celkem
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
č ň ň Ž Í č Í Ů Ó č Š Č č ň Š Ť Ó ň ň Ó Ť ť ň ď ň ň Ť Ť Ú č č č č ň Ť ň ň č ň ň č č ň č č č ň Ý ť ň č č ň ť Ž Č č ň ň ť Č ň ť č Ž č ň ň ň Ž Ť ň Š č č č Í č Ž ň ň ď ň ť č ť č č ň Ž Č ť Ó č ň ň ň Í č Ť č
Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Ing. Bc. Michl Mlík, Ing. Bc. Jiří Prims ECHNICKÁ UNIVERZIA V LIBERCI Fkult mechtroniky, informtiky mezioborových studií ento mteriál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinncován
Téma 5 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení
Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im
Střední průmyslvá škla strjní a elektrtechnická Resslva 5, Ústí nad Labem Fázry a kmplexní čísla v elektrtechnice A Re + m 2 2 j 1 + m - m A A ϕ ϕ A A* Re ng. Jarmír Tyrbach Leden 1999 (2/06) Fázry a kmplexní
Univerzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu