Úlohy 1. kola 57. ročníku Fyzikální olympiády Databáze pro kategorie E a F
|
|
- Božena Burešová
- před 9 lety
- Počet zobrazení:
Transkript
1 Úlohy 1. kola 57. ročníku Fyzikální olympiády Databáze pro kategorie E a F Ve všech úlohách uvažujte tíhové zrychlení g = 10 N/kg = 10 m/s 2 a hustotu vody ϱ = kg/m FO57EF1 1: Opožděný výjezd Řidič automobilu plánoval cestu mezi dvěma místy a počítal se stálou cestovní rychlostí 90 km/h. Při výjezdu se však o 5 min opozdil. a) Za jakou dobu a kde dožene zpoždění, pojede-li rychlostí větší o 10 km/h? b) Jakou rychlostí se musí pohybovat, aby zpoždění dohnal za 30 min? Na jaké dráze zpoždění dožene? c) Jakou rychlostí se musí pohybovat, aby zpoždění dohnal na dráze 60 km? Za jakou dobu zpoždění dožene? 2. FO57EF1 2: Jízda v mlze Automobil vyrazil za mlhy rychlostí 30 km/h. Po 12 min jízdy se mlha rozplynula a řidič ujel během dalších 12 min vzdálenost 17 km. Na posledním úseku dlouhém opět 17 km se jízdní podmínky poněkud zhoršily a řidič jel rychlostí 51 km/h. a) Vypočtěte dráhu na prvním úseku, rychlost na druhém úseku a čas na třetím úseku. b) Sestrojte graf závislosti dráhy s na čase t. c) průměrnou rychlost na prvních dvou úsecích a průměrnou rychlost na posledních dvou úsecích. Kdy lze průměrnou rychlost počítat jako aritmetický průměr jednotlivých rychlostí? Odpověď se pokuste zdůvodnit. 3. FO57EF1 3: Překlápění tvárnice Pórobetonová tvárnice má tvar pravidelného čtyřbokého hranolu s rozměry 50 cm, 25 cm, 25 cm a hmotnost 20 kg. Je postavena na vodorovné rovině na čtvercové podstavě. Tvárnici překlopením kolem jedné hrany položíme. a) výšku těžiště tvárnice v původní poloze, v konečné poloze a maximální výšku těžiště během překlápění. Jednotlivé polohy tvárnice znázorněte a vyznačte výšku těžiště nad vodorovnou rovinou. b) práci, kterou musíme vykonat k tomuto překlopení tvárnice. c) práci, kterou musíme vykonat k opětnému postavení tvárnice. 4. FO57EF1 4: Úhlová rychlost otáčení Vykoná-li kolotoč za každých 5 s jednu otáčku, otočí se za 5 s o 360 neboli za 1 s o 72. Otáčí se tedy úhlovou rychlostí 72 /s (stupňů za sekundu). Kromě této jednotky lze použít např. /min, /h apod. 1
2 a) úhlové rychlosti sekundové, minutové a hodinové ručičky na hodinkách, úhlovou rychlost otáčení Země kolem své osy vzhledem ke Slunci a úhlovou rychlost oběhu Země kolem Slunce. Seřaďte tyto rychlosti podle velikosti od největší po nejmenší a uveďte poměry dvou sousedních úhlových rychlostí. b) Pomocí ručičkových hodinek a polohy Slunce na obloze lze určovat světové strany. Popište tuto metodu a zdůvodněte ji předchozími výpočty v části a). Zvažte i část roku, kdy používáme letní čas a situaci na jižní polokouli. 5. FO57EF1 5: Cena za spotřebovanou elektrickou energii Uvažujme domácnost, která odebírá elektřinu od společnosti ČEZ a používá ji pouze na svícení a provoz běžných spotřebičů (tj. ne na ohřev vody a topení, tzv. sazba D02d). Za 1 kwh zaplatí v roce ,18 Kč (Zdroj: cena-kwh-elektriny-v-roce-2015-tady-ji-najdete!). následující údaje: a) Hmotnost tělesa, které lze s využitím energie v ceně 10 Kč zdvihnout do výšky 20 m. b) Objem vody, kterou lze s využitím energie v ceně 10 Kč ohřát z 20 C na 65 C. c) Dobu, po kterou lze s využitím energie v ceně 10 Kč svítit LED žárovkou s příkonem 16 W (její svítivost odpovídá klasické žárovce s příkonem 100 W). Kolik bychom při pevné ceně elektrické energie zaplatili za svícení takovou LED žárovkou za dobu její životnosti h? Ztráty při přeměnách energie ve výpočtech zanedbejte. cm 40 cm,5 a) b) c) d) FO57EF1 6: Stavíme akvárium Martin dostal od rodičů povolení chovat rybičky. Nyní potřebuje vyrobit akvárium s objemem vody 60 l tak, aby se vešlo do obývací stěny. Prostor v obývací stěně umožňuje výšku akvária 40 cm a šířku (vodorovný rozměr kolmý ke stěně) 37,5 cm (obr. 1). Hladina vody nesmí přesáhnout 80 % výšky akvária. Tloušťku skla zanedbejte. Obr. 1: Akvárium plošný obsah skleněných desek, z nichž má být akvárium sestaveno. tlakovou sílu vody působící na dno. hydrostatický tlak působící na dno. tlakovou sílu působící na přední stěnu. 7. FO57EF1 7: Člověk na trámu Homogenní dřevěný trám délky 6,00 m a hmotnosti 72,0 kg leží na vodorovné plošině vysoko nad zemí a přečnívá o 1,80 m přes okraj plošiny (obr. 2). 2
3 a) Rozhodněte, zda se může na visutý konec trámu postavit člověk o hmotnosti 60,0 kg. b) maximální hmotnost člověka, který se může na konec tohoto trámu postavit, aby se s trámem nepřevrátil. c) do jaké vzdálenosti od konce trámu se může člověk o hmotnosti 75,0 kg postavit, aby se trám nezvrátil. 1,8m 6m Obr. 2: Člověk na trámu d) maximální délku, o kterou může trám přečnívat přes okraj, aby se člověk o hmotnosti 60,0 kg stojící na jeho konci s trámem nepřevrátil. 8. FO57EF1 8: Atletická dráha Vnitřní dráha atletického oválu má délku 400 m a skládá se ze dvou rovných úseků délky 100 m a dvou kruhových oblouků (polokružnic) délky 100 m. Na oválu je 8 drah, šířka každé je 1,22 m. Značí se čísly 1 až 8 od vnitřní dráhy. Cílová čára je pro všechny dráhy v místě přechodu rovného úseku do oblouku. Obr. 3: Michael Johnson vyhrává olympijský závod v roce 2000 a) Historicky nejúspěšnějším běžcem na trati 400 m je Američan Michael Johnson, který v této disciplíně získal 4 tituly mistra světa a je i držitelem stávajícího světového rekordu. Vytvořil ho na mistrovství světa v roce 1999 v Seville časem 43,18 s. jeho průměrnou rychlost při tomto závodu. b) poloměr oblouku 1. dráhy a poloměr oblouku 8. dráhy. c) V běhu na 400 m jsou v 1. dráze cílová a startovní čára totožné, na zbývajících drahách jsou startovní čáry postupně posunuté tak, aby každý běžec měl ve své dráze do společné cílové čáry stejnou vzdálenost 400 m. posunutí startovní čáry na 2. dráze a startovní čáry na 8. dráze vzhledem k cílové čáře. d), jaká průměrná úhlová rychlost ve stupních za sekundu ( /s) by při probíhání oblouků odpovídala rekordu Michaela Johnsona z roku 1999, jestliže by běžel v 1. dráze a jestliže by běžel v 8. dráze. Všechny vzdálenosti uvádějte s přesností na centimetry. 9. FO57EF1 9: Skládání beden a) Sestrojte libovolný pravoúhlý trojúhelník znázorňující nakloněnou rovinu. Označte l délku nakloněné roviny, h její výšku a d zbývající odvěsnu. Na nakloněné rovině znázorněte těleso a z jeho těžiště sestrojte libovolnou tíhovou sílu F G. Tíhovou sílu rozložte na dvě síly, na sílu F 1 rovnoběžnou s nakloněnou rovinou a na sílu F 2 kolmou k nakloněné rovině. Změřte rozměry h, l, d nakloněné roviny (příp. dva změřte a třetí vypočtěte), zvolte měřítko pro síly a také je změřte (příp. také dvě změřte a třetí vypočtěte). Takto získané údaje zapište do tabulky. Hodnoty v posledních dvou sloupcích vypočtěte. 3
4 Celou konstrukci proveďte celkem 4krát s různým sklonem nakloněné roviny a s různou tíhou tělesa. h l h d F G F 1 F 2 l F d G l F G cm cm cm N N N N N Z výsledků v tabulce posuďte, jak lze z rozměrů nakloněné roviny a tíhové síly vypočítat síly F 1 a F 2. Síla F 1 působící ve směru nakloněné roviny uvádí těleso do pohybu, síla F 2 působící kolmo na nakloněnou rovinu tvoří tlakovou sílu a nemá pohybový účinek. Podle vzorce F t = ff 2 z ní lze určit třecí sílu působící na těleso na nakloněné rovině podobně jako ze vzorce F t = ff G určíme třecí sílu na vodorovné rovině. b) Na základě získaných poznatků z části a) vyřešte následující úlohu: Chlapci skládali z nákladního automobilu bedny o hmotnosti 20 kg. Ke korbě ve výšce 1,6 m nad zemí přistavili fošnu délky 4 m a po ní dopravovali bedny dolů. Součinitel smykového tření mezi bednou a fošnou je 0,35. Rozhodněte, zda museli bedny po fošně tlačit či zda sjížděly samy. Jak se změní výsledek, budou-li mít bedny jinou hmotnost? 10. FO57EF1 10: Prstencové zatmění Slunce Při zatmění Slunce se z hlediska pozemského pozorovatele dostává Měsíc před Slunce a částečně nebo úplně zakrývá sluneční disk. Kromě částečného nebo úplného zatmění však může nastat též tzv. prstencové zatmění, kdy se celý Měsíc z našeho pohledu promítne dovnitř slunečního disku a ze Slunce jsou vidět jen okrajové oblasti, které pozorujeme jako zářící prstenec (obr. 4). Jev je způsoben tím, že Měsíc neobíhá Zemi přesně po kružnici, nýbrž po elipse. Vzdálenost Země Měsíc se tak mění, a to mezi hodnotami km a km. Vzdálenost Země Slunce se Obr. 4: Prstencové zatmění Slunce také mění, a to mezi hodnotami km a km. a) Při jaké kombinaci vzdáleností má svítící prstenec největší obsah? b) Jaký bude z našeho pohledu průměr průmětu Měsíce na Slunci v tomto uspořádání? c) kolik procent obsahu plochy slunečního disku v takovém případě tvoří svítící prstenec. Průměr Slunce je km, průměr Měsíce km. 4
5 11. FO57EF1 11: Ohřev pomocí slunečního záření Za jasného počasí dopadá v našich zeměpisných šířkách na každý čtverečný metr plochy umístěné kolmo ke slunečním paprskům za každou sekundu energie přibližně 900 J. Střecha má rozměry 8 m a 18 m a je pokryta ocelovým plechem tloušťky 1,5 mm. a) Za jakou minimální dobu se může plechová střecha ohřát o 10 C? b) V zimě při teplotě vzduchu 0 C je střecha rovnoměrně pokryta vrstvou sněhu o teplotě 0 C. Za jakou minimální dobu může sníh roztát, jestliže z něho nakonec v okapové nádrži získáme 600 l vody? V obou případech předpokládejte, že sluneční paprsky dopadají kolmo na střechu i že veškerá dopadající sluneční energie se zcela pohltí a využije pro uvažovaný děj. Další potřebné údaje si vyhledejte v tabulkách. 12. FO57EF1 12: Hmotnost měděného drátu a) Unesli byste smotaný měděný drát délky 200 m o odporu 1,2 Ω? b) Jak se změní hmotnost měděného drátu, bude-li třikrát delší, ale jeho odpor bude stejný? Potřebné údaje si vyhledejte v tabulkách nebo na internetu. 13. FO57EF1 13: Tři skřítkové Tři skřítkové mají ve svých příbytcích elektrické vytápění podle obr. 5. Skřítek Šmudla má ve svém domečku odporovou spirálu o odporu 30 Ω, Bubla o odporu 40 Ω a Nudla o odporu 50 Ω. Okruh je připojen ke zdroji o napětí 21 V, odpor přívodních kabelů a vodičů mezi domy je zanedbatelný. a) elektrický příkon v každém příbytku. b) proud dodávaný zdrojem. c) Skřítek Bubla chtěl během své delší nepřítomnosti ušetřit za energii, proto ve svém domečku vedení přerušil. Jak se změnil příkon u dalších skřítků? d) Bubla při příští nepřítomnosti vedení nepřerušil, nýbrž svoji spirálu zkratoval (přemostil vodičem). Jakou Šmudla Bubla Nudla spirálu a v jakém zapojení mu- sí Šmudla ve svém příbytku použít, 21 V aby mu topení hřálo stejně jako před Obr. 5: Zapojení mezi domy skřítků zkratováním? e) Nudla měl rád teplo, proto si koupil další spirálu o odporu 30 Ω. Má ji ve svém domečku připojit paralelně nebo sériově ke své původní spirále, aby mu bylo tepleji? Vypočtěte příkon v jeho domečku po vhodném zapojení. 5
6 14. FO57EF1 14: Kaňon Gorges du Verdon Kaňon Gorges du Verdon ve Francii je nejdelší v Evropě. Začíná za městečkem Castellane a táhne se mezi skalními stěnami k přehradnímu jezeru Lac de Sainte-Croix. V některých místech je až 700 m hluboký. Významným místem na řece je výhledové místo Point Sublime pod obcí Rougon. Obr. 6: Pont de l Artuby a) Najděte v satelitní mapě zeměpisné souřadnice městečka Castellane a místa Point Sublime. b) Pomocí pravítka v aplikaci Google Earth nebo v internetové aplikaci Mapy Google ( zjistěte co možná nejpřesněji délku kaňonu (podél řeky Le Verdon) mezi oběma místy. Výsledek zaokrouhlete na celé kilometry. c) Na mnoha místech v okolí si můžete půjčit loďku, šlapadlo nebo raft a vydat se na cestu přímo po vodě. Vypočítejte, jak dlouho bude trvat cesta z Castellane do Point Sublime, když na klidné hladině jezera jezdíte na raftu obvykle rychlostí 1,0 m/s. Jak dlouho by trvala cesta raftem opačným směrem? Počítejte s rychlostí proudu 0,5 m/s. d) Jedním z mostů v oblasti je i Pont de l Artuby (obr. 6). Zjistěte jeho délku a určete, za jak dlouho přejede přes most nákladní automobil délky 12 m, jede-li rychlostí 50 km/h. 15. FO57EF1 15: Experimentální úloha: nakloněná rovina Po nakloněné rovině s tvrdým povrchem pouštějte ocelovou kuličku a změřte dobu jejího pohybu na různých drahách. Jako cíl zvolte dolní konec nakloněné roviny. Místo startu měňte postupně tak, že uražená dráha se bude zvětšovat, např. po 20 cm. Na každé dráze proveďte pět měření času t 1, t 2 t 3, t 4, t 5, vypočtěte jejich aritmetický průměr t a výsledky zapište do tabulky. s/m t 1 /s t 2 /s t 3 /s t 4 /s t 5 /s t/s 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 Na milimetrový papír nebo pomocí počítače sestrojte graf závislosti doby pohybu na uražené dráze. Vyneste naměřené hodnoty a proložte je křivkou. Zamyslete 6
7 se nad druhem měřeného pohybu a fyzikálně zdůvodněte tvar získané křivky. 16. FO57EF1 16: Experimentální úloha: hustota skla Vezměte skleněnou láhev např. od limonády a nalijte do ní trochu vody tak, aby plavala v kbelíku s vodou. Poté opatrně přilévejte další vodu do té doby, dokud nebude horní okraj láhve v úrovni hladiny vody ve kbelíku. Ze známé hustoty vody s použitím vah a odměrného válce určete hustotu skla, z něhož je láhev vyrobena. Zveme všechny zájemce o fyziku k řešení zajímavých úloh! Informujte se u svého učitele fyziky. Najdete nás také na Internetu a Facebooku: Leták pro kategorie E, F, G připravila komise pro výběr úloh při ÚKFO České republiky ve složení P. Kabrhel, M. Křížová, J. Pulíček, L. Richterek a R. Polma ve spolupráci s autory úloh J. Jírů a J. Thomasem.V ilustracích byly použity volně šiřitelné obrázky z Wikipedie, serverů Openclipart a Pixabay; ilustrace k úloze FO57EF1 12 byla převztata ze serveru Conrad.cz. Sázeno systémem XƎL A TEX
( x s = vt = 100 km/h 3 h = 75 km. 2 body
Řešení úloh školního kola 57. ročníku Fyzikální olympiády Kategorie E a F Autoři úloh: J. Jírů (1 13, 15 16), P. Klapková-Dymešová, I. Volf (14) 1. FO57EF1 1: Opožděný výjezd a) Zpoždění 5 min odpovídá
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Laboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
Povrch a objem těles
Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová
+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa
1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
FYZIKA DIDAKTICKÝ TEST
NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština
Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie
Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
Stereometrie pro učební obory
Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC
Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku
4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla
Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75
Pokyny k řešení didaktického testu - Dynamika
Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se
58. ročník FYZIKÁLNÍ OLYMPIÁDY
58. ročník FYZIKÁLNÍ OLYMPIÁDY ve školním roce 2016 2017 Úlohy pro kategorii G (Archimédiáda) http://fyzikalniolympiada.cz Hradec Králové 2016 Archimédiáda 2016 kategorie G Fyzikální olympiády Soutěž Fyzikální
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...
Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:
je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
S = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
Příklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
F - Elektrická práce, elektrický výkon, účinnost
F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven
17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?
1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
1 _ 2 _ 3 _ 2 4 _ 3 5 _ 4 7 _ 6 8 _
Obsah: 1 _ Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 7 _ Výpočet času... 6 8 _ Pracovní list: ČTENÍ Z
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
Příklady: 31. Elektromagnetická indukce
16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Úlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m
1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
58. ročník fyzikální olympiády kategorie G okresní kolo školní rok
58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů
Řešení úloh 2. kola 54. ročníku Fyzikální olympiády
Řešení úloh 2. kola 54. ročníku Fyzikální olympiády Úlohy okresního kola jsou určeny pro zájemce o fyziku, tudíž byly zvoleny tak, aby na jednu stranu mohl skoro každý soutěžící získat alespoň polovinu
Úlohy pro 52. ročník fyzikální olympiády, kategorie EF
FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry
Cvičení F2070 Elektřina a magnetismus
Cvičení F2070 Elektřina a magnetismus 20.3.2009 Elektrický potenciál, elektrická potenciální energie, ekvipotenciální plochy, potenciál bodového náboje, soustavy bodových nábojů, elektrického pole dipólu,
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
57. ročník FYZIKÁLNÍ OLYMPIÁDY
57. ročník FYZIKÁLNÍ OLYMPIÁDY ve školním roce 2015 2016 Úlohy pro kategorie E, F, G http://fyzikalniolympiada.cz HRADEC KRÁLOVÉ 2015 MA FY FYZIKÁLNÍ OLYMPIÁDA leták pro kategorie E, F 57. ročník soutěže
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
STRUKTURA A VLASTNOSTI KAPALIN
STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti
59. ročník FYZIKÁLNÍ OLYMPIÁDY
59. ročník FYZIKÁLNÍ OLYMPIÁDY ve školním roce 2017 2018 Úlohy pro kategorie E a F http://fyzikalniolympiada.cz Hradec Králové 2017 FYZIKÁLNÍ OLYMPIÁDA leták pro kategorie E a F 59. ročník soutěže ve školním
Derivace. 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0.
Derivace 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0. a) f(x) = 2x 2 x + 5, x 0 = 3 b) f(x) = x 2 4x, x 0 = 1 c) f(x) = sin x, x 0 = 0 d) f(x) = cos x, x 0 = π 6 e) f(x) = 1
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
MATEMATIKA jak naučit žáky požadovaným znalostem
17 30. DUBNA 2008 MATEMATIKA jak naučit žáky požadovaným znalostem Na pomoc učitelům základních škol V rámci systémového projektu Kvalita I, jednoho z projektů Evropského sociálního fondu, vydal Ústav
Jsou všechny žárovky stejné?
Jsou všechny žárovky stejné? VÍT BEDNÁŘ, VLADIMÍR VOCHOZKA, JIŘÍ TESAŘ, Fakulta pedagogická, Západočeská univerzita, Plzeň Pedagogická fakulta, Jihočeská univerzita, České Budějovice Abstrakt Článek se
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204
KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a. ročník čtyřletého studia Laboratorní práce č. : Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně
Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...
Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného
Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul
Látka a těleso 1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul Druh látky (skupenství): pevné l. kapalné
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
Kinematika pohyb rovnoměrný
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Kinematika rovnoměrný Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kinematika rovnoměrný Kinematika je jedna ze základních
Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test
Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test 1. Ve kterém městě je pohřben Tycho Brahe? [a] v Kodani [b] v Praze [c] v Gdaňsku [d] v Pise 2. Země je od Slunce nejdál [a] začátkem ledna.