MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO
|
|
- Josef Dušek
- před 6 lety
- Počet zobrazení:
Transkript
1 MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO PROFILU NAMÁHANÉHO TLAKEM ZA OHYBU SPECIFIC STRAIN ENERGY OF THE OPEN CROSS-SECTION SUBJECTED TO COUPLED COMPRESSION AND BENDING I. Kološ 1 a P. Janas 2 Abstract Steel arches that are used n mnng and underground engneerng are exposed to extreme load that often leads to the plastc deformaton of the structure. The paper presents calculaton of the specfc stran energy curves of the open cross-sectons (.e. dependence between specfc stran energy of the cross-secton and the bendng moment and the normal force). The energy curves can be used to determne energy absorbed by arch structure durng rock bump. 1 Úvod Výztužné konstrukce dlouhých důlních a podzemních děl bývají často vystaveny značnému zatížení. Př mmořádných událostech, jakým jsou např. důlní otřesy, je namáhání výztuže natolk extrémní, že zpravdla vede k takové deformac konstrukce, která se vymyká z rámce běžně uvažovaného v pozemním stavtelství. Dochází jak ke globální deformac konstrukce (obr. 3), tak k deformac lokální, kdy se vlvem zatížení mění v nejnamáhanějších průřezech příčný profl výztužných tyčí (obr. 4). Materál výztuže je přtom využíván za mezí kluzu, konstrukce se přetváří pružnoplastcky. Nejčastěj používaným typem výztuže je ocelová oblouková výztuž (obr. 1). Ta se sestává ze 3 až 5 přímých nebo zakřvených segmentů výztužných tyčí, které se spojují Obr. 1: Ocelová oblouková výztuž na ukázku sestavena ve výrobně 1 Ing. Ivan Kološ, Ph.D., VŠB Techncká unverzta Ostrava, Fakulta stavební, Katedra stavební mechanky, Ludvíka Podéště 1875, Ostrava Poruba, van.kolos@vsb.cz, (+42) Doc. Ing. Petr Janas, CSc., VŠB Techncká unverzta Ostrava, Fakulta stavební, Katedra stavební mechanky, Ludvíka Podéště 1875, Ostrava Poruba, petr.janas@vsb.cz, (+42)
2 přesahem a spoje jsou fxovány spojkam (obr. 2). Tyče jsou válcované, jejch otevřený příčný profl je navržen tak, aby umožnl vzájemné vkládání tyčí do sebe. Předmětem tohoto příspěvku jsou právě otevřené korýtkové profly výztužných tyčí označované K-24, P-28 a TH-29 (obr. 5, 6 a 7). Vychází se zde z úvahy, že množství energe, která byla uvolněna př důlním otřesu a přeměněna př deformac Obr. 2: Detal šroubového spoje obloukové výztuže díla, by bylo možno odhadnout na základě výsledného tvaru deformovaného oblouku. K tomu je třeba znát jaké množství energe musí být vynaloženo př deformac výztužného proflu jednotkové délky a to nejen př jeho pružném, ale pružnoplastckém působení. Závslost mez mírou namáhání proflu a energí př namáhání vynaloženou je vyjádřena ve formě křvek měrné deformační energe (obr. 12), resp. ploch měrné deformační energe (obr. 13, 14, 15). Způsob jejch numerckého výpočtu je popsán dále v příspěvku. Obr. 3: Globální deformace ocelové výztuže důlního díla Obr. 4: Lokální deformace výztužných proflů 2
3 2 Předpoklady výpočtu Přesné stanovení měrné deformační energe plastzujícího proflu je poměrně složtá úloha, neboť průřez se přetváří slně nelneárně (vz např. obr. 4) a tím dochází k průběžné a současné změně několka parametrů výpočtu. Zřejmě nejvýstžnějším řešením by bylo namodelování průřezu v některém programovém systému využívajícím metodu konečných prvků, ovšem za cenu velké náročnost výpočtu na čas a na hardwarové vybavení počítače. Zde bylo uplatněno numercké řešení metodou vrstev. Jeho výpočtová náročnost je mnohem menší ve srovnání s řešením metodou konečných prvků, je ale vykoupena jednodušším výpočetním modelem, který některé aspekty chování průřezu nevysthuje (např. změna příčného proflu průřezu, lokální ztráta stablty). Analýza napjatost průřezu vychází z následujících předpokladů: průřez je z pružnoplastckého materálu, který působí obdobně v tahu a v tlaku celý průřez je materálově homogenní př pružnoplastckém působení průřezu se nemění jeho geometre (příčný profl) př ohybu zůstávají průřezy rovnné a kolmé k těžštní ose (Bernoull-Naverova hypotéza) teore malých deformací průřez je namáhán ve své rovně symetre prostým ohybem nebo tlakem za ohybu tlaková síla působí v těžšt průřezu, vzpěr průřezu (resp. prutu) se neuvažuje vlv posouvajících sl, vlastních pnutí, klopení a ztráty stablty se zanedbává Obr. 5: Profl K-24 Obr. 6: Profl P-28 Obr. 7: Profl TH-29 Napjatost průřezu je analyzována př uvažování skutečných pracovních dagramů ocel 11 5 (pro profly K-24 a P-28) a ocel (profl TH-29), získaných tahovou zkouškou. Skutečné pracovní dagramy ocelí 11 5 (obr. 8) a (obr. 9) jsou do výpočtu zavedeny jako multlneární, jejch tvar je aproxmován cca 26 přímkam. Meze kluzu σ fl jsou u jednotlvých druhů ocel uvažovány podle výsledků zkoušek hodnotam 45,1 MPa a 414 MPa, modul pružnost E = 21 GPa. Př aplkac pracovních dagramů do výpočtu v nch byla zohledněna příčná kontrakce zkušební tyče během tahové zkoušky. Possonův součntel je uvažován ν =,3. V plastckém stavu se má podle teore pružnost a plastcty [4] uvažovat ν =,5, ale srovnání výsledků výpočtu s expermentem [3] ukázalo, že tomuto výpočtovému modelu lépe odpovídá ν =,3 uplatněný jak v pružném tak v plastckém stavu. 3
4 σ [MPa] ,% 5,% 1,% 15,% 2,% ε [%] σ [MPa] ,% 5,% 1,% 15,% 2,% 25,% ε [%] Obr. 8: Pracovní dagram ocel 11 5 Obr. 9: Pracovní dagram ocel Měrná deformační energe Pro poměrnou deformační energ W vztaženou na jednotku objemu (tzv. hustota deformační energe) platí př jednoosé napjatost vztah (1), kde σ je funkce napětí a ε poměrné délkové přetvoření (obr. 1). Integrací po objemu tělesa (prut jednotkové délky) dostáváme z výrazu (2) deformační energ vntřních sl Π. ε W = σ dε (1) Π = W d V (2) V Výpočet měrné deformační energe otevřeného korýtkového průřezu metodou vrstev má dvě fáze: V první fáz se provádí analýza napjatost průřezu vystaveného působení ohybového momentu M a normálové síly N. Cílem analýzy napjatost je určt polohu neutrální osy v průřezu n o (obr. 11). Průřez se rozdělí na řadu tenkých vrstev, kterým je na základě lneárního rozdělení přetvoření ε po výšce průřezu přřazeno z pracovního dagramu příslušné napětí σ. Z plochy každé vrstvy A se určí hodnoty dílčích normálových sl v průřezu N = σ A a pomocí nástrojů numercké matematky se hledá taková poloha neutrální osy n o, př níž je splněna podmínka rovnováhy vodorovných sl (vntřních a vnějších). Poté, co je poloha neutrální osy nalezena, určí se velkost ohybového Obr. 1: Hustota deformační energe 4
5 momentu M, který odpovídá aktuálnímu rozložení napětí v průřezu (hodnota N se volí na začátku výpočtu a př hledání polohy n o se nemění). Ve druhé fáz se jednotlvým vrstvám průřezu přřadí podle pracovního dagramu odpovídající hodnoty hustoty deformační energe W. Integrací po ploše vrstvy A dostaneme měrnou deformační energ vrstvy π. Vzhledem k velm malé tloušťce vrstvy předpokládáme konstantní průběh W ve vrstvě a můžeme psát π = W A. (3) Měrnou deformační energ celého proflu Π pak získáme součtem π ve všech vrstvách podle (4), kde n je počet vrstev. n Π = π (4) = 1 Obr. 11: Rozdělení napětí a přetvoření u otevřeného korýtkového proflu v pružnoplastckém stavu Závslost měrné deformační energe proflu na velkost ohybového momentu lze vyjádřt grafcky tzv. křvkou měrné deformační energe (obr. 12). Hodnoty uvedené v křvkách jsou vztaženy k prutu délky jednoho metru (jednotka [kj m -1 ]). Z křvek vypočtených pro různé hodnoty normálové síly N lze sestavt prostorový graf, tzv. plochu měrné deformační energe, z níž je možno odečítat hodnoty pro lbovolnou kombnac ohybového momentu M a normálové síly N (obr. 13, 14, 15). Měrná deformační energe [kj m -1 ] N =,5 σ fl A N =,7 σ fl A N = N =,3 σ fl A M [knm] Obr. 12: Závslost velkost měrné deformační energe proflu K-24 na velkost ohybového momentu M a normálové síly N 5
6 Obr. 13: Plocha měrné deformační energe proflu K-24 Obr. 14: Plocha měrné deformační energe proflu P-28 Křvky deformační energe pak mohou být využty př výpočtu deformační energe prutových konstrukcí. Pruty se po délce rozdělí na velký počet dílků a podle průběhů vntřních sl (M, popř. N) se z křvky měrné deformační energe přřadí každému dílku odpovídající hodnota. Integrací tohoto průběhu energí po délce konstrukce (tj. vyjádřením plochy obrazce) získáme velkost celkové potencální energe vntřních sl př daném Obr. 15: Plocha měrné deformační energe proflu TH-29 zatížení. Postup řešení je ukázán na následujícím příkladu prostého nosníku zatíženého osamělým břemenem F uprostřed rozpětí. Nosník má délku 1 m, je tvořen ocelovým proflem K-24, pracovní dagram ocel je uvažován podle obr. 8, křvka měrné deformační energe podle obr. 12 (pro N = ). Mezní plastcké únosnost dosáhne takový nosník př velkost břemene F = 228 kn, kdy má maxmální ohybový moment pod slou F velkost 57 knm a průhyb uprostřed rozpětí hodnotu 35,58 mm. Průběh měrné deformační energe po délce prutu př takovém zatížení ukazuje obr. 16. Integrací plochy pod křvkou získáme hodnotu Π = 6844,9 kj, což je množství energe vynaložené na pružnoplastckou deformac prutu do okamžku, kdy největší průhyb dosáhl hodnoty 35,58 mm. Deformační energe [kj m 1] ,2,4,6,8 1 L [m] Obr. 16: Rozložení měrné deformační energe po délce nosníku (odpovídající průběhu M př F = 228 kn) 6
7 Správnost výpočtu potvrzuje alternatvní postup, který je možno u tohoto jednoduchého příkladu bez obtíží uplatnt: vyjádří se křvka závslost průhybu pod slou F na její velkost a určí se velkost plochy pod touto křvkou (obr. 17), neboť energe vynaložená na deformac nosníku je rovna prác, kterou vykoná břemeno F na dráze posunutí v místě působště. Pro velkost energe vynaložené na deformac nosníku pak vychází Π = 6841,3 kj. Z obr. 17 je patrný nelneární nárůst deformace prutu poté, co v nejvíce namáhaných řezech začalo docházet k plastckému přetváření. Pro srovnání je v obr. 17 uvedena také závslost průhyb ~ zatížení pro pružné působení nosníku. Obr. 17: Závslost průhybu uprostřed rozpětí nosníku na velkost břemene F Poděkování Příspěvek byl vypracován v rámc řešení projektu 15/4/458 realzovaného za fnanční podpory za státních prostředků prostřednctvím GA ČR. Lteratura [1] Benda, J. ENERGETICKÉ PRINCIPY A VARIAČNÍ METODY VE STAVEBNÍ MECHANICE. VŠB TU OSTRAVA, 25 [2] Janas, P., Krejsa, M., Janas, K., Kološ, I. STATICKÉ ŘEŠENÍ OCELOVÝCH OBLOUKOVÝCH VÝZTUŽÍ PODZEMNÍCH DĚL, SBORNÍK PŘÍSPĚVKŮ KONFERENCE OCELOVÉ KONSTRUKCE A MOSTY 23, PRAHA, 23 [3] Kološ, I. STATICKY NEURČITÉ PRUTOVÉ KONSTRUKCE V PRUŽNOPLASTICKÉM STAVU, DISERTAČNÍ PRÁCE. VŠB TU OSTRAVA, 25 [4] Mrázk, A., Škaloud, M., Tocháček, M. NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ PODLE TEORIE PLASTICITY, SNTL PRAHA, 198 [5] Servít, R., Crha, M., Doležalová, E. TEORIE PRUŽNOSTI A PLASTICITY, I. DÍL, ČVUT PRAHA, 1977 [6] Šmřák, S. ENERGETICKÉ PRINCIPY A VARIAČNÍ METODY V TEORII PRUŽNOSTI. VUT BRNO,
VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM
Proceedings of the 6 th International Conference on New Trends in Statics and Dynamics of Buildings October 18-19, 2007 Bratislava, Slovakia Faculty of Civil Engineering STU Bratislava Slovak Society of
VíceNáhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
VíceZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...
VíceLibor Kasl 1, Alois Materna 2
SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
VícePrvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
VícePrvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
VícePřednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
VíceNavrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
Více3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
VíceNÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
VíceTéma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
VícePružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Více133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.
133YPNB Požární návrh betonových a zděných konstrukcí 4. přednáška prof. Ing. Jaroslav Procházka, CSc. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Zjednodušené
VíceJednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
VíceOsově namáhaný prut základní veličiny
Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení
VíceStatika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
VícePružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VíceZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
VíceVÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004
VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO00 Slová metoda využívá prncp vrtuální práce. Zavádí se nový zatěžovací stav vrtuální zatížení. V tomto zatěžovacím stavu
VícePružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
VíceSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č. 16 Karel VOJTASÍK 1, Eva HRUBEŠOVÁ 2, Marek MOHYLA 3, Jana STAŇKOVÁ 4 ZÁVISLOST
VíceÚnosnost kompozitních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:
VíceRelaxační metoda. 1. krok řešení. , kdy stáří betonu v jednotlivých částech konstrukce je t 0
PŘEDNÁŠKY Relaxační metoda 1. krok řešení V okamžiku t 0, kdy stáří betonu v jednotlivých částech konstrukce je t 0 a kdy je konstrukce namáhána vnitřními silami { }, nechť je konstrukce v celém svém rozsahu
VíceMateriálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
VíceDefinujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
VíceŠroubovaný přípoj konzoly na sloup
Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup
VíceTabulky únosností trapézových profilů ArcelorMittal (výroba Senica)
Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5
VíceTENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
VíceVYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
VícePrůvodní zpráva ke statickému výpočtu
Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství
VícePříklad oboustranně vetknutý nosník
Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,
VíceStanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
VíceStřední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VícePrvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
VícePRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
Více1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
VíceČást 5.9 Spřažený požárně chráněný ocelobetonový nosník
Část 5.9 Spřažený požárně chráněný ocelobetonový nosník P. Schaumann, T. Trautmann University of Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ V příkladě je posouzen spřažený ocelobetonový
VíceZtráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
VíceIng. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická
VíceProjevy dotvarování na konstrukcích (na úrovni průřezových modelů)
PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky
Více14/03/2016. Obsah přednášek a cvičení: 2+1 Podmínky získání zápočtu vypracovaná včas odevzdaná úloha Návrh dodatečně předpjatého konstrukčního prvku
133 BK5C BETONOVÉ KONSTRUKCE 5C 133 BK5C BETONOVÉ KONSTRUKCE 5C Lukáš VRÁBLÍK B 725 konzultace: úterý 8 15 10 email: web: 10 00 lukas.vrablik@fsv.cvut.cz http://concrete.fsv.cvut.cz/~vrablik/ publikace:
VíceNapětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.
Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Namáhání součástí na ohyb Metodický pokyn výkladový text s ukázkami Napětí v ohybu: Výpočet rozměrů nosníků zatížených
VíceOTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
Více133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy
VíceMECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních
Vícepři postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a
VíceVÝPOČET NÍZKOCYKLOVÉ ÚNAVY JADERNÉ ARMATURY DLE NORMY NTD A.S.I. SEKCE III. JIŘÍ TÁBORSKÝ*, LINA BRYUKHOVA KRÁLOVOPOLSKÁ STRESS ANALYSIS GROUP, s.r.o.
20th SVSFEM ASYS Users' Group Meetng and Conference 202 VÝPOČET ÍZKOCYKLOVÉ ÚAVY JADERÉ ARMATURY DLE ORMY TD A.S.I. SEKCE III JIŘÍ TÁBORSKÝ*, LIA BRYUKHOVA KRÁLOVOPOLSKÁ STRESS AALYSIS GROUP, s.r.o. Abstract:
VíceVzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,
VíceCvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
VíceTeorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.
Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu
VíceMechanické vlastnosti materiálů.
Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky
VíceStavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
VíceVYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
VíceJednoosá tahová zkouška betonářské oceli
Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)
VícePružnost a pevnost. 6. přednáška 7. a 14. listopadu 2017
Pružnost a pevnost 6. přednáška 7. a 14. listopadu 17 Popis nepružnéo cování materiálu 1) epružné cování experimentální výsledky ) epružné cování jednoducé modely 3) Pružnoplastický oyb analýza průřezu
VíceFAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
VícePružnost a plasticita II
Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz
VíceCITLIVOST FYZIKÁLNĚ NELINEÁRNÍHO VÝPOČTU NA MATERIÁLOVÝ. Abstrakt. 1 Úvod
ODELOVÁNÍ V ECHANICE OSTRAVA, ÚNOR 25 CITLIVOST FYZIKÁLNĚ NELINEÁRNÍHO VÝPOČTU NA ATERIÁLOVÝ ODEL Ivan Kološ 1 Abstrakt The paper describes a numerical solution of the statically indeterminate beam that
VíceTéma 8 Příčně zatížený rám a rošt
Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu
VíceNESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1
NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.
Více1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr
VícePOSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM
I. ročník celostátní konference SPOLEHLIVOST ONSTRUCÍ Téma: Rozvoj koncepcí posudku spolehlivosti stavebních konstrukcí 5..000 Dům techniky Ostrava ISBN 80-0-0- POSUDE PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ
VíceTéma 8: Optimalizační techniky v metodě POPV
Téma 8: Optimalizační techniky v metodě POPV Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská
VíceStěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
VíceObecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
VícePrvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání
Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením
VíceDvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
VíceSylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů
Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Pro. Ing. František ald, CSc., místnost B 632
VíceSylabus 18. Stabilita svahu
Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních
VíceBETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska
BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické
VícePlatnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
VíceČást 5.3 Spřažená ocelobetonová deska
Část 5.3 Spřažená ocelobetonová deska P. Schaumann, T. Trautmann University of Hannover J. Žižka České vysoké učení technické v Praze ZADÁNÍ Navrhněte průřez trapézového plechu spřažené ocelobetonové desky,
VíceVYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce Návrh
VíceČást 5.8 Částečně obetonovaný spřažený ocelobetonový sloup
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup P. Schaumann, T. Trautmann University o Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ V příkladu je navržen částečně obetonovaný
VícePrincipy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
Více133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Předpjatý beton 1. část - úvod Obsah: Podstata předpjatého
VíceTéma 7, modely podloží
Pružnost a plastcta II.,.ročník bakalářského stua, přenášky Janas, Téma 7, moely položí Úvo Wnklerův moel položí Pasternakův moel položí Pružný poloprostor Nosník na pružném Wnklerově položí, řešení ODM
VícePružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
VíceVýpočet přetvoření a dimenzování pilotové skupiny
Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu
VícePŘÍKLAD č. 1 Třecí styk ohýbaného nosníku
FAST VUT v Brně PRVKY KOVOVÝCH KONSTRUKCÍ Ústav kovových a dřevěných konstrukcí Studijní skupina: B2VS7S Akademický rok: 2017 2018 Posluchač:... n =... PŘÍKLAD č. 1 Třecí styk ohýbaného nosníku Je dán
VíceMETODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU.
METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU. THE METHODOLOGY OF THE BEAM STIFFNESS SUBSTITUTION CALCULATION. Jiří Podešva 1 Abstract The calculation of the horizontal mine opening steel support can be performed
VícePředpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.
Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový
VícePřijímací zkoušky na magisterské studium, obor M
Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní
VíceAktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
VíceS HORNINOVÝM MASIVEM Petr Janas 1, Martin Krejsa 2, Karel Janas 3
MODELOVÁNÍ SOUČINNOSTI OCELOVÉ OBLOUKOVÉ VÝZTUŽE S HORNINOVÝM MASIVEM Petr Janas 1, Martin Krejsa, Karel Janas 3 Abstrakt The passive loading is a deformational loading caused by active force loading of
Vícepísemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
VíceStřední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VícePružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
VícePoužitelnost. Žádné nesnáze s použitelností u historických staveb
Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,
VíceIII/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VícePARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59
VíceCvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
VíceUčební pomůcka Prof.Ing. Vladimír Křístek, DrSc. Ing. Alena Kohoutková, CSc. Ing. Helena Včelová. Katedra betonových konstrukcí a mostů
PŘEDNÁŠKY Učební pomůcka Prof.Ing. Vladimír Křístek, DrSc. Ing. Alena Kohoutková, CSc. Ing. Helena Včelová Katedra betonových konstrukcí a mostů Text učební pomůcky lze nalézt na internetové stránce http://beton.fsv.cvut.cz
Více1. Úvod do pružnosti a pevnosti
1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků
VícePřetváření a porušování materiálů
Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní
VíceP Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ
P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝ ROZPĚTÍ NÁSLEDUJÍCÍCH POLÍ Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský
VíceZjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
Více