í I Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI
|
|
- Alexandra Hrušková
- před 9 lety
- Počet zobrazení:
Transkript
1 í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním heterogenním materálem za daných geometrckých podmínek. Tento program byl využt k výpočtům týkajícím se jak problémů základního výzkumu (byly počítány hodnoty albeda, vzrůstových faktorů), tak některých konkrétních aplkací. Program umožňoval modelování všech základních typů nterakcí: fotoefektu, Comptonova efektu, koherentního rozptylu a tvorby páru. Sledováním příspuvků jednotlvých typů nterakcí k hodnotě sumárního albeda bylo zjštěno, že na hodnotu četnostního energetckého albeda má velký vlv koherentní rozptyl, který byl v řadě výpočtů tohoto typu zanedbán a nahrazen Comptonovským rozptylem. Na obr. 1 je uveden vlv koherentního rozptylu na tvar energetckého spektra zpětně rozptýlených fotonů z Pb pro zotropní záření o energ E = 1250 kev. Započtení koherentního rozptylu zvýší hodnotu četnostního albeda v tomto případě o téměř 5 %» Pro energetcké albedo je vlv ještě vyšší a dosahuje 8 Na obr. 2 jsou uvedeny hodnoty četnostního albeda A a energetckého albeda A pro zotropní záření o energ E 1250 kev v závslost na atomovém čísle Z* Na dalších dvou obrázcích 5, 3 a 4 je demonstrován průběh četnostního a energetckého albeda v závslost na energ prmárního záření pro několk hodnot Z.
2 Ve všech případech jde o zotropní záření. Tyto výsledky byly publkovány v nter. Journal of Appled Radaton and sotopes * 29 (1978) 419. V sou\slost s těmto výpočty byla studována pravděpodobnost dopadu zpětně rozptýlených fotonů na detektor v závslost na Z rozptylujícího materálu, energ prmárního záření a poloze detektoru. Výpočty ukázaly, že tvrzení jných autorů o tom, l e nrůb "-h pravděpodobnost dopadu zpětně rozptýlených fotonů na detektor v závslost na Z je hladká křvka s jedním maxmem, není správné. Tvar křvky ovlvňuje závslost četnostního albeda :: Z a závslost hustoty ona Z. Výsledkem je komplkovaná křvka R maxmy v každé crupě perodcké tabulky. Na obr. 5 je tvar závslost N = f(z,ŕ), pro energe prmárního záření 662 kev a jeo:.etrckó uspořádání pro které byl výpočet proveden. Jía dalším obr. 6 je znázorněn vedlejší výsledek těchto výpočtů, zastoupení jednotlvých rozptylů v energetckém spektru zp'.'tns rozptýleného záření. Výpočet byl v tomto případě proveden ;.ro beton a zotropní zářč o energ E = 662 ke V. Jný problém, který umožnl výše zmíněný program řešt, byl výpočet pravděpodobnost zpětného rozptylu záření gama od vrstev.m-terálu o tlouätce menňí než je tlouštka nasycení* Výsledky uvedené dále jsou pro záříc o energ E = 662 kev a beton. T.-t onr. 7 je demonstrována rostoucí relatvní pravděpodobnost don-ulu zpí'tns rozptýleného záření na detektor s klesající vzdáleností zářč - detektor. Pro detektory umístěné blízko zářče r.o kľ-vka udávající pravděpodobnost dopadu fotonů na detektor je dříve. Výška detektoru nad materálem byla v tomto pří-
3 í f 1 f f f! pádě konstantní, h» 3 mm. Na dalším obrázku jsou uvedeny výsledky téhož výpočtu pro jná geometrcká uspořádání, vzdálenost zářč - detektor zůstávala konstantní, měnla se výška detektoru nad materálem. V tomto případě se rychlej nasycují křvky odpovídající detektorům umístěným vysoko nad vrstvou rozptylujícího materálu. Další problém, kterým jsme se na našem pracovšt zabýval tyly výpočty hodnot vzrůstových faktorů záření gama. zde byla s výhodou použta k výpočtům metoda Monte Carlo. Základní geometrcké uspořádání, které bylo k výpočtům použto, je na obr. 9: a je vzdálenost zářče od vrstvy materálu x je tloušíka vrstvy materálu a + b udává vzdálenost zářč - detektor d je průměr detektoru. Na následujících obrázcích je ukázán vlv atomového čísla Z absorbujícího materálu na hodnotu vzrůstového faktoru pro jedno vybrané geometrcké uspořádání a vlv rostoucího kolmačního úhlu na hodnotu vzrůstového faktoru. Obr * Výpočty tohoto typu byly srovnávány s expermenty. Výsledky byly uveřejněny v NM 179 (1980) 565. t 1 Vypracované programy je možno modfkovat pro řešení problémů aplkací radonukldů v nejrůznějších oborech. Jedním z takových problémů je použtí zpětného rozptylu záření gama k měření hustoty. Na pravděpodobnost dopadu zpětně rozptýlených fotonů na detektor má vlv nejen hustota rozptylujícího materálu, ale změny atomového čísla Z, což je nežádoucí* Ve snaze omezt tento rušvý vlv byla Gardnerem et al. navržena metoda dvojího vyhodnocení, která se nejčastej realzuje tak, Se měření probíhá se
4 f 1 t * dvěma nezávslým detektory v různém geometrckém uspořádání* Jako měřená odezva se bere poměr sgnálů získaných jedním a druhým detektorem. Problém je navrhnout geometrcké uspořádání tak, by byl vlv atomového čísla Z co možná nejmenší, závslost na maxmální, statstcká chyba a vlv nerovností povrchu mnmální* Program, který byl realzován na našem pracovšt umožnl počítat v jednom výpočtu hodnoty pravděpodobnost dopadu zpětně rozptýlených fotonu pro 10 hodnot hustoty a 42 detektorů současně* Pro jednotlvé detektory bylo zaznamenáváno energetcké spektrum. Opracováním těchto výsledků pak bylo možno navrhnout geometrcké uspořádání, které svým parametry nejlépe splňuje dané požadavky* Tyto výpočty umožnly elmnovat pracné expermenty. Výpočty tohoto typu byly provedeny pro geometrcké uspořádán zářč - detektor ve vrtu. tam bylo hledáno optmální geometrcké uspořádání. Byl vypracován program umožňující modelovat stuac př měření popelnatost uhlí pomocí zpětného rozptylu a průchodu záření,-jama. problémů* Metoda Monte Carlo byla použta k modelování řady dalších
5 N E = 1250 Z s 82 k*v » E [k«v] Obr. 1 Energetcké spektrum zpětně rozptýlených fotonů. Plná křvka - do výpočtu byl zahrnut coherentní rozptyl.
6 E = 1250 k«v zotropní zdroj Obr. 2 Četnostní a energetcké albedo v závslost na Z. E» 1250 kev. zotropní zdro;j.
7 f r ED«V] Obr. 3 Četnostní albedo v závslost na energ pro G, Al, Pe, Sn, Pb; zotropní zdroj
8 M * E [k«v] Obr. 4 Energetcké albedo v závslost na energ pro C, Al, Pe, Sn f Pb; zotropní zdroj
9 1 1 o Q) <5 0) to S 03 O O CQ \ u o O s 0) 1) o p. CSJ» C\J KÍ v^ (U J >! 01 O C\J -l VD 03 vd H ŕ» ^ns N) W o
10 N 4000 E = 662 kev beton V) Obt* 6 Hstogram energetckého spektra zpětně rozptýleného záření. Hstogram energetckých spekter jednotlvých rozptylů.
11 ** ft 10 [cm] Obr. 7 Závslost počtu zpětně rozptýlených fotonů dopadlých na detektor na tlouštce \rstvy materálu. Hodnoty jsou normovány na nekonečnou tlouštku materálu. Rozptylující materál beton jo= 2400 kg/m 3, 3 «662 kev, Detektory o jeí 5 cm, h = 0,3 cm.
12 beton E * 662 kev h = 140 mm h 20 mm h 10 mm h 0 mm d 150 mm r[mm] Obr. 8 Závslost počtu zpětně rozptýlených fotonů dopadlých na detektor na tloušíce vrstvy materálu. Rozptylující materál beton P«2400 kg/nt S» 662 kev Detektor o 5 cm
13 Obr. 9 Geometrcké uspořádání použté př \ýpočtech a expermentech. 1 - kolmátor se zdrojem záření; 2 - prozařovaný materál; 3 - detektor.
14 Beton ff 1 f t t t Obr. 10 Závslost vzrůstového f a k t o r u pro počet čas U c rr.x tlm> í- vrstvy pro různé materály. Výpočet metodou Monte C a r l o pro B = í>6l kcv, a «100 mm, b 200 mm, «30, d = 80 mm.
15 t f t B 137 c, a 100 mm b* 200 mm d s *0 mm 1 4 Obr» 11 Závslost vzrůstového faktoru pro počet částc na tloušíce vrstvy pro různá cc Výpočet metodou M o n t e C a r l o pro E = 661 kev, & «100 nm, b» 200 mm, d * 80 mm*
Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d
Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
POPIS VYNALEZU 155088
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A POPIS VYNALEZU 155088 K AUTORSKÉMU OSVĚDČENÍ MPT G 011 1/18 ( l É Š Přihlášeno 19. XII. 1972 (PV 8749-72] PT 21 g 18/01 Zveřejněno 17. IX. 1973 ÚRAD PRO VYNÁLEZY
Statistická šetření a zpracování dat.
Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.
MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.
MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých
Interference na tenké vrstvě
Úloha č. 8 Interference na tenké vrstvě Úkoly měření: 1. Pomocí metody nterference na tenké klínové vrstvě stanovte tloušťku vybraného vlákna nebo vašeho vlasu. 2. Pomocí metody, vz bod 1, stanovte ndex
9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně
9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky
CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.
CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt
Kinetika spalovacích reakcí
Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak
PŘÍSTAVBA KLINIKY SV. KLIMENTA DOKUMENTACE PRO STAVEBNÍ POVOLENÍ GENNET STUDIE DENNÍHO OSVĚTLENÍ. Gennet Letná s.r.o.
PŘÍSTAVBA KLNKY SV. KLMENTA ul. Kostelní, p.č. 2118/9, k.ú. Holešovce, 170 00, Praha 7 DOKUMENTACE PRO STAVEBNÍ POVOLENÍ výškový systém b.p.v. ±0,000 = +230,030 m.n.m., souřadncový systém S - JTSK Gennet
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. obr Z ČESKOSLOVENSKA SOCIALISTICKÁ ( 19 ) G 01 F 23/28. (22) Přihlášeno 18 09 84 (21) PV 6988-84
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ 250928 (И) (BI) (22) Přihlášeno 18 09 84 (21) PV 6988-84 (51) Int. Cl. 4 G 01 F 23/28 ÚftAD PRO VYNÁLEZY A OBJEVY
Modelování rizikových stavů v rodinných domech
26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra
Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička
Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor
Kritický stav jaderného reaktoru
Kritický stav jaderného reaktoru Autoři: L. Homolová 1, L. Jahodová 2, J. B. Hejduková 3 Gymnázium Václava Hlavatého Louny 1, Purkyňovo gymnázium Strážnice 2, SPŠ Stavební Plzeň 3 jadracka@centrum.cz Abstrakt:
3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina
3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních
Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má
Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace
VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ
VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje
6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu
6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text.
Určení tlouštky fole metodou konverentního elektronového svazku (TEM)-studjní text. Pracovní úkol: 1) Nastavte a vyfotorafujte snímek dfrakce elektronů v konverentním svazku, který je vhodný pro určení
Transformace dat a počítačově intenzivní metody
Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta
Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT
pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný
ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny
0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí
Hodnocení využití parku vozidel
Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního
Monte Carlo metody Josef Pelikán CGG MFF UK Praha.
Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný
ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl
ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 7: Gama spektrometr Datum měření: 15. 4. 2016 Doba vypracovávání: 15 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Pomocí
Lokace odbavovacího centra nákladní pokladny pro víkendový provoz
Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená
Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy
Petra Suková, 3.ročník 1 Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy 1 Zadání 1. UrčeteabsorpčníkoeficientzářenígamaproelementyFe,CdaPbvzávislostinaenergii
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
POROVNÁNÍ MEZI SKUPINAMI
POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá
VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1
VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng
Vícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
MODELOVÁNÍ A SIMULACE
MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem
Matematika I A ukázkový test 1 pro 2018/2019
Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete
Teorie efektivních trhů (E.Fama (1965))
Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
VEGETAČNÍ BARIÉRY Mgr. Jan Karel
VEGETAČNÍ BARIÉRY Metodika pro výpočet účinnosti výsadeb vegetačních pásů ke snížení imisních příspěvků liniových a plošných zdrojů emisí částic a na ně vázaných polutantů 17. 10. 2017 Mgr. Jan Karel Vegetační
Svazek pomalých pozitronů
Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne
ESR, spinový hamiltonián a spektra
ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností
Plánování a rozvrhování. Podmínky pro zdroje. Typy zdrojů. Zdroje. časové vztahy. omezení kapacity zdrojů. Roman Barták, KTIML
12 Plánování a rozvrhování Roman Barták, KTIML roman.bartak@mff.cun.cz http://ktml.mff.cun.cz/~bartak Rozvrhování jako CSP Rozvrhovací problém je statcký, takže může být přímo zakódován jako CSP. Splňování
MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO
MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO PROFILU NAMÁHANÉHO TLAKEM ZA OHYBU SPECIFIC STRAIN ENERGY OF THE OPEN CROSS-SECTION SUBJECTED TO COUPLED COMPRESSION AND BENDING I. Kološ 1 a P. Janas 2 Abstract
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Laboratorní cvičení L4 : Stanovení modulu pružnosti
Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,
9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek
9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.
1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém
Simulační metody hromadné obsluhy
Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
ZESLABENÍ PRONIKAVÉHO IONIZUJÍCÍHO ZÁŘENÍ V NOVĚ VYVÍJENÝCH MATERIÁLECH STÍNÍCÍCH VRSTEV PRO OCHRANNÉ ODĚVY
ZESLABENÍ PRONIKAVÉHO IONIZUJÍCÍHO ZÁŘENÍ V NOVĚ VYVÍJENÝCH MATERIÁLECH STÍNÍCÍCH VRSTEV PRO OCHRANNÉ ODĚVY ATTENUATION OF PENETRATING IONISING RADIATION IN SHIELDING LAYERS OF NEWLY DEVELOPED PERSONAL
Staré mapy TEMAP - elearning
Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost
Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
Energie elektrického pole
Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia
projekt GML Brno Docens DUM č. 16 v sadě 11. Fy-2 Učební materály do fyzky pro 3. ročník gymnáza Autor: Vojtěch Beneš Datum: 3.3.214 Ročník: 2A, 2C Anotace DUMu: Nestaconární magnetcké pole Materály jsou
Regresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel
Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě
Porovnání GUM a metody Monte Carlo
Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná
Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz
Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla
TEORIE NETKANÝCH TEXTILIÍ. Isingův model pro studium smáčení vlákenných systémů Počítačová simulace 8.přednáška
TEORIE NETKANÝCH TEXTILIÍ Isngův model pro studum smáčení vlákenných systémů Počítačová smulace 8.přednáška Automodel (Isngův model) a metoda Monte Carlo jako prostředek pro smulac jevů smáčení porézních
Optimalizační přístup při plánování rekonstrukcí vodovodních řadů
Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT
Využití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
ANALÝZA PRODUKCE OLEJNIN ANALYSIS OF OIL SEED PRODUCTION. Lenka Šobrová
ANALÝZA PRODUKCE OLEJNIN ANALYSIS OF OIL SEED PRODUCTION Lenka Šobrová Anotace: Olejnny patří mez významné zemědělské plodny. Nejvýznamnější zástupc této skupny se však v jednotlvých částech světa lší,
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS
RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického
(75)!ng. PETR KUBÍČEK, CSc., a ing. JARMILA KUBÍČKOVA, OSTRAVA
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A (19) (11) (bi) (22) Přihlášeno 30 10 74 (21) (PV 7386-74] (51) Int. Ol.* B 03 B 13/06 (40) Zveřejněno 28 04 78 ÚŘAD PRO VYNÁLEZY A OBJEVY (45) Vydáno 15 02
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Absorpční polovrstva pro záření γ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství VUT FSI ÚFI 1ZM-10-ZS Ústav fyzikálního inženýrství Technická 2, Brno 616 69 Laboratoř A2-128 Absorpční polovrstva pro záření γ 12.10.2010 Měření
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Modelování IMRT polí pomocí Monte Carlo systému EGSnrc/BEAMnrc
Modelování IMRT polí pomocí Monte Carlo systému EGSnrc/BEAMnrc S. Horová1, K. Badraoui Čuprová3, A. Kindlová2, O. Konček2 1 FJFI ČVUT, Praha 2 FN Motol, Praha 3 PTC, Praha Metoda Monte Carlo a systém EGSnrc/BEAMnrc
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Vizualizace rozložení alfa-aktivních radionuklidů na ploše preparátu vzorku
Vizualizace rozložení alfa-aktivních radionuklidů na ploše preparátu vzorku Josef Holeček, Iva Vošahlíková, Petr Otáhal, Ivo Burian SÚJCHBO, v.v.i., Kamenná 71, 262 31, Milín e-mail: holecek@sujchbo.cz
Highspeed Synchronous Motor Torque Control
. Regulace momentu vysokootáčkového synchronního motoru Jaroslav Novák, Martn Novák, ČVUT v Praze, Fakulta strojní, Zdeněk Čeřovský, ČVUT v Praze, Fakulta elektrotechncká Hghspeed Synchronous Motor Torque
7. Analýza rozptylu jednoduchého třídění
7. nalýza rozptylu jednoduchého třídění - V této kaptole se budeme zabývat vztahem mez znaky kvanttatvním (kolk) a kvaltatvním (kategorálním, jaké jsou) Doposud jsme schopn u nch hodnott: - podmíněné charakterstky
Seznam úloh: 1. Charakterstka Gegerova-Müllerova detektoru. Určení hmotnostního součntele zeslabení beta záření 3. Porovnání účnnost scntlačního a Geg
Mroslav Mašláň, Lbor Machala, Jří Tuček PRAKTIKUM Z ATOMOVÉ A JADERNÉ FYZIKY Přírodovědecká fakulta Unverzty Palackého v Olomouc 005 1 Seznam úloh: 1. Charakterstka Gegerova-Müllerova detektoru. Určení
Mechatronické systémy s elektronicky komutovanými motory
Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current
Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody
Měření základních materálových charakterstk propustnost řetězového fltru Mgr Radek Melch Př pozorování Slunce pomocí dvojlomných fltrů se většnou používá fltrů pevně naladěných na určtou zajímavou spektrální
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Dosah γ záření ve vzduchu
Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,
Aktivita. Curie (Ci) = rozp.s Ci aktivita 1g 226 Ra (a, T 1/2 = 1600 let) počet rozpadů za jednotku času
Aktivita počt rozpadů za jdnotku času Curi (Ci) = 3.7 10 10 rozp.s -1 1 Ci aktivita 1g 6 Ra (a, T 1/ = 1600 lt) 1 Bcqurl (Bq) = 1 rozp. s -1 =.7 10-11 Ci = 7 pci 1 MBq = 7 mci Dávka množství radiac absorbované
9 PŘEDNÁŠKA 9: Heisenbergovy relace neurčitosti, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku.
9 PŘEDNÁŠKA 9: Hesenbergovy relace neurčtost, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku. Hesenbergovy relace neurčtost(tnqu.5., SKM) Jednoduchý pohled na věc: Vždy exstuje určtá
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Neparametrické metody
Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady
Konference radiologické fyziky 2018
Konference radiologické fyziky 2018 Hrotovice, 25. - 27. 4. 2018 Český metrologický institut hlavní sídlo v Brně Inspektorát ionizujícího záření Od 1.5.2014 pouze pracoviště IZ pod OI Praha Konference
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Spektrum záření gama. Rentgenová fluorescenční spektroskopie. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15. 3. 21 Úloha 7: Spektrum záření gama Rentgenová fluorescenční spektroskopie Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1.
Katalog rentgenových spekter měřených polovodičovým CdTedetektorem. Dana Kurková SÚRO,v.v.i, Bartoškova 28, Praha 4
Katalog rentgenových spekter měřených polovodičovým CdTedetektorem. Dana Kurková SÚRO,v.v.i, Bartoškova 28, Praha 4 Katalog navazuje na katalog spekter vytvořený vústavu hygieny a epidemiologie vroce 1991
Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.
12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...
Návrh žebrové desky vystavené účinku požáru (řešený příklad)
Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je
MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
NITON XL3t GOLDD+ Nový analyzátor
Nový analyzátor NITON XL3t GOLDD+ Ruční rentgenový analyzátor NITON XL3t GOLDD+ je nejnovější model od Thermo Fisher Scientific. Navazuje na úspěšný model NITON XL3t GOLDD. Díky špičkovým technologiím