III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo vzájemné srážky) 3. vzájemné srážky a srážky molekul s molekulami stěny nádoby jsou dokonale pružné doba trvání srážky velmi krátká ve srovnání se střed. dobou pohybu většina molekul v rovnoměr. přímoč. pohybu vnitřní energie U: vnitřní potenc. en. Up soustavy nulová (molekuly na sebe vzájemně nepůsobí silami) pro jednoatom. molek. U = Uk pro víceatom. molek. U = Uk posuv. + Uk otáč. + Uk kmit. b) většina plynů při norm. podm. t = 0 C, p = 10 5 Pa lze považovat za id. plyn 3. Rozdělení molekul podle rychlostí, střední kvadratická rychlost a) rozdělení molekul plynu podle rychlostí v daném okamžiku nemají všechny molekuly stejnou rychlost, protože vzájemnými srážkami neustále mění svůj směr a velikost rychlosti (výsledky se zpracovávají graficky) graf rozdělení molekul podle rychlosti při různých teplotách (Maxwellovo [meksvel]) f střední relativní četnost molekul pohybujících se rychlostí v v p nejpravděpodobnější rychlost (rychlost, se kterou se pohybuje nejvíce molekul, např. pro kyslík při 0 C je v p = 377 m s 1 ) největší počet molekul má rychlost v okolí v p, velmi rychlých a velmi pomalých molekul je velmi málo tvar křivky závisí na teplotě okamžitá rychlost molekuly je náhodná a stále se měnící veličina používáme statistické veličiny b) střední kvadratická rychlost vk (statistická vel.) rychlost, kterou by musely mít všechny molekuly plynu, aby jejich celková kinetická energie E k byla rovna skutečné E k všech molekul pokud plyn v nádobě obsahuje N molekul stejné hmotnosti m0, z nichž N 1 má rychlost v 1, N má rychlost v,... (N = N 1 + N + + N i ), pak úhrnná kinetická energie střední kvadratická rychlost E k = 1 (N 1v 1 + N 1 v 1 + + N i v i ) = 1 Nv k v k = N 1v 1 + N 1 v 1 + + N i v i N n [v k = N iv i ] N druhá mocnina střední kvadratické rychlosti v k je rovna součtu druhých mocnin rychlostí všech molekul dělených počtem molekul i=1
3.3 Teplota a tlak plynu z hlediska molekulové fyziky a) střední kinetická energie molekul je přímo úměrná termodynamické teplotě plynu T (z teor. úvah, vztah odvodil J. C. Maxwell) pro jednu molekulu E 0 = 3 kt = 1 v k hmotnost jedné molekuly k Boltzmannova konstanta k 1, 38 10 3 J K 1 v k střední kvadratická rychlost celková E 0 = 3 NkT N počet molekul b) střední kvadratická rychlost závisí na termodynamické teplotě podle vztahu E 0 = 1 m 0v k = 3 kt m 0v k = 3kT v k = 3kT v k = 3kT c) dva plyny o stejné termodynamické teplotě T molekuly mají stejnou střední kinetickou energii E 0 = 3 kt, ale střední kvadratické rychlosti jejich molekul jsou různé E 01 = E 0 1 1v k1 = 1 m 0v k 1 = v k m 0 molekuly s menší hmotností se pohybují rychleji, tj. 1 < v k1 > v k d) tlak plynu současné nárazy molekul plynu na stěnu o obsahu S se projevují jako tlaková síla F plynu na stěnu tlak plynu v daném okamžiku je p = F S tlak plynu kolísá s časem τ kolem tzv. střední hodnoty p s v důsledku měnícího se počtu molekul dopadajících na stěnu nádoby tzv. fluktuace plynu skutečný tlak lze při velkém počtu molekul ztotožnit se střední hodnotou tlaku p s (odchylky jsou velmi malé) lze odvodit vztah tzv. základní rovnice pro tlak plynu e) příklady některé hodnoty v MFChT, např. dusík: při 0 C v k = 493 m s 1, při 100 C v k = 577 m s 1, při 300 C v k = 715 m s 1 p = 1 3 N V v k N V hustota molekul N V = N [N V V ] = m 3 tlak plynu je přímo úměrný hustotě molekul N V, hmotnosti molekuly a druhé mocnině střední kvadratické rychlosti v k 1 Vypočítejte střední kinetickou energii jedné molekuly ideálního plynu při t = 0 C vyplývající z jejího neuspořádaného posuvného pohybu. [5,7 10 1 J] v k1 Vypočítejte střední kvadratickou rychlost molekul kyslíku při teplotách 100 C, 0 C a 100 C. [367 m s 1, 461 m s 1, 539 m s 1 ]
3 Určete poměr středních kvadratických rychlostí molekul vodíku a kyslíku při stejných teplotách. 4 Argon o hmotnosti 100 g má teplotu 0 C. Vypočítejte celkovou kinetickou energii všech jeho molekul při neuspořádaném posuvném pohybu. Které veličiny vyhledáte v MFChT? [9,1 kj] 5 Hustota molekul plynu uzavřeného v nádobě o objemu 10 l je 10 5 m 3. Určete počet molekul plynu v nádobě. [ 10 3 ] 6 Proveďte jednotkovou kontrolu základní rovnice pro tlak ideálního plynu. 7 Jaký je tlak kyslíku v uzavřené nádobě při teplotě 0 C, je-li jeho hustota 1,41 kg m 3? Střední kvadratická rychlost molekul kyslíku při teplotě 0 C je 461 m s 1. [0,1 MPa] 8 Ideální plyn uzavřený v nádobě o objemu 10 l má hmotnost 3,8 10 kg a tlak 0,49 MPa. Určete střední kvadratickou rychlost jeho molekul. [6 m s 1 ]
3.4 Stavová rovnice pro ideální plyn a) stavové veličiny, které charakterizují stav plynu v rovnovážném stavu: tlak ps (= p) objem V termodynamická teplota T počet molekul N, popř. látkové množství n nebo hmotnost plynu m b) stavová rovnice pro ideální plyn vyjadřuje vztah mezi stavovými veličinami stav plynu charakterizován p, T, V, N do základní rovnice pro tlak plynu p = 1 3 N V v k dosadíme stř. kv. rychlost v k = 3kT N m 3kT V 0 p = 1 3 pv = NkT tvar pro p, T, V, N stav plynu charakterizován p, T, V, n a počet molekul N V = N V dosadíme N do pv = NkT ze vztahu pro látkové množství n = N N A N = nn A pv = nn A kt zavedeme novou konstantu R = N A k 6,0 10 3 mol 1 1,38 10-3 J K -1 8,31 J K -1 mol 1 tzv. molární plynová konstanta R = 8, 31 J K -1 mol 1, pro všechny id. plyny stejná (někdy se značí R m ) pv = nrt tvar pro p, V, T, n stav plynu charakterizován T, p, V a hmotností m dosadíme do pv = nrt za látkové množství M m = m n n = m M m pv = m M m RT tvar pro p, V, T, m uvedené tvary stavové rovnice platí přesně jen pro ideální plyn (který lze také definovat jako plyn, pro který platí přesně výše uvedené tvary stavové rovnice) tvary stavové rovnice lze přibližně použít i pro skutečné plyny, a to tím přesněji, čím je nižší jejich tlak a čím je vyšší jejich teplota c) při stavové změně id. plynu stejné hmotnosti, tj. m = konst. (plyn v uzavřené nádobě přejde ze stavu 1 do stavu např. zahřejeme ho nebo ochlazujeme, stlačíme nebo se rozpíná) p 1 V 1 = m M m RT 1 p V = m M m RT p 1 V 1 T 1 = m M m R p 1 V 1 T 1 = p V T p V T = m M m R tj. stále platí pv T = konst. m M m R = konst. d) Avogadrův zákon mají-li plyny stejný V, p, T ze stav. rce pv = N 1 kt pv = N kt N 1 kt = N kt N 1 = N Plyny o stejném objemu, teplotě a tlaku mají stejný počet molekul e) stavová rovnice pro reálný plyn Van der Walsova (1910 získal za ni Nobelovu cenu) předp., že molekuly mají vlastní objem V m a působí na sebe přitažl. silami pro plyn o látk. množ. 1 mol (p + a V ) (V m b) = RT a, b konst. záv. na druhu plynu m platí přesněji pro reálné plyny, lze užít při vysokých tlacích
f) příklady 1 Kolik molekul je za normálních podmínek (p n = 10 5 Pa, T n = 73 K) obsaženo v ideálním plynu o objemu 1 cm 3? Jak dlouho by trvalo jeho vyčerpání, kdybychom každou sekundu ubrali 10 6 molekul? [,7 10 19 ; asi 9 10 5 roků] Určete látkové množství kyslíku O v tlakové nádobě o objemu 0 l, teploty 0 C a tlaku MPa. [16,4 mol] 3 V nádobě o objemu 3,0 l je dusík N o hmotnosti 56 g a teplotě 7 C (uvaž. ideální plyn). Jaký je jeho tlak? [1,7 10 6 Pa] 4 Objem plynu za normálních podmínek (při t = 0 C, p n = 1,013 5 10 5 Pa) se nazývá normální molární objem V nm. Dokažte, že normální molární objem je pro všechny plyny stejný a má hodnotu V nm =,4 l mol 1.
5 Ideální plyn uzavřený v nádobě o objemu,5 l má teplotu 13 C. Jaký je jeho tlak, je-li v plynu 10 4 molekul? [1,4 MPa] 6 Určete v litrech objem oxidu uhličitého o hmotnosti 1,0 g při teplotě 1 C a tlaku 1,0 kpa (uvaž. ideální plyn). [56 l] 7 Jak se změní objem ideálního plynu, jestliže se jeho termodynamická teplota zvětší dvakrát a jeho tlak vzroste o 5 %? [zvětší se 1,6krát] 8 Vzduch má počáteční teplotu 10 C. Jestliže jej stlačíme na třetinu původního objemu, vzroste jeho tlak čtyřnásobně. Jaká je jeho teplota po stlačení? [104 C]