OPAKOVÁNÍ 6. ROČNÍKU

Rozměr: px
Začít zobrazení ze stránky:

Download "OPAKOVÁNÍ 6. ROČNÍKU"

Transkript

1 OPAKOVÁNÍ 6. ROČNÍKU 1. Do třídy 6. A chodí 15 chlapců a 17 děvčat. Kolik korun vybral pokladník za lístky do kina, když 1 chlapec a 2 děvčata chyběli a každý z přítomných žáků platil 40 Kč? 2. Z jabloňového sadu bylo v pondělí odvezeno kg jablek, v úterý třikrát méně a ve středu 5krát více než v úterý. Kolik kilogramů jablek bylo odvezeno v jednotlivých dnech? 3. Vypočítej: (9,65 + 4,3) - 11,876 = 3,59 + (8,7-6,854) = (15,8-3,45) - 7,654 = (9,9 : 1,1-2,3 + 5,8 : 0,4). 2,3 = (5,6. 5,6. 5,6 : 5,6-4,3 + 2,7. 14). 0 = 4. Ve školní hale s půdorysem čtverce byla nově položena dlaždicová podlaha. Obdélníková dlaždice má rozměry 34 cm * 30 cm. Jaké nejmenší rozměry může hala mít, jestliže její stěna je delší než 15 m? Všechny dlaždice byly použity vcelku. Žádná nebyla rozdělena. 5. Maminka se v obchodě nemohla rozhodnout, kterou aviváž má koupit. Čtyřlitrové balení Silenu stálo 234,50 Kč., Permil byl v lahvi 2,8 l za 144 Kč. Která aviváž je v přepočtu na litr levnější? 6. Jakub na svých narozeninách rozděloval dětem rovným dílem bonbóny. Čokoládových měl 49 a ovocných 56. Kolik bylo na jeho oslavě dětí, když každé z nich dostalo stejný počet ovocných a čokoládových bonbónů? 7. Číslo 864 je společným násobkem 2, 4 a 9? Číslo 155 je společným násobkem čísel 5, 10 a 25? 8. Na zastávce se v 10:00 hod. potkaly autobusy číslo 2 a 9. Autobus č. 2 jezdí v intervalu 5 minut a autobus číslo 9 v intervalu 10 minut. Kolikrát se autobusy na zastávce potkají od 10:00 do 18:00 hod. místního času? 9. Na zhotovení žebříku potřebuje řemeslník nařezat co největší počet stejně dlouhých příček. Má je nařezat ze dvou prken, jedno má délku 220 cm a druhé má délku 308 cm. Jak budou příčky dlouhé a kolik jich bude? 10. Zakroužkuj prvočísla: 9, 68, 15, 39, 67, 27, 57, 59, 35, 11, 37, 29, 45, 33, 19, Chodník u obchodu má být vydlážděn žulovými kostičkami o délce hrany 7 cm. Na plánku najdeš rozměry chodníku v metrech. Kolik kostiček se na vydláždění spotřebuje? Výsledech zaokrouhli na celé stovky. 16,5 m 7,5 m 10 m 6 m

2 12. Dopočítej velikost úhlu α, když β= 135 a γ= 40 α β γ 13. Vypočítej: = 14. Podtrhni osově souměrná písmena: K A T P O L N X V J B I 15. Vypočítej velikosti zbývajících vnitřních úhlů v trojúhelníku: 74;50 ; 26; Doplň: Osa základny rovnoramenného trojúhelníku rozdělí trojúhelník na dva pravoúhlé trojúhelníky. Osa základny je zároveň protilehlého úhlu. Úhly při základně rovnoramenného trojúhelníka jsou. 17. Do fitness centra přišlo cvičit 16 lidí. Deset z nich si objednalo 300 ml iontového nápoje, ostatní rovnou půllitr. Kolik litrů nápoje jim recepční vydala z nového zásobníku, který má objem 12 litrů? Jaká část zbyla, vyjádři zlomkem. 18. O kolik se zvětší povrch kvádru s rozměry 6cm, 7 cm, 8 cm, když délku každé hrany zvětšíme o 4 cm?

3 PŘÍPRAVA Krychle má hranu o délce 12 decimetrů. Druhá krychle má hranu přesně o 20% delší. O kolik procent je více nebo méně vody v druhé krychli než v krychli první, je-li první krychle plná ze tří čtvrtin a druhá ze tří osmin? 2. Řešte rovnici: 3. Sestrojte trojúhelník ABC, znáte-li délku strany b = 6 cm, velikost těžnice na stranu a je t a = 7,5 cm a dále víte, že strana c je v tomto trojúhelníku přepona. 4. Tři vojáci mají společnou ostrahu v kasárnách. První strážný vykoná svůj okruh za 8 minut, druhý ujde svůj okruh za 10 minut a třetí za 12 minut. Kolikrát se během 6 hodinové služby potkají, začnou-li své okruhy najednou na stejném místě? 5. Zjednodušte a úpravou ověřte dosazením x = 2; y = -1 5x 2 (2x y) 2 + 7y 2 (3x 2y)(3x + 2y) (x + 3y) x 2 (3x 5y)(2x + 5y) 6. Mezi jednotlivými podlažími domu je 18 schodů. Kdyby byl každý schod o 2 cm nižší, bylo by zapotřebí 20 schodů. Určete výšku schodu a výšku domu, má-li dům 9 pater. 7. Z horské chaty Sněhurka vyjede v 11 hodin skupina běžkařů průměrnou rychlostí 10 km/h. Z hotelu Ledová hvězda vyjel v půl dvanácté proti běžkařům sněžný skútr průměrnou rychlostí 20 km/h. V kolik hodin a jak daleko od hotelu se potkají, je-li z chaty do hotelu 35 km? 8. Povrch celého válce je 350π cm 2 a povrch pláště téhož válce je 252 π cm 2. Vypočtěte průměr podstavy a objem válce. 9. Anna, Jana a Hana si rozdělily peníze, které dostaly od rodičů, takto: Anna dostala 200 Kč, Jana o 25% více než Anna a Hana dvakrát více než Anna. Jejich bráchové Jan, Josef a Jiří si rozdělili 306 Kč ve stejném poměru jako děvčata. Kolik dostal každý chlapec? 10. Je dán čtverec ABCD o straně a = 16 cm. Kolem vrcholů jsou sestrojeny kružnice s poloměrem 8 cm. Určete obvod a obsah útvaru, který vznikne uvnitř čtverce.

4 PŘÍPRAVA Emil naházel do automatu 33 mincí a vypadlo mu postupně 6 lahví kokakoly. Kolik měl jakých mincí, víte-li, že má mince dvou hodnot a hodnota druhé je o 150 % větší než hodnota první mince a jedna láhev kokakoly stojí 15 Kč? 2. Trať m zdolal vlak za s. Na zastávkách ztratil celkem 7 minut. Jaká je vzdálenost mezi Dolními a Horními Kotěhůlkami, kterou ujede vlak bez jakékoliv zastávky za 0,15 h, jestliže je jeho rychlost na všech úsecích mezi zastávkami stálá. 3. Pro 50 koní měli ve stáji krmení na 110 dní. Po 30 dnech bylo 10 koní prodáno a po dalších 30 dnech bylo prodáno dalších 5 koní. Na kolik dní zůstalo krmení pro zbylé koně? 4. Sestrojte trojúhelník ABC, je-li dáno: AC = 6 CM, α = 33, t c = 7,5 cm. 5. Řešte rovnici: 6. Do výrazu dosaďte a vypočítejte a = 2, b = 1 7. Poměr velikostí hran kvádru je 5 : 3 : 2. Jaký je objem kvádru, je-li plocha nejmenší stěny 54 cm 2? 8. Do dřevěného válce s průměrem 22 cm a výškou 30 cm byl vyvrtán otvor tvaru soustředného válce (se společnou osou) tak, že objem zbytku byl třetinou objemu původního válce. Jaký byl poloměr podstavy vyříznutého válce? 9. Je dána kružnice l se středem L a s poloměrem 5 cm. Dále je dána přímky p, které prochází bodem L. Sestrojte všechny kružnice s poloměrem 2,5 cm, které se dotýkají kružnice l a přímky p. 10. Určete obsah vyznačeného zbytku kruhu na obrázku, je-li strana vepsaného čtverce rovna 10 cm.

5 PŘÍPRAVA 3. 1) Dvě víly vily u blízké vily věnce z pampelišek. První by sama skončila s vitím všech věnců za 7 hodin, druhá je šikovnější a skončila by o 1 hodinu dříve. Kolik hodin a minut jim trvá vití, začne-li nejdříve první víla a až po hodině, kdy skončí vytí zavilého vlka, začne pracovat druhá víla? 2) Sestrojte trojúhelník KLM, jsou-li dány tyto rozměry stran a úseček: k = 8 cm, l = 6cm, v m = 4 cm. 3) Podstavou kolmého hranolu je pravoúhlý trojúhelník s odvěsnou 5 cm a přeponou 13 cm. Objem hranolu je 600 cm 3. Vypočtěte celkový povrch tělesa. 4) Ředitelství školy na konci roku oznámilo, že z 250 dětí, které navštěvují školu, získalo 20 % vyznamenání. Přitom vyznamenání dosáhlo 18 % chlapců a 23 % dívek. Určete, kolik chlapců a kolik dívek navštěvuje tuto školu. 5) Otec je třikrát starší než syn. Před šesti lety byl otec čtyřikrát starší syn. Kolik let je nyní otci a kolik synovi? 6) Těžnice t c a t b v trojúhelníku ABC mají délky t c = 15 cm, t b = 9 cm a jsou navzájem kolmé. Vypočtěte obvod trojúhelníku ABC. 7) Šéf firmy rozdělil částku Kč mezi tři brigádníky v poměru 3,5 : 2,5 : 4. Později prvnímu brigádníkovi 20 Kč vzal a přidal třetímu. V jakém poměru byly nakonec peníze rozděleny? 8) Jakub načerpá plnou nádrž benzinu do svého motocyklu a vyjede. Cestou do města spotřebuje objemu nádrže a zpět ze zbytku. Kolik procent paliva mu zůstane v nádrži? 9) Řešte rovnici: 10) Petr chtěl do alba vylepit fotografie. Kdyby nalepil na každou stránku dvě, zbylo by mu jedenáct fotografií. Kdyby nalepil na každou stránku tři fotografie, zůstaly by mu tři stránky volné. Kolik má Petr fotografií a kolik je v albu stránek?

6 PŘÍPRAVA U jednoho stolu ve školní jídelně sedí Alena, Marin a Honza. Dohromady snědli 36 knedlíků. Kolik knedlíků snědl každý z nich, víme-li, že Martin snědl dvakrát více než Alena a Honza ještě o polovinu víc než Martin? 2. Vybere-li si Jana na Vánoce 63% peněz ze své pokladničky, zůstane jí tam 593 Kč. Kolik peněz by měla v pokladničce, kdyby nic nevybrala a naopak by si ještě uložila z již ušetřených peněz? 3. Mléko se převáželo z kravína do mlékárny v konvích po 200 l a 50 l. Konví bylo celkem 181. Cena odváženého mléka byla celkem Kč, přičemž výkupní cena za jeden litr je 11 Kč. O kolik bylo více 50litrových konví než konví na 200 l? 4. Upravte pro a = 2, b = Řeš rovnici: 6. Adam o prázdninách natírá plot. Kdyby každý den místo 14 planěk oškrábal a natřel 16 planěk, byl by hotov o 1 den dříve. Kolik planěk má plot celkem? 7. V krabici tvaru kvádru jsou uloženy 3 druhy krychlí. V nejnižší vrstvě jsou krychle s hranou 8 cm, v prostřední vrstvě krychle s hranou 6 cm a v nejvyšší vrstvě krychle s hranou 4 cm. Mezi stěnami krabice a krychlemi není žádná mezera. Kolik krychlí je celkem v krabici a jaký je její nejmenší možný objem? 8. Dva veteráni, z nichž první měl 5 buchet a druhý 4 buchty, se rozdělili rovným dílem s hladovějícím druhem. Třetí veterán dal oběma kamarádům 9 zlaťáků, aby se o ně podělili. První si chtěl vzít 6 zlaťáků a druhému dát 3. Druhý veterán však nebyl spokojen, chtěl se rozdělit v poměru 5:4. Kdo měl pravdu? 9. Sestrojte trojúhelník ABC, je-li dáno: a = 8 cm, t b = 6 cm, v b = 5 cm. 10. Vypočítejte, kolik procent z původního čtverce tvoří obsahy vyšrafovaných obrazců (strana čtverce je 40 cm):

7 PŘÍPRAVA Kdy svírají ručičky hodin 30, 60, 120? 2. Urči obsah vyznačené plochy. Kolik celých čtverců s obvodem 12 cm do této plochy naskládáme? 3. Jak dlouhý je žebřík, který má 17 příček vzdálených od sebe pravidelně 23 cm a k nejbližší příčce od dolního konce je vzdálenost 31 cm a od poslední příčky k hornímu konci je vzdálenost 29 cm? 4. Na divadelní představení se prodal stejný počet vstupenek po 50 Kč, 80 Kč, 120 Kč, 150 Kč v celkové hodnotě Kč. Kolik vstupenek na toto představení se prodalo? 5. Voda dosahuje do čtyř pětin výšky zahradního bazénu. Aby byl bazén plný, musíme přilít šest plných džberů vody. Jeden džber má 15 litrů vody. Kolik litrů je v plném bazénu? 6. Honza si kupoval v automatu limonádu v ceně 15 Kč. V kapse měl dvoukoruny a pětikoruny. Celkem to bylo 8 mincí. Kolik bylo mincí každé hodnoty? 7. Veslař vesluje proti proudu k molu vzdáleného 155 metrů. Za 10 minut ujede vždy 50 metrů, potom pokaždé tři minuty odpočívá a voda ho vrátí o 15 metrů zpět. Za kolik minut se dostane k molu? 8. Vyřeš rovnici: 120 : (5x ) = 8 9. Václav sedí v kině, před ním je 9 řad, za ním je 8 řad, vlevo od něj je 15 sedadel a vpravo od něj je 19 sedadel. Kolik míst je v kině, má-li každá řada v horní polovině o 3 sedadla víc než řady ve spodní polovině kina? 10. Myslím si číslo. Zvětším-li jeho trojnásobek o třetinu, dostanu číslo 20. Jaké číslo jsem si myslel?

8 PŘÍPRAVA Vypočítej: 2. Jeřáb popojede v montážní hale za o 33,6 m. Jakou rychlostí se pohybuje, je-li jeho pohyb rovnoměrný, přímočarý? Výsledek udej v 3. Obvod obdélníku za 96 cm. Vypočítej jeho rozměry, jsou-li v poměru 5 : Řeš rovnici a proveď zkoušku: (3x + 5). (3x 5) = (3x 2) Řeš soustavu rovnic a proveď zkoušku: 6. Sestroj trojúhelník XYZ, je-li dáno y = 5 cm, velikosti úhlu ZXY je 105, velikost úhlu YZK je 30. Sestroj obraz tohoto trojúhelníku ve středové souměrnosti se středem v bodě 2, kde bod S je průsečík výšek trojúhelníku XYZ. Proveď zápis konstrukce. 7. Motocyklisté Libor a Honza vystartovali současně na trasu dlouhou 140 km. Libor jel první polovinu trasy rychlostí 80 km/h, druhou polovinu rychlostí 50 km/h. Honza jel celou trasu průměrnou rychlostí 60 km/h. Rozhodni, kdo dojede do cíle první, a vypočti jeho časový náskok. Jakou průměrnou rychlostí jel Libor? 8. Ve školní třídě tvoří chlapci 20% všech žáků, 15 dívek představuje 75% všech dívek. Kolik žáků je ve třídě? Kolik chlapců a kolik děvčat má třída? 9. Urči 10. Vypočítej obsah vyšrafovaného obrazce, který je částí čtverce se stranou a = 4 cm. S 1 a S 2 jsou středy jeho stran. 11. Jaká je velikost úhlu, který opíše malá hodinová ručička za 25 minut? 12. V trojúhelníku ABC je úhel α o 8 větší než úhel β. Úhel γ je dvakrát větší než úhel α. Urči velikosti úhlů v trojúhelníku. 13. Je dán výraz: Urči hodnotu výrazu pro a = 1.

9 14. Na plánku s měřítkem 1 : 250 je pozemek zakreslen jako čtverec o obsahu 64 cm 2. Kolik metrů pletiva je potřeba na jeho oplocení? 15. Výrobek byl zlevněn o 30 % a jeho cena činila 350 Kč. Pak byl zdražen o 20 %. Byl výrobek dražší nebo levnější než původně? O kolik korun? 16. Vypočítej velikost úhlu α. 17. V kavárně se specializují na různé druhy kávy nejen podle způsobu přípravy. Pro vytvoření nové chuti smíchal obchodník dva druhy kávy: 150g Jacomy po 250 Kč za kg a 250 g Aromacy po 360 Kč za kg. Kolik stojí 1 kg takovéto směsi? 18. Parcela má tvar pravoúhlého trojúhelníku s přeponou 68 m a delší odvěsnou 60 m. Je na ni postaven dům, jehož rozměry jsou na obrázku. Vypočítej, kolik procent rozlohy parcel je zastavěno? 19. Strojek má tři ozubená kola. Kolo A má 30 zubů. Kolo B 15 zubů a kolo C 20 zubů. Kolik otáček vykoná kolo A, když se kolo C otočí 9krát? 20. Na fotografii měří Dominik 1,2 cm a dům, u kterého stojí, měří 17,5 cm. Jak vysoký je dům ve skutečnosti, jestliže v době, kdy byla fotografie pořízena, byl Dominik vysoký 180 cm?

Příprava na pololetní písemnou práci 9. ročník

Příprava na pololetní písemnou práci 9. ročník Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09

Více

Příprava na pololetní písemnou práci 9. ročník

Příprava na pololetní písemnou práci 9. ročník Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,... Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka

Více

Příklady na 13. týden

Příklady na 13. týden Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) ) Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina

Více

Příklady pro 8. ročník

Příklady pro 8. ročník Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí

Více

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun. 1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz

Více

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1 Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů

Více

Ukázky z pracovních listů z matematiky pro ZŠ a nižší třídy gymnázií A: Množiny bodů

Ukázky z pracovních listů z matematiky pro ZŠ a nižší třídy gymnázií A: Množiny bodů Ukázky z pracovních listů z matematiky pro ZŠ a nižší třídy gymnázií A: Množiny bodů 1) Zapiš matematickými symboly: bod A leží na přímce p bod M leží v průsečíku přímek k, m 2) Je dána přímka p, bod K

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151

Více

MATEMATIKA 6. ročník II. pololetí

MATEMATIKA 6. ročník II. pololetí Úhel a jeho velikost: MATEMATIKA 6. ročník II. pololetí 26A Převeď na stupně a minuty: 126 = 251 = 87 = 180 = 26B Převeď na stupně a minuty: 92 = 300 = 146 = 248 = 27A Převeď na minuty: 3 0 = 1 0 25 =

Více

Očekávané ročníkové výstupy z matematiky 9.r.

Očekávané ročníkové výstupy z matematiky 9.r. Pomůcky: tabulky, kalkulačky 2. pololetí Soustavy lineárních rovnic 1A x y = 1 2x + 3y = 12 1B x y = -3 2x y = 0 2A x y = -2 2x 2y = 2 2B x y = -2 3x 3y = 6 3A y = 2x + 3 x = 0,5. (y 3) 3B x = 2y + 5 y

Více

Jak by mohl vypadat test z matematiky

Jak by mohl vypadat test z matematiky Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4

Více

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa 1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

MATEMATIKA 8. ročník II. pololetí

MATEMATIKA 8. ročník II. pololetí MATEMATIKA 8. ročník II. pololetí Úpravy algebraických výrazů: Sčítání a odčítání celistvých výrazů: 1.A a) 5a + ( 3a + 7 ) b) (-3a 4b ) - ( 12a + 6 ) c) ( -8a + 3 ) ( -15a 4 ) 1.B a) 4x + ( 4x + 7 ) b)

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída MATEMATIKA 9. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Test Zkušební přijímací zkoušky

Test Zkušební přijímací zkoušky Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)

Více

ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50

ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50 1. Rada pro televizní vysílání prováděla průzkum sledovanosti českých televizních stanic. Průzkumu se zúčastnilo 500 tzv. respondentů. Sledovanost stanic ČT1, ČT2, Nova a Prima je uvedena v diagramu. Kolik

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Přijímačky nanečisto - 2011

Přijímačky nanečisto - 2011 Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída MATEMATIKA 7. třída 1. Pavel musí vypracovat slohovou práci o rozsahu 4000 slov. Za půl hodiny napíše v průměru 100 slov. Kolik hodin Pavel potřebuje pro vytvoření slohové práce, pokud se chce po dopsání

Více

SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické soutěže žáků středních odborných škol, středních odborných učilišť a integrovaných středních škol

SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické soutěže žáků středních odborných škol, středních odborných učilišť a integrovaných středních škol Krajský úřad Pardubického kraje - odbor školství Jednota českých matematiků a fyziků, pobočka Pardubice Střední škola automobilní Ústí nad Orlicí 26.3.2019 SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické

Více

Slovní úlohy řešené soustavou rovnic

Slovní úlohy řešené soustavou rovnic Slovní úlohy řešené soustavou rovnic Jirka s maminkou byl na nákupu. Maminka koupila 2 kg broskví a 5 kg brambor a platila 173 Kč. Sousedka koupila 3 kg broskví a 4 kg brambor a platila 186 Kč. Kolik stál

Více

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE . LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6. MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N

Více

Základní geometrické tvary

Základní geometrické tvary Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.

Více

MATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m

MATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m MATEMATIKA 5. třída 1. Jaké číslo je o 12 stovek, 4 desítky a 9 jednotek menší než 2000? (A) 751 (B) 861 (C) 1249 (D) 1831 2. Které z následujících tvrzení o pravoúhlém trojúhelníku je správné? (A) Dvě

Více

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz? Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí

MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí I. Celá čísla,vypočítejte: -3 + 8-5 + 2-9 4 8 8 2-6 + 9-6 2 25 + 32 4 5-8 + 5-6 2-6 + 4-2 + 30 8 9 42 20-9 + 3 9 +25 4 7-3 + 0 9

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PAD9C0T0 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 6 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Základní informace k zadání zkoušky Časový limit

Více

Test č.2. Příjímací zkoušky z matematiky. Matematika s Jitkou - přijímačky na SŠ 1

Test č.2. Příjímací zkoušky z matematiky. Matematika s Jitkou - přijímačky na SŠ 1 Příjímací zkoušky z matematiky Matematika s Jitkou - přijímačky na SŠ 1 MATEMATIKA ILUSTRAČNÍ TEST 1 Základní informace k zadání zkoušky Didaktický test obsahuje 17 úloh. Časový limit pro řešení didaktického

Více

Příprava na závěrečnou písemnou práci

Příprava na závěrečnou písemnou práci Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721

Více

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.17 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Zlomky,

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Základní škola, Příbram II, Jiráskovy sady Příbram II

Základní škola, Příbram II, Jiráskovy sady Příbram II Výběr tematicky zaměřených matematických úloh pro posouzení dovedností žáků 5. ročníku při jejich zařazování do tříd se skupinami s rozšířenou výukou matematiky a informatiky 1) Pokračuj v řadách čísel:

Více

Kategorie: U 1 pro žáky 1. ročníků učebních oborů

Kategorie: U 1 pro žáky 1. ročníků učebních oborů Kategorie: U 1 pro žáky 1. ročníků učebních oborů 1) Kolika způsoby lze zaplatit částku 50 Kč, smíme-li použít pouze mince v hodnotě 1 Kč, 5 Kč a 10 Kč? ) Umocněte: 1 7 p3 q 3 r + 7pq r 3 = 3) Přeložíme-li

Více

V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí, žádná židle nezbyla prázdná. Kolik dětí sedělo u každého stolu?

V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí, žádná židle nezbyla prázdná. Kolik dětí sedělo u každého stolu? Úloha 1 Ke každé z jednoduchých úloh přiřaď, jaký výpočet určuje správný výsledek úlohy. 18 : 3 = 18 + 3 = 18. 3 = 18-3 = V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí,

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

6. Čtyřúhelníky, mnohoúhelníky, hranoly

6. Čtyřúhelníky, mnohoúhelníky, hranoly 6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Maminka má v peněžence 4 stokoruny,

Více

Matematická olympiáda ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9

Matematická olympiáda ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9 1 of 8 20. 1. 2014 12:10 Matematická olympiáda - 49. ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9 Z5 I 1 V příkladech nahraďte hvězdičky číslicemi tak, aby jeden výsledek byl o 15 764

Více

MATEMATIKA jak naučit žáky požadovaným znalostem

MATEMATIKA jak naučit žáky požadovaným znalostem 17 30. DUBNA 2008 MATEMATIKA jak naučit žáky požadovaným znalostem Na pomoc učitelům základních škol V rámci systémového projektu Kvalita I, jednoho z projektů Evropského sociálního fondu, vydal Ústav

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 7 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

. František měl v prasátku o 32 Kč více než Josef a Josef měl o 34 Kč více než Karel. Kolik měl v prasátku Karel, měli-li chlapci dohromady 280 Kč? Karel x Josef x + 34 František x + 66 x + x + 34 + x

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MATEMATIKA 8. ROČNÍK. CZ.1.07/1.1.16/ Sada pracovních listů. Mgr. Bronislava Trčková, Daniela Trčková, Luboš Trčka

MATEMATIKA 8. ROČNÍK. CZ.1.07/1.1.16/ Sada pracovních listů. Mgr. Bronislava Trčková, Daniela Trčková, Luboš Trčka l MATEMATIKA 8. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů je zaměřená na opakování, procvičení a upevnění učiva 8. ročníku racionální čísla, desetinná čísla, zlomky,

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA

ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA ČÍSLA. Vyznačte na číselné ose obrazy čísel / a 5/6.. a) Na číselné ose vyznačte interval - n; n - pro n = 5. b) Najděte nejmenší přirozené číslo n, pro

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva

Více

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček. MATEMATIKA 5 M5PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu

Více

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PDD19C0T04 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PID17C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! DIDAKTICKÝ TEST Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1. Základní informace k zadání zkoušky Časový limit pro řešení didaktického testu je

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček. MATEMATIKA 5 M5PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu

Více