6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu
|
|
- Tereza Valentová
- před 9 lety
- Počet zobrazení:
Transkript
1 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a příslušných parametrů generátorů pseudonáhodných čísel, jejchž úkolem je produkovat vstupní proudy do smulačního modelu. Výklad v tomto bloku se zejména zaměří na problematku praktckého formulování a testování hypotéz ohledně rozdělení pravděpodobnost náhodné velčny s cílem následně určt typy generátorů, které budou příslušné vstupní proudy realzovat. Doba nutná k nastudování 3 hodny 6.1 Určení teoretckého rozdělení pravděpodobnost náhodné velčny Př dalších úvahách vycházejme z předpokladu, že bylo rozhodnuto rozdělt pracovní dobu banky na šest úseků po jednotlvých hodnách (tento předpoklad vznkl nterpretací výsledků regresní analýzy a klouzavého průměru uvedených v předešlém bloku). Pro každý tento úsek je třeba vytvořt generátor příchodů zákazníků do systému. Kromě toho je třeba ještě generovat typ požadované transakce a dobu obsluhy zákazníka. Aby bylo možné vytvořt příslušné generátory, je třeba určt tvar a parametry teoretckých rozdělení pravděpodobnost sledovaných velčn, případně určt emprcké rozdělení pravděpodobnost (není-l žádný z teoretckých modelů vhodný). Určení tvaru rozdělení pravděpodobnost Nejdůležtějším nástrojem př formulac hypotézy o tvaru (typu) rozdělení pravděpodobnost je hstogram. Jak už bylo řečeno, velm důležtá je volba počtu tříd hstogramu. Obrázky 6.1a - c znázorňují několk hstogramů dob mez příchody zákazníků v ntervalu od hod. do hod. Postupným snžování počtu tříd dospíváme ke tvaru hstogramu, na základě kterého lze formulovat hypotézu (h A ), že doby mez příchody zákazníků se řídí exponencálním rozdělením pravděpodobnost. KST/IMOSI Modelování a smulace blok 6, strana 1 (16) Antonín Kavčka
2 Třídy Četnost Třídy Četnost 0:00:00 2 0:00:56 5 0:00: :01:03 5 0:00: :01:10 4 0:00: :01:17 3 0:00: :01:24 1 0:00: :01:31 1 0:00:42 7 Další 0 0:00:49 5 Četnost :00: 00 0:00: 14 0:00: 28 0:00: 42 0:00: 56 0:01: 10 0:01: 24 Další Obr. 6.1a Hstogram četností dob mez přích. zákazn., šířka ntervalu 7 mnut Třídy Četnost Třídy Četnost 0:00: :01:00 9 0:00: :01:10 4 0:00: :01:20 3 0:00: :01:30 2 0:00:50 7 Další 0 Obr. 6.1b Hstogram četností dob mez přích. zákazn., šířka ntervalu 10 mnut KST/IMOSI Modelování a smulace blok 6, strana 2 (16) Antonín Kavčka
3 Třídy Četnost Třídy Četnost 0:00: :01:12 6 0:00: :01:24 2 0:00: :01:36 1 0:00:48 12 Další 0 0:01:00 10 Obr. 6.1c Hstogram četností dob mez přích. zákazn., šířka ntervalu 12 mnut V některých případech je třeba uvážt, podle kterého znaku provádíme třídění hstogramu. Na obrázku 6.2a je uveden hstogram četností transakcí typu H (výběr hotovost) v závslost na době příchodu. Pracovní doba je rozdělena na stejně dlouhé úseky v tomto případě po 15 mnutách a v každém z těchto ntervalů je zjšťován počet zákazníků požadující sledovanou transakc. Porovnáme-l získaný hstogram s obr. 5.3 b (z mnulého bloku), je zřejmé, že tvar prvního z hstogramů je ovlvněn počtem příchodů zákazníků během pracovní doby a není proto vhodný pro formulac hypotézy o typu rozdělení :30 10:00 10:30 Četnost 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 Obr. 6.2a Hstogram četností transakcí H tříděný podle času příchodu zákazn. KST/IMOSI Modelování a smulace blok 6, strana 3 (16) Antonín Kavčka
4 Třídy Četnost Relatvní četnost Třídy Četnost Relatvní četnost , , , , , , , , , , , , , , ,38 Obr. 6.2b Hstogram četností transakcí H tříděný podle pořadí zákazníka Obrázek 6.2b znázorňuje stejnou velčnu zatříděnou podle pořadí příchodů zákazníků. Postupně přcházející zákazníc jsou rozdělen do skupn v našem případě bylo vytvořeno 15 tříd po 58 zákaznících. Přtom je zachováno pořadí zákazníků. Dále v každé skupně zjšťujeme počet zákazníků požadujících sledovanou transakc. Na základě takto získaného hstogramu lze vyslovt domněnku, že relatvní četnost transakcí typu H je v průběhu celého dne konstantní. Průměrná relatvní četnost je 0,41. Můžeme tedy formulovat hypotézu (h B ), že relatvní četnost zákazníků požadujících transakc H je v lbovolném ntervalu 0,41. Očekávané četnost ve všech třídách by tedy byly: 58 * 0,41 = 23,78. Z tohoto očekávání by vycházel test uvedené hypotézy (jak bude uvedeno v dalším výkladu) Odhady parametrů rozdělení pravděpodobnost Způsob konstrukce bodových a ntervalových odhadů se odvíjí od typu rozdělení pravděpodobnost, jehož parametry chceme odhadovat. Běžně je známa konstrukce odhadů pro normální rozdělení. V dalších případech je zpravdla nutné vyhledat odbornou lteraturu. KST/IMOSI Modelování a smulace blok 6, strana 4 (16) Antonín Kavčka
5 V následujícím příkladu provedeme odhad parametrů rozdělení pravděpodobnost doby obsluhy zákazníků, kteří požadují výběr hotovost. Data potřebná pro výpočet byla získána vyfltrováním údajů o dobách obsluhy zákazníků požadujících transakc H z původního souboru dat a jsou uvedena v tabulce 6.5 v příloze tohoto bloku. Obr. 6.3 Hstogram četností dob obsluh zákazn. požadujících transakc typu H Nejprve vytvoříme hstogram dob obsluhy - je uveden na obrázku 6.3. Z něho je patrné, že dobu obsluhy je nejspíš možné popsat exponencálním rozdělením. Jelkož v tomto případě exstuje určtá mnmální doba obsluhy, je třeba použít dvouparametrcké exponencální rozdělení, které lze popsat hustotou pravděpodobnost: µ f ( x) = µ ( x A e ), pro x A 0, pro x < A Bodové odhady parametrů A a μ můžeme získat ze vztahů: ˆ mn(,, ) A = x1 K x n ˆ µ = 1 x Aˆ kde x 1,..., x n jsou naměřené hodnoty doby obsluhy a x je artmetcký průměr těchto hodnot. Oba tyto odhady jsou ovšem vychýlené. Chceme-l získat odhady nevychýlené (nestranné), je třeba tyto vztahy upravt: KST/IMOSI Modelování a smulace blok 6, strana 5 (16) Antonín Kavčka
6 ˆ ˆ na x A0 = n 1 n 1 ˆ µ 0 = n( x Aˆ ) Z dat uvedených v příloze P.6 dostaneme výsledky: mn( x, K, x ) = 24 1 n x = 30,75 Po dosazení do výše uvedených vztahů získáme: A ˆ = 24 1 ˆ µ = = 0,148 30,75 24 ˆ ,45 A 23,98 0 = = ˆ µ 0 = = 0, (30,75 24) Oboustranný ntervalový odhad parametru μ lze konstruovat na základě vztahu: 2 2 Χ α Χ α ;2n 2 1 ;2n µ 2 n( x Aˆ ) 2 n( x Aˆ ) kde Χ, Χ 2 2 α α ;2n 2 1 ;2n jsou α/2 a 1- α/2 procentní kvantly X 2 -rozdělení s 2n - 2 stupn volnost, kde: n α je počet hodnot souboru se kterým pracujeme, je hodnota nám zvolené hladny významnost. V našem případě a pro α = 0,05: 653,00 777, (30,75 24) µ (30,75 24) a tedy µ 0,14; 0,16 KST/IMOSI Modelování a smulace blok 6, strana 6 (16) Antonín Kavčka
7 V případě parametru A je stuace poněkud neobvyklá. Za horní mez ntervalového odhadu můžeme považovat s pravděpodobností blízkou jedné nejmenší z hodnot x 1,..., x n. Dolní mez odhadujeme pomocí jednostranného ntervalu spolehlvost, který dostaneme ze vztahu: ˆ ˆ x A A A Fα ;2,2n 2 n 1 kde F α;2,2n 2 je α-procentní kvantl F-rozdělení s 2 a 2n - 2 stupn volnost. Po dosazení dostaneme pro α = 0,05: 30,75 24 A 24 3,008 = 23, takže A 23,95; 24. Poznámky V lteratuře se často namísto parametru μ exponencálního rozdělení pravděpodobnost používá parametr δ = 1/µ. Pokud nenajdeme požadované hodnoty kvantlů ve statstckých tabulkách, je možné použt např. statstcké funkce MS Excelu (CHIINV, FINV). Přtom je třeba mít na pamět rozdíl mez kvantly a krtckým hodnotam.obecně pro kvantl x α platí P(X < x α ) = α. Krtcké hodnoty x α jsou v případě asymetrckých rozdělení (X 2, F) dány obvykle vztahem P(X > x α ) = α, v případě symetrckých rozdělení (Studentovo) vztahem P(X > x α ) = α. Intervalový odhad parametrů rozdělení se v prax často neprovádí. 6.2 Testování hypotézy o tvaru rozdělení pravděpodobnost Nejčastěj používaným testy hypotéz o tvaru rozdělení jsou Χ 2 -test a Kolmogorovův- Smrnovův test. Testuje se nulová hypotéza H 0 : výběr pochází ze základního souboru s rozdělením... s parametry.... Χ 2 -test vyžaduje velké množství naměřených hodnot. Testovacím krtérem je statstka k 2 Χ = í = 1 ( m np ) np 2 KST/IMOSI Modelování a smulace blok 6, strana 7 (16) Antonín Kavčka
8 kde k je počet tříd, m je pozorovaná četnost v -té třídě, n je počet všech pozorování a p je teoretcká pravděpodobnost výskytu pozorované hodnoty v -té třídě. Přtom bývá požadováno, aby ve většně tříd (80%) platlo np > 5. Není-l toto splněno, přstupuje se ke sdružování tříd. Teoretcké pravděpodobnost p se v případech dskrétních náhodných velčn počítají přímo jako hodnoty pravděpodobnostní funkce v daném bodě. V případech spojtých náhodných velčn je vypočítáme jako rozdíl hodnot dstrbučních funkcí v krajních bodech třídního ntervalu. Nulovou hypotézu zamítáme, pokud hodnota testovacího krtéra přesáhne hodnotu 1-α % kvantlu rozdělení X 2 s k - r - 1 stupn volnost, kde k je počet tříd a r je počet odhadovaných parametrů. V následujícím příkladu je proveden X 2 -test pro případ doby mez příchody zákazníků v ntervalu od hod. do hod. Z hstogramů a hodnot uvedených na obrázku 6.1c můžeme dospět k závěru, že tato náhodná velčna se řídí exponencálním rozdělením. Z dat získaných sledováním nás nyní zajímají doby příchodů všech zákazníků, kteří přšl mez hod. a hod. Je jch celkem 162. Z nch postupným odčítáním získáme doby mez příchody a vypočítáme průměrnou dobu mez příchody: x = 22 s V tomto případě stačí pracovat s jednoparametrckým exponencálním rozdělením s parametrem μ (A = 0). Bodový odhad parametru tohoto rozdělení je: 1 µ = = 0,045 s x 1 95% nterval spolehlvost tohoto odhadu dostaneme jako Χ Χ 2nx µ 2nx 2 2 α α ;2n 1 ;2n ,02 375, µ tedy µ 0,039;0,053. KST/IMOSI Modelování a smulace blok 6, strana 8 (16) Antonín Kavčka
9 Budeme tedy testovat nulovou hypotézu: Výběr pochází ze souboru s exponencálním rozdělením s parametrem 0,045 s -1. Tabulka 6.1a vychází z hodnot, které poskytne MS Excel na základě automatcké volby počtu tříd. Vdíme, že hrance první třídy je nastavena zcela nevhodně, a že 4 ze 13 z tříd nesplňují podmínku np > 5. Tabulka 6.1 b obsahuje stejné výpočty po úpravě hranc tříd a je doplněná o hodnotu testovacího krtéra a krtckou hodnotu pro α = 0,05 a = 5 stupňů volnost. V tomto případě je hodnota testovacího krtéra menší než hodnota krtcká, takže nulovou hypotézu nezamítneme (vždy je třeba ctlvě posoudt míru přípustnost redukce počtu tříd). Pro úplnost uveďme příklad testování hypotézy (h B ), uvedené v část pojednávající o určení tvaru rozdělení pravděpodobnost, že relatvní četnost zákazníků požadujících transakc H je v lbovolném ntervalu 0,41. V tomto případě je postup o něco jednodušší výpočet testovacího krtéra opět vychází ze zjštěných četností požadavků na transakc H v jednotlvých třídách a četností teoretcky předpokládaných. Teoretcky předpokládaná četnost je dána součnem relatvní četnost a počtu zákazníků v uvažované třídě (zde 58 * 0,41 = 23,78) tabulka 6.1c. třídy repr. třídy n F(x) p n p X :00, ,00 0,00 0, :07,4 3,7 34 0,153 0,153 24,85 3, :14,8 11,1 37 0,393 0,240 38,85 0, :22,2 18,5 25 0,565 0,172 27,84 0, :29,7 25,9 21 0,688 0,123 19,96 0, :37,1 33,3 13 0,777 0,088 14,30 0, :44,5 40,7 9 0,840 0,063 10,25 0, :51,9 48,1 4 0,885 0,045 7,35 1, :59,3 55,5 8 0,918 0,033 5,27 1, :06,7 62,9 2 0,941 0,023 3,78 0, :14,2 70,3 5 0,958 0,017 2,71 1, :21,6 77,7 1 0,970 0,012 1,94 0, Další 1 1,000 0,030 4,91 3,11283 Tab. 6.1a Výpočet testového krtéra testu X 2 Test Kolmogorovův-Smrnovův se zpravdla používá v případech, kdy máme k dspozc pouze omezené množství dat. Na rozdíl od X 2 testu, který sčítá odchylky od předpokládaného stavu v jednotlvých třídách, Kolmogorovův- Smrnovův test porovnává předpokládaný a naměřený tvar dstrbuční funkce a KST/IMOSI Modelování a smulace blok 6, strana 9 (16) Antonín Kavčka
10 nulová hypotéza je zamítnuta, překročí-l krtckou hodnotu největší ze zjštěných odchylek. třídy repr. třídy n F(x) p n p X 2 1 0:00: ,443 0,443 71,75 0, :00: ,690 0,247 39,97 0, :00: ,827 0,137 22,27 0, :00: ,904 0,077 12,41 0, :01: ,946 0,043 6,91 0, :01: ,970 0,024 3,85 1, :01: ,000 0,030 4,84 1, , krterum 11,07048 krt. h. Tab. 6.1b Výpočet testového krtéra a krtcká hodnota testu X 2 (α = 0,05) změna hranc ntervalů tříd Třídy (poř. zákaz.) Četnost transakce H Předpokl. četn. trans. H ,78 0, ,78 0, ,78 0, ,78 0, ,78 0, ,78 0, ,78 0, ,78 0, ,78 0, ,78 1, ,78 0, ,78 0, ,78 0, ,78 0, ,78 0,03 4,11 krterum X 2 23,68 krt. h. Tab. 6.1c Výpočet test. krtéra a krt. hodnota testu X 2 (α = 0,05) pro test hodnoty relatvní četnost KST/IMOSI Modelování a smulace blok 6, strana 10 (16) Antonín Kavčka
11 Obecně platí, že Kolmogorovův-Smrnovův test má menší sílu k zamítnutí neplatné hypotézy než X 2 test. V následujícím příkladu, testujeme hypotézu o rozdělení pravděpodobnost doby obsluhy zákazníků, kteří požadují transakc H,V,S (tzn. výběr hotovost, výpsy zůstatků na účtech a vydání šekové knížky) v ntervalu hod. Způsobem, který byl demonstrován v odstavc pojednávajícím o odhadu parametrů, bylo zjštěno, že výběr pravděpodobně pochází z exponencálního rozdělení s parametry A = 53 s, μ = 0,07 s -1. Testujeme tedy nulovou hypotézu: Výběr pochází ze základního souboru s exponencálním rozdělením s parametry A = 53 s, μ = 0,07 s -1. Obr. 6.4a Hstogram četností k tabulce 6.1a Obr. 6.4b Hstogram četností k tabulce 6.1b KST/IMOSI Modelování a smulace blok 6, strana 11 (16) Antonín Kavčka
12 x (-1)/n /n F(x) F(x)-(-1)/n F(x)-/n 1 52,6 0 0,025 0,00 0,000 0, ,7 0,025 0,05 0,00 0,025 0, ,6 0,05 0,075 0,04 0,010 0, ,9 0,075 0,1 0,06 0,013 0, ,0 0,1 0,125 0,13 0,032 0, ,1 0,125 0,15 0,14 0,013 0, ,2 0,15 0,175 0,14 0,010 0, ,2 0,175 0,2 0,20 0,026 0, ,2 0,2 0,225 0,20 0,002 0, ,3 0,225 0,25 0,21 0,019 0, ,6 0,25 0,275 0,22 0,027 0, ,6 0,275 0,3 0,27 0,002 0, ,6 0,3 0,325 0,28 0,024 0, ,6 0,325 0,35 0,28 0,049 0, ,7 0,35 0,375 0,28 0,069 0, ,0 0,375 0,4 0,34 0,030 0, ,2 0,4 0,425 0,39 0,006 0, ,7 0,425 0,45 0,42 0,009 0, ,7 0,45 0,475 0,42 0,032 0, ,3 0,475 0,5 0,48 0,004 0, ,9 0,5 0,525 0,53 0,034 0, ,6 0,525 0,55 0,56 0,032 0, ,8 0,55 0,575 0,56 0,013 0, ,9 0,575 0,6 0,59 0,020 0, ,3 0,6 0,625 0,61 0,007 0, ,3 0,625 0,65 0,63 0,008 0, ,0 0,65 0,675 0,65 0,001 0, ,1 0,675 0,7 0,65 0,023 0, ,1 0,7 0,725 0,68 0,024 0, ,4 0,725 0,75 0,72 0,001 0, ,3 0,75 0,775 0,74 0,009 0, ,4 0,775 0,8 0,74 0,033 0, ,9 0,8 0,825 0,82 0,025 0, ,0 0,825 0,85 0,87 0,044 0, ,4 0,85 0,875 0,89 0,039 0, ,7 0,875 0,9 0,89 0,016 0, ,8 0,9 0,925 0,91 0,013 0, ,5 0,925 0,95 0,94 0,012 0, ,6 0,95 0,975 0,97 0,019 0, ,8 0, ,98 0,006 0,019 krt. h. 0,21 Tab. 6.2 Výpočet testového krtera a krtcká hodnota Kolmogorovova- Smrnovova testu (α = 0,05) KST/IMOSI Modelování a smulace blok 6, strana 12 (16) Antonín Kavčka
13 Obr. 6.5 Graf teoretcké a emprckých dstrbučních funkcí k tabulce 6.2 Tabulka 6.2 obsahuje potřebné výpočty a krtckou hodnotu pro hladnu významnost 0,05. Ve druhém sloupc tabulky jsou zjštěné doby obsluhy, seřazené vzestupně. Následující dva sloupce představují hodnoty emprckých dstrbučních funkcí získaných z naměřených dob obsluhy. Pátý sloupec obsahuje teoretcky předpokládané hodnoty dstrbuční funkce v daných bodech. Testovacím krtérem je maxmální rozdíl emprcké a teoretcké dstrbuční funkce. Hypotézu zamítáme, pokud jeho hodnota přesáhne krtckou hodnotu, kterou hledáme v tabulkách krtckých hodnot pro Kolmogorovův-Smrnovův test. V tomto případě je hodnota testovacího krtera 0,094 menší než krtcká hodnota 0,21, takže nulovou hypotézu na hladně významnost 0,05 nezamítneme. 6.3 Závěry z analýzy vstupních dat Po ukončené analýze vstupních dat získáme podklady pro parametrzace příslušných generátorů vstupních proudů, které budou ntegrovány v rámc budovaného smulačního modelu. Výsledky statstckého šetření popsovaného v rámc toho bloku lze shrnout do tabulek 6.3, 6.4a b. KST/IMOSI Modelování a smulace blok 6, strana 13 (16) Antonín Kavčka
14 Podklady pro parametrzac generátorů dob mez příchody zákazníků (řídící se exponencálním rozdělením) µ x µ e, pro x A f ( x) = 0, pro x < A 1 ˆ µ = x Intervaly příchodů Průměrná doba mez příchody [s] Počet příchodů Parametr µ (ntenzta toku) Bodový odhad [s -1 ] 0,024 0,034 0,045 95% dolní mez [s -1 ] 0,020 0,029 0,039 nt. sp. horní mez [s -1 ] 0,030 0,041 0,053 Intervaly příchodů Průměrná doba mez příchody [s] Počet příchodů Parametr µ (ntenzta toku) Bodový odhad [s -1 ] 0,056 0,037 0,045 95% dolní mez [s -1 ] 0,048 0,031 0,039 nt. sp. horní mez [s -1 ] 0,064 0,044 0,053 Tab. 6.3 Podklady pro parametrzac generátorů příchodů zákazníků Podklady pro parametrzac generátorů typů transakcí a dob obsluh typ transakce rovnoměrné rozdělení vzhledem k počtu zákazníků doba obsluhy dvojparametrcké exponencální rozdělení µ f ( x) = ˆ mn(,, ) A = x1 K x n 1 ˆ µ = x Aˆ µ ( x A e ), pro x A 0, pro x < A Typ transakce H V S H, V Podíl zákazníků 0,41 0,10 0,08 0,24 Prům. doba obsluhy [s] 30,75 26,32 20,24 51,01 Parametr A (mn. doba obsluhy) Bodový odhad [s] 24,00 20,12 16,04 40,08 95% nt. sp. dolní mez [s] 23,95 19,91 15,85 39,93 horní mez [s] 24,00 20,12 16,04 40,08 Parametr µ (ntenzta obsluhy) Bodový odhad [s -1 ] 0,15 0,16 0,24 0,09 95% nt. sp. dolní mez [s -1 ] 0,14 0,13 0,19 0,08 horní mez [s -1 ] 0,16 0,19 0,28 0,10 Tab. 6.4a Podklady pro parametrzac generátorů typů transakcí a dob obsluh KST/IMOSI Modelování a smulace blok 6, strana 14 (16) Antonín Kavčka
15 Podklady pro parametrzac generátorů typů transakcí a dob obsluh typ transakce rovnoměrné rozdělení vzhledem k počtu zákazníků doba obsluhy dvojparametrcké exponencální rozdělení µ f ( x) = ˆ mn(,, ) A = x1 K x n ˆ µ = 1 x Aˆ µ ( x A e ), pro x A 0, pro x < A Typ transakce H, S V, S H, V, S Podíl zákazníků 0,10 0,02 0,05 Prům. doba obsluhy [s] 46,05 43,86 66,82 Parametr A (mn. doba obsluhy) Bodový odhad [s] 36,11 32,81 52,60 95% nt. sp. dolní mez [s] 35,76 30,37 51,47 horní mez [s] 36,11 32,81 52,60 Parametr µ (ntenzta obsluhy) Bodový odhad [s -1 ] 0,10 0,09 0,07 95% nt. sp. dolní mez [s -1 ] 0,08 0,05 0,05 horní mez [s -1 ] 0,12 0,12 0,09 Tab. 6.4b Podklady pro parametrzac generátorů typů transakcí a dob obsluh Otázky k procvčení 1. Jaký základní prostředek ze statstky se typcky používá př formulování hypotézy ohledně tvaru rozdělení pravděpodobnost? 2. Jaké základní testy se používají pro potřeby testování hypotéz ohledně tvaru rozdělení pravděpodobnost? KST/IMOSI Modelování a smulace blok 6, strana 15 (16) Antonín Kavčka
16 Příloha doby obsluhy zákazníků požadujících transakc H Vysvětlvky: pořadí zákazníka požadujícího transakc H doba [s] doba [s] doba [s] doba [s] doba [s] doba [s] doba [s] 1 45, , , , , , ,1 2 25, , , , , , ,4 3 24, , , , , , ,0 4 32, , , , , , ,9 5 29, , , , , , ,5 6 31, , , , , , ,1 7 25, , , , , , ,0 8 25, , , , , , ,3 9 30, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,6 KST/IMOSI Modelování a smulace blok 6, strana 16 (16) Antonín Kavčka
Statistická šetření a zpracování dat.
Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.
Více9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
VíceRegresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
VíceREGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
VíceANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
VíceANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha
ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl
VícePřednáška č. 11 Analýza rozptylu při dvojném třídění
Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané
Vícepodle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y
4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.
Více2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran
Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
VíceNÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Víceina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
Více4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
VícePOROVNÁNÍ MEZI SKUPINAMI
POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá
VíceTestování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VíceTéma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny
0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí
Více2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceANALÝZA ROZPTYLU (Analysis of Variance ANOVA)
NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
VíceSTATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
VíceSpojité regulátory - 1 -
Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceTestování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Více3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina
3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních
VíceCHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.
CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
VíceSimulační metody hromadné obsluhy
Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro
VíceTesty statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
VíceMATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Více7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM
7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
VíceUrčujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
VíceSTATISTIKA (pro navazující magisterské studium)
Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU
VíceZápadočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky
Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou
VícePearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VíceStručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
VíceKorelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d
Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím
VíceVLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ
VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje
VícePlánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
VíceSEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VíceTestování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Více4. Třídění statistických dat pořádek v datech
4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot
VíceMonte Carlo metody Josef Pelikán CGG MFF UK Praha.
Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný
Více5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceVybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
VíceHODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
VíceIntervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
VíceNáhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
VíceStatistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
VíceNeparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
VíceCvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
VíceSIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceSTATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceMatematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
VíceNeparametrické metody
Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VíceStatistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.
VíceFyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
VíceNárodníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
VíceÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
VíceTECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,
VíceAproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
VíceTestování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
VíceAplikace simulačních metod ve spolehlivosti
XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká
VíceTestování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
VíceÚvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
VíceTeoretické modely diskrétních náhodných veličin
Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
VíceTestování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
VíceROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
VíceTestování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Více5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Více- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah:
- - Zdeněk Havel, Jan Hnízdl Cvčení z Antropomotorky Obsah: Úvod... S Základní charakterstky statstckých souborů...3 S Charakterstka základních výběrových technk a teoretcká rozložení četností...9 S 3
VícePravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
VícePravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VíceMODELOVÁNÍ A SIMULACE
MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký
VíceTestování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
VíceSolventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová
2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní
VíceParametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VícePARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
Více