Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička"

Transkript

1 Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz

2 Analýza dynamckých zatížení

3 Harmoncké zatížení x(t) přes soubor realzací t 1 t t t t záznam x (t) t záznam x1 (t) záznam x 4 (t) záznam x 3 (t) podél realzace Stochastcké (náhodné) zatížení (vícenásobná realzace) 3

4 Rozdělení zatěžovacích procesů DYAMICKÁ ZATÍŽEÍ ( Tme Hstory) Determnstcké Stochastcké eperodcké Perodcké Statonární estatonární Přechodové jevy Harmoncké eergodcké Po částech. stac. Téměř perodcké Jnak perodcké Ergodcké Úzkopásmové Šrokopásmové 4

5 Typ zatížení Procenta výskytu Snusové s konst. ampltudou x(t) přes soubor realzací t 1 t t t t záznam x (t) t záznam x1 (t) záznam x 4 (t) záznam x 3 (t) Trapézové, trojúhelník perodcké 5 Blokové s konst. ampltudou 1 Staconární náhodné 9 estaconární náhodné 13 Po částech staconární 41 podél realzace Přechodové jevy 13 Ostatní 5

6 Metoda stékání deště (Ran Flow Method) Jedna mnoha metod tzv. dekompozce sgnálu na hstogram dílčích kmtů, které mají na konstrukc dentcký degradační efekt

7 Ran Flow otočená sekvence z globálního extrému do globálního extrému x x x x

8 Ran Flow doporučený postup sekvence se nakreslí od globálního extrému do globálního extrému otočení o 90 spouštení lokálních proudů zleva doprava postupuje se od nejnžších lokálních mnm k vyšším proudy se spouští a tečou dokud nevytečou ze sekvence nebo nenarazí na proud tekoucí z nžšího lokálního mnma nebo stejného dříve vyřešeného v případě několka stejných mnm je doporučeno je řešt, jak jdou za sebou v zátěžné sekvenc spouštení lokálních proudů zprava doleva postupuje se od nejvyšších lokálních maxm k nžším proudy se spouští a tečou dokud nevytečou ze sekvence nebo nenarazí na proud tekoucí z vyššího lokálního maxma nebo stejného dříve vyřešeného v případě několka stejných maxm je doporučeno je řešt, jak jdou za sebou v zátěžné sekvenc skládání půlek uzavřených kmtů k sobě v případě některého neuzavřeného umělé uzavření nebo n =0,5

9 třída napětí Ran Flow Matrx (Dvourozměrný hstogram četnost) U složtých sekvenc zpracování hstogramu pomocí tříd (ntervalů) čas četnost

10 střední hodnota napětí Příklad výsledků zpracování čas ampltuda Stress 5,8 11,5 17,3 3,1 8,8 34,6 40,4 46,1 51,9 57,7 63,4 69, 75,0 80,7 86,5 9,3 98,0 1 9, , , , , , , , , , , , , , , , , , , , , , Ran 0 0Flow 1 0Matrx , , , , , , , , , , Sum četnost

11 a/ap h n Spektrum namáhání četnost ampltud napětí v jednotlvých zatěžovacích hladnách za určtou dobu provozu 8 n p 7 třída n = n o Aproxmace třídní četnost kmtů n s a, n ap, p n0 n0 kumulatvní počet kmtů h 11

12 Ekvvalentní ampltuda/horní napětí kmtu

13 Haghův dagram σ c Re Rm σ F a R e a,ekv - m + m R 0 e R e R m

14 Přepočty na ekvvalentní ampl./horní napětí Převod napěťových kmtů s různou střední složkou, na smluvní symetrcky střídavé nebo míjvé kmty s podobným únavovým účnkem. Přepočet podle Goodmana: Přepočet podle Gerbera: pracovní obecný kmt ekvvalentní míjvý kmt R=0 a,eq h,eq a, eq a, eq a 1- R čas t ekvvalentní symetrcky střídavý kmt R=-1 m m a 1 - m Rm SWT parametr: Přepočet podle Odnga: a, eq a, eq h, eq h, eq, a MIL HDBK: h, eq a +, a a + m m E,, a a a m ocel a Al sltny R p p 0,5 m m m m

15 Horní napětí kmtu [MPa] Ampltuda napětí kmtu [MPa] Př. Přepočty S- křvek Ocel S355J0: k dspozc S- křvky pro R=-1 R=0 a R m =678 MPa. Odvoďte rovnc S- křvky pro ampltudu napětí míjvého kmtu (R=0) 1, ,9 ar-1 1, h 15,9log 15,9log 15,9log R0 6, hr0+ log log6, ar0+ log log6, log log6, ,9log 43, 997 a R ,9 a R0 9, ,0 900,0 R=-1 800,0 R=0 700,0 600,0 500,0 400,0 300,0 00,0 100,0 0,0 1,E+0 1,E+03 1,E+04 1,E+05 1,E+06 Počet kmtů [1] 700,0 600,0 R=-1 500,0 R=0 400,0 300,0 00,0 100,0 0, Počet kmtů [1]

16 Horní napětí kmtu [MPa] Ampltuda napětí kmtu [MPa] Př. Žvotnost v S- křvkách Přepočet míjvého cyklu o ampltudě 50 MPa (horním napětí 500 MPa) na ekvvalentní symetrcky střídavý cyklus a žvotnost pro tento cyklus podle různých metod přepočtu 15,9 a R0 9, ,9 a R , ,9 43 9, ,9 48 6, ,0 900,0 800,0 700,0 600,0 500,0 400,0 300,0 00,0 100,0 h 500 R 0 R=-1 R= , Počet kmtů [1] 700,0 600,0 500,0 400,0 300,0 00,0 100,0 a R=-1 R=0 50, R , Počet kmtů [1]

17 Př. Přepočty na ekvvalentní hodnoty Přepočet míjvého cyklu o ampltudě 50 MPa (horním napětí 500 MPa) na ekvvalentní symetrcky střídavý cyklus lze provést podle různých metod přepočtu (volí se dle zkušeností) a žvotnost pro tento cyklus se určí z S- křvky pro R=-1 Grafcké vyjádření obvyklých metod: σ a,eq = 396 σ a =50 R = 0 Přepočet podle Goodmana: SWT parametr: Přepočet podle Gerbera: 0 σ m =50 σ m R m

18 Ampltuda napětí kmtu [MPa] Př. Ekvvalentní napětí, žvotnost Přepočet míjvého cyklu o ampltudě 50 MPa (horním napětí 500 MPa) na ekvvalentní symetrcky střídavý cyklus a žvotnost pro tento cyklus podle různých metod přepočtu 1,33 a R- 1,33 a R- 1 1, , , , Přepočet podle Goodmana: σ a σ a,eq = 396 R = 0 a, eq a, eq a 1- R m m 396 MPa 700,0 600,0 500,0 R=-1 R=0 σ a =50 400,0 300,0 00,0 a, eq 396 R -1 0 σ m =50 R m σ m 100, , Počet kmtů [1]

19 Ampltuda napětí kmtu [MPa] Př. Ekvvalentní napětí, žvotnost Přepočet míjvého cyklu o ampltudě 50 MPa (horním napětí 500 MPa) na ekvvalentní symetrcky střídavý cyklus a žvotnost pro tento cyklus podle různých metod přepočtu Podle Gerbera: 1,33 a R- 1 1,15610 a 1- R a, eq 36 m m 89,34 MPa 1, , ,34 700,0 R = 1 600,0 R=-1 σ a 500,0 R=0 σ a,eq = 89 σ a =50 R = 0 400,0 300,0 00,0 100, σ m =50 R m σ m 0, Počet kmtů [1]

20 Př. Ekvvalentní napětí, žvotnost Přepočet míjvého cyklu o ampltudě 50 MPa (horním napětí 500 MPa) na ekvvalentní symetrcky střídavý cyklus a žvotnost pro tento cyklus podle různých metod přepočtu SWT parametr: ,55 MPa 1,33 a R- 1 1,15610 a, eq a m a 36 1, , ,55 σ a σ a,eq = 354 R = 1 R = 0 σ a =50 0 σ m =50 σ m

21 Kumulace poškození

22 Kumulace poškození Lneární kumulace poškození Palmgren-Mner (Mner 1945) p p p n n n n D únavové poškození: g n D n D c Forma zahrnutí poškození od různých dílčích hladn zatěžování konstrukce.

23 Omezený únavový žvot predkce krtcká hodnota poškození: D cr 1 počet opakování zátěžné sekvence do lomu: rozsah zátěžné sekvence (počet cyklů): rozsah zátěžné sekvence (provozní parametry): D Z cr 1 D D h 0 p n 1 l [hodny,klometry,...] střední únavový žvot (50% pravděpodobnost porušení): L Z l L Z h 0 L L 50% p n h p a, 1 0 a, p w

24 Kumulace poškození 1 D 0 n/ 1

25 Bezpečný únavový žvot

26 S S Odvození přepočtu na bezpečný únavový žvot konst 0 konst X konst S X X Y S X + S Y S X X - X S S + x x x - x f x - dx Výpočty S př kombnac náhodných dějů: u u P P a teoretcky neomezená žvotnost (příklad hřídele lokomotvy) - S log B x c - log S a a S - x c c + S log S B logn - log + S log omezená žvotnost (vz dále) Využívá se přístup pro kombnac dvou nezávslých náhodných dějů (rozdělení zátěže + rozdělení výdrže materálu)

27 Bezpečný únavový žvot bezpečný únavový žvot pravděpodobnost poruchy P<<1 (0,001% 0,00001%) četnost s log n s log posuv bezpečnost n L směrodatná odchylka únavového žvota S- křvky: směrodatná odchylka únavového žvota zátěžné sekvence: celková bezpečnost únavového žvota: s log s log n k L bezpečnost S- křvky: k (3,0 6,0) bezpečnost zátěžné sekvence: k n (1,5,0) bezpečný únavový žvot: L L 50% 50% L B kl kkn

28 Pravděpodobnost poruchy četnost s log n P f s log posuv bezpečnost n L Předpoklad: log-normální rozdělení únavového žvota Výpočet kvantlu a pravděpodobnost porušení: u P log L - log L log L L B 1 log k B 50% 50% L P slog + slogn slog + slogn slog + s f [%] logn

29 Př.: Žvotnost ocelového oka - zadání Vypočítat únavové poškození, střední a bezpečný únavový žvot ocelového závěsného oka namáhaného zkušební sekvencí zatížení (~ 100 km) Materál: ocel L-ROL ( ) R m = 1050 MPa Součntel bezpečnost odvodt z podmínky pravděpodobnost lomu na konc bezpečného žvota P = 0,001 Únavová křvka napětí materálu (R = -1) je dána na báz 10 6 kmtů ampltudou c = 75 MPa, w 1 = 4 pro < 10 6, w = 8 pro > 10 6 Směr. odchylka ampltud provozního zatížení s logn = 0,1 Směr. odchylka únavové křvky s log = 0,15

30 Zátěžná sekvence sekvence napětí pro krtcké místo [MPa] čas

31 Ran Flow x x x x

32 Ran Flow - dekompozce Dekompozce zatěžovacího hstogramu do vypovídajících uzavřených napěťových cyklů napětí [MPa] četnost [MPa] čas dolní horní n

33 Uzavřené smyčky d [MPa] h [MPa] R [1] a [MPa] m [MPa] a eqv [MPa] , , , , a eqv a 1 - R m m

34 S- křvka křvka oka a ( a eqv ) [MPa] E E E+0 1.0E E E E E E E E+10 [1]

35 Kumulace poškození C w a, eqv D n a eqv [MPa] [1] n [1] D [1] , , , , D n... 0,000351

36 Pravděpodobnost poruchy 1 1 D 0, Z 850,066 D 0, L 100 Z km P 0,001 u -3,0903 p u p log L s B log - log L + s logn log log L log L + u s + s B p logn log L B log L + log10 u p s log + s logn k L L L B ,93 L B L 10 u p s log + slogn km

37 Př.: Hladký hřídel kumulace poškození Hladký hřídel o průměru 1,0 mm je namáhán kombnací ohybu a krutu (symetrcky střídavým). Je dána tabulka četností (hstogram) ampltud ohybového a kroutcího momentu, která odpovídá 1 měsícům provozu. třída M o [.mm] M k [.mm] n [kmtů] Je dána Wöhlerova křvka (50% pravděp. poruš.) reálného hřídele př namáhání w v tahu-tlaku popsaná vztahem konst a Mez únavy 150 MPa pro báz 10 6 cyklů. Exponent škmé větve w = 3,5. Jsou dány směrodatné odchylky logartmů žvotů. Pro únavovou křvku s log = 0,15. Pro zatížení s logn = 0,. Určt střední žvotnost hřídele, který je namáhán daným zatížením. Určt bezpečnou žvotnost hřídele tak, aby pravděpodobnost lomu nepřesáhla 1 % podle Palmgrenovy-Mnerovy hypotézy kumulace poškození.

38 Zatížení ,9 mm mm 169, d W d W d k o 3 + o red k k o o o W M W M

39 Wőhlerova křvka, kumulace poškození, L 50% C w a 150 3, , C w red, a D n D 3 1 D 3 1 n 0,45 1 Z D 1 0,45,35 L50% l Z 1,35 8,6 měsíců

40 Bezpečný žvot D 3 1 D 3 1 n 0,45 L50% l Z 1,35 8,6 P 0,01 u -,36 EXCEL: ORMIV p u s log + s n -,36 0,15 + 0, 1 p log L B L50% 10 8,6 10 7,39 měsíce k L L L 8,6 7,39 50% B 3,816

Přednášky část 8 Analýza provozních zatížení a hypotézy kumulace poškození

Přednášky část 8 Analýza provozních zatížení a hypotézy kumulace poškození DPŽ Přednášky část 8 Anlýz provozních ztížení hypotézy kumulce poškození Mln Růžčk mechnk.fs.cvut.cz mln.ruzck@fs.cvut.cz DPŽ Anlýz dynmckých ztížení DPŽ 3 Hrmoncké ztížení x(t) přes soubor relzcí t t

Více

Dynamická pevnost a životnost Kumulace poškození

Dynamická pevnost a životnost Kumulace poškození DPŽ Hrubý Dymcká pevost žvotost Kumulce poškozeí Ml Růžčk, Josef Jurek, Zbyěk Hrubý mechk.fs.cvut.cz zbyek.hruby@fs.cvut.cz DPŽ Hrubý Kumulce poškozeí (R-low, přepočet ekvvletí mpltudu, bezpečý žvot) DPŽ

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů

Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů Číslcové zpracování a analýza sgnálů (BCZA) Spektrální analýza sgnálů 5. Spektrální analýza sgnálů 5. Spektrální analýza determnstckých sgnálů 5.. Dskrétní spektrální analýza perodckých sgnálů 5..2 Dskrétní

Více

Určování únavových vlastností při náhodné amplitudě zatížení

Určování únavových vlastností při náhodné amplitudě zatížení Úvod klapka podložka žvotnostní test spojení klapka-podložka Požadavek zákazníka: - navrhnout a provést zrychlené komponentní testy spoje klapka-podložka - provést objektvní srovnání různých varant z hledska

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

VÝPOČET NÍZKOCYKLOVÉ ÚNAVY JADERNÉ ARMATURY DLE NORMY NTD A.S.I. SEKCE III. JIŘÍ TÁBORSKÝ*, LINA BRYUKHOVA KRÁLOVOPOLSKÁ STRESS ANALYSIS GROUP, s.r.o.

VÝPOČET NÍZKOCYKLOVÉ ÚNAVY JADERNÉ ARMATURY DLE NORMY NTD A.S.I. SEKCE III. JIŘÍ TÁBORSKÝ*, LINA BRYUKHOVA KRÁLOVOPOLSKÁ STRESS ANALYSIS GROUP, s.r.o. 20th SVSFEM ASYS Users' Group Meetng and Conference 202 VÝPOČET ÍZKOCYKLOVÉ ÚAVY JADERÉ ARMATURY DLE ORMY TD A.S.I. SEKCE III JIŘÍ TÁBORSKÝ*, LIA BRYUKHOVA KRÁLOVOPOLSKÁ STRESS AALYSIS GROUP, s.r.o. Abstract:

Více

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík Příklad Zadání: Vytvořte přibližný S-n diagram pro ocelovou tyč a vyjádřete její rovnici. Jakou životnost můžeme očekávat při zatížení souměrně střídavým cyklem o amplitudě 100 MPa? Je dáno: Mez pevnosti

Více

Laboratorní cvičení L4 : Stanovení modulu pružnosti

Laboratorní cvičení L4 : Stanovení modulu pružnosti Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky Katedra částí a mechanismů strojů Fakulta strojní, VŠB - Technická univerzita Ostrava 708 33 Ostrava- Poruba, tř. 7.listopadu Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o IOK ÚNAVOVÉ ZKOUŠKY PATINUJÍCÍ OCELI L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3 1 Institut ocelových konstrukcí, s.r.o 2 VUT Brno, Fakulta strojního inženýrství 3 Ústav fyziky materiálů AVČR Seminář

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

26/04/2016. PROGRAM PŘEDNÁŠEK letní 2015/2016

26/04/2016. PROGRAM PŘEDNÁŠEK letní 2015/2016 133 BK5C BETONOVÉ KONSTRUKCE 5C Číslo Datum PROGRAM PŘEDNÁŠEK letní 2015/2016 Téma přednášk 1 23.2. Prncp předpjatého betonu, hstore, materál Poznámk 2 1.3. Technologe předem předpjatého betonu Výklad

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 2 Porušování při cyklickém zatěžování All machine and structural designs are problems in fatigue

Více

4 Parametry jízdy kolejových vozidel

4 Parametry jízdy kolejových vozidel 4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato

Více

Úvod do únavového poškozování

Úvod do únavového poškozování 4. Historie 1923 Palmgren Kumulativní poškození 1949 Irwin 1957 Irwin K-koncepce Historie r. 1843 Rankine hovoří o krystalizaci materiálu během opakovaného zatěžování, díky níž se materiál stává křehkým.

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,

Více

Přednášky část 2 Únavové křivky a faktory, které je ovlivňují

Přednášky část 2 Únavové křivky a faktory, které je ovlivňují Přednášky část 2 Únavové křivky a faktory, které je ovlivňují Milan Růžička mechanika.fs.cvut.cz milan.ruzicka@fs.cvut.cz 1 Únavové křivky napětí (stress-life curves S-N curves) 2 Historie únavy materiálu

Více

PRVKY KOVOVÝCH KONSTRUKCÍ

PRVKY KOVOVÝCH KONSTRUKCÍ VYSOKÉ UEÍ TECHICKÉ V BR FAKULTA STAVEBÍ PROF. IG. JIDICH MELCHER, DrSc. DOC. IG. MIROSLAV BAJER, CSc. PRVKY KOVOVÝCH KOSTRUKCÍ MODUL BO02-M07 AVRHOVÁÍ OCELOVÝCH KOSTRUKCÍ A MEZÍ STAV ÚAVY STUDIJÍ OPORY

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:

Více

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu 7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f

Více

Statistická šetření a zpracování dat.

Statistická šetření a zpracování dat. Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( ) OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Příloha č.1.: Výpočtová zpráva - převodovka I Návrh čelních ozubených kol Návrh rozměru čelních ozubených kol je proveden podle ČSN 01 4686 ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Návrhovým výpočtem

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 3 Koncentrace napětí a její

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.

Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením. Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Namáhání součástí na ohyb Metodický pokyn výkladový text s ukázkami Napětí v ohybu: Výpočet rozměrů nosníků zatížených

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO

MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO PROFILU NAMÁHANÉHO TLAKEM ZA OHYBU SPECIFIC STRAIN ENERGY OF THE OPEN CROSS-SECTION SUBJECTED TO COUPLED COMPRESSION AND BENDING I. Kološ 1 a P. Janas 2 Abstract

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Analýza zkušebních rychlostí podle EN ISO

Analýza zkušebních rychlostí podle EN ISO Intelligent testing Analýza zkušebních rychlostí podle EN ISO 6892-1 Tále, duben MMXVII Stanislav Korčák Novinky v oblasti skúšobnictva, Tále 2017 Obsah Zkoušení tahem - základní zkušební metoda Pár veselých

Více

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů.

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. M. Lachman, R. Mendřický - Elektrické pohony a servomechanismy 13.4.2015 Požadavky na pohon Dostatečný moment v celém rozsahu rychlostí

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

3. Mechanická převodná ústrojí

3. Mechanická převodná ústrojí 1M6840770002 Str. 1 Vysoká škola báňská Technická univerzita Ostrava 3.3 Výzkum metod pro simulaci zatížení dílů převodů automobilů 3.3.1 Realizace modelu jízdy osobního vozidla a uložení hnacího agregátu

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Pastorek Kolo ii Informace o projektu?

Pastorek Kolo ii Informace o projektu? Kuželové Kuželové ozubení ozubení s přímými, s přímými, šikmými šikmými a zakřivenými a zakřivenými zuby [inch/agma] zuby [inch/agma] i Výpočet bez chyb. Pastorek Kolo ii Informace o projektu? Kapitola

Více

Dynamická pevnost a životnost Cvičení

Dynamická pevnost a životnost Cvičení DPŽ - vičení Dynamiá pevnost a životnost Cvičení Milan Růžiča, Josef Jurena, Martin Nesláde, Jan Papuga mehania.fs.vut.z milan.ruzia@fs.vut.z DPŽ - vičení Cvičení Dynamiá pevnost a životnost Milan Růžiča,

Více

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících

Více

CTJ. Lineární moduly CTJ. Charakteristika. 03 > Lineární jednotky

CTJ. Lineární moduly CTJ. Charakteristika. 03 > Lineární jednotky Lneární moduly CTJ Charakterstka CTJ Lneární jednotky (moduly) řady CTJ jsou moduly s pohonem ozubeným řemenem a se dvěma paralelním kolejncovým vedením. Kompaktní konstrukce lneárních jednotek CTJ umožňuje

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Pevnostní vlastnosti

Pevnostní vlastnosti Pevnostní vlastnosti J. Pruška MH 3. přednáška 1 Pevnost v prostém tlaku na opracovaných vzorcích Jedná se o mezní napětí při porušení zkušebního tělesa za jednoosého tlakového namáhání F R = mez d A pevnost

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 3 Koncentrace napětí a její

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Analýza závislosti veličin sledovaných v rámci TBD

Analýza závislosti veličin sledovaných v rámci TBD Analýza závslost velčn sledovaných v rámc BD Helena Koutková Vysoké učení techncké v Brně, Fakulta stavební, Ústav matematky a deskrptvní geometre e-mal: koutkovah@fcevutbrcz Abstrakt Příspěvek se zabývá

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace

Více

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Numerická integrace konstitučních vztahů

Numerická integrace konstitučních vztahů Numercká ntegrace konsttučních vztahů Po výočtu neznámých deformačních uzlových arametrů v každé terac NR metody je nutné stanovt naětí a deformace na rvcích. Nař. Jednoosý tah (vz obr. vravo) Pro nterval

Více

VĚROHODNOST VÝSLEDKŮ PŘI UŽITÍ EXPLORATORNÍ ANALÝZY DAT

VĚROHODNOST VÝSLEDKŮ PŘI UŽITÍ EXPLORATORNÍ ANALÝZY DAT VĚROHODNOST VÝSLEDKŮ PŘI UŽITÍ EXPLORATORNÍ ANALÝZY DAT Mlan Meloun Unverzta Pardubce, Čs. Legí 565, 53 10 Pardubce, mlan.meloun@upce.cz 1. Obecný postup analýzy jednorozměrných dat V prvním kroku se v

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Kapitola vstupních parametrů

Kapitola vstupních parametrů Předepjatý šroubový spoj i ii? 1.0 1.1 1.2 1.3 1.4 1.5 Výpočet bez chyb. Informace o projektu Zatížení spoje, základní parametry výpočtu. Jednotky výpočtu Režim zatížení, typ spoje Provedení šroubového

Více

Jednosložkové soustavy

Jednosložkové soustavy Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Únava (Fatigue) Úvod

Únava (Fatigue) Úvod Únava (Fatigue) Úvod Únavové křivky napětí - historie 9. století rozvoj technického poznání rozšíření možnosti využití oceli a kovových materiálů v běžné praxi. Rozvoj železniční dopravy parní lokomotiva

Více

Přednášky část 2 Únavové křivky a únavová bezpečnost

Přednášky část 2 Únavové křivky a únavová bezpečnost DPŽ 1 Přednášky čát 2 Únvové křivky únvová bezpečnot Miln Růžičk mechnik.f.cvut.cz miln.ruzick@f.cvut.cz DPŽ 2 Únvové křivky npětí (tre-life curve S-N curve) DPŽ 3 Hitorie únvy mteriálu 19. toletí rozvoj

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

Ztráta stability tenkých přímých prutů - vzpěr

Ztráta stability tenkých přímých prutů - vzpěr Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 12

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 12 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převody Přednáška 12 Lanové převody Výhody a nevýhody. Druhy převodů. Ocelová lana. Lanové kladky. Lanové bubny. Pevnostní

Více