KONCEPCE PRAVDĚPODOBNOSTNÍHO VÝPOČTU ŽIVOTNOSTI KOTLOVÝCH TĚLES. Jan Korouš, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4, e-mail: korous@bisafe.



Podobné dokumenty
5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

POSOUZENÍ PROVOZUSCHOPNOSTI OHYBU VT PAROVODU PROSTŘEDKY FFS

HODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ. Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, Praha 4,,

MOŽNOSTI OPRAVY VAD KOTLOVÝCH TĚLES VE SVARECH PLÁŠŤ - NÁTRUBEK

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

STOCHASTIC SIMULATION OF CREEP CRACK GROWTH IN TEST SPECIMENS

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN A ASME

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Aktuální trendy v oblasti modelování

ROZVOJ CREEPOVÉ DEFORMACE A POŠKOZENÍ KOMORY PŘEHŘÍVÁKU Z CrMoV OCELI

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Nelineární problémy a MKP

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Provozní pevnost a životnost dopravní techniky. - úvod do předmětu

PROBABILISTIC LIFETIME ASSESSMENT OF THE HIGH PRESSURE STEAM PIPING

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

2. Mezní stavy. MS porušení

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

Pevnost a životnost Jur III

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

ANALÝZA SPOLEHLIVOSTI STATICKY NEURČITÉHO OCELOVÉHO RÁMU PRAVDĚPODOBNOSTNÍ METODOU SBRA

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o

Aktualizace modelu vlastnosti materiálu. Stanovení vlastností materiálů

Pevnost a životnost Jur III

Navrhování konstrukcí z korozivzdorných ocelí

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

PODKRITICKÝ RŮST TRHLINY VE SVAROVÉM SPOJI MEZI KOMOROU A PAROVODEM KOTLE VÝKONU 230 T/H. Jan KOROUŠ, Ondrej BIELAK BiSAFE, s.r.o.

Zvýšení spolehlivosti závěsného oka servomotoru poklopových vrat plavební komory

10. Elasto-plastická lomová mechanika

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy

5 Analýza konstrukce a navrhování pomocí zkoušek

Chyby měření 210DPSM

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2007, ročník VII, řada stavební

Pevnostní analýza plastového držáku

NUMERICKÝ VÝPOČET SPOLEHLIVOSTI OCELOVÉ KONSTRUKCE

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Příloha D Navrhování pomocí zkoušek

VY_32_INOVACE_C 07 03

Části a mechanismy strojů 1 KKS/CMS1

Posouzení za požární situace

MECHANIKAPODZEMNÍCH KONSTRUKCÍ KLASIFIKACE VÝPOČETNÍCH METOD STABILITY A ZATÍŽENÍ OSTĚNÍ

SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek

Metoda akustické emise

BEZSTYKOVÁ KOLEJ NA MOSTECH

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD.

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2

Kritéria porušení laminy

Tepelná únava materiálu v chemickém a jaderném průmyslu

Porušení hornin. J. Pruška MH 7. přednáška 1

DEGRADACE MATERIÁLOVÝCH VLASTNOSTÍ OCELI A PŘÍČINY VZNIKU TRHLIN VYSOKOTLAKÝCH PAROVODŮ

METODOU SBRA Miloš Rieger 1, Karel Kubečka 2

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

23.až Dům techniky Ostrava ISBN

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti

POSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM

Téma: Dynamiky - Základní vztahy kmitání

Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí

Summer Workshop of Applied Mechanics. Vliv mechanického zatížení na vznik a vývoj osteoartrózy kyčelního kloubu

Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality

Projekty podpořené z programu TAČR

1.1.1 Hodnocení plechů s povlaky [13, 23]

Miroslav Stárek. Brno, 16. prosince ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SBRA

Inkrementální teorie plasticity - shrnutí

Principy navrhování stavebních konstrukcí

Identifikace materiálových parametrů Vybraných modelů plasticity

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

Příklady spolupráce pracovníků Západočeské univerzity v Plzni s průmyslovými podniky jaderného strojírenství a energetiky

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

7. Rozdělení pravděpodobnosti ve statistice

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

MODEL TVÁŘECÍHO PROCESU

U Úvod do modelování a simulace systémů

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Výpočtové a experimentální řešení provozní pevnosti a únavové životnosti karosérií trolejbusů a autobusů

Kombinatorická minimalizace

Principy navrhování stavebních konstrukcí

Transkript:

KONCEPCE PRAVDĚPODOBNOSTNÍHO VÝPOČTU ŽIVOTNOSTI KOTLOVÝCH TĚLES Jan Korouš, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4, e-mail: korous@bisafe.cz Příspěvek obsahuje metodický postup pro pravděpodobnostní výpočet životnosti. Základem výpočtu je matematický model popisující kinetiku poškozování kotlových těles. Za rozhodující faktory ovlivňující životnost jsou považovány: spektrum zatížení, základní mechanické vlastnosti, únavové vlastnosti, lomové vlastnosti materiálu a vliv korozního prostředí. Vlastní výpočet životnosti kotlového tělesa se skládá z etap: výpočet doby do iniciace trhliny, výpočet doby podkritického růstu trhliny a stanovení kritických rozměrů trhliny. Klíčová slova: Kotlové těleso, nízkocyklová únava, iniciace trhlin, růst trhlin, pravděpodobnost 1. Úvod V současnosti se v oblasti posuzování spolehlivosti zařízení ve větším měřítku začínají prosazovat postupy založené na aplikaci pravděpodobnostních modelů. Na základě analýzy rizik spojených s provozem zařízení lze efektivně naplánovat prohlídky a opravy zařízení. Rizikem rozumíme součin pravděpodobnosti vzniku poruchy a následku poruchy (ztrát). Pravděpodobnost vzniku poruchy se v nejjednodušším případě určuje kvalitativně - ohodnocením pravděpodobnosti: velmi vysoká, vysoká, střední, nízká a velmi nízká. Zařazení konstrukcí do jednotlivých skupin realizují experti na základě předchozích zkušeností. Hodnocení je však subjektivní a nezaručuje optimální postup, proto je snaha zavádět kvantitativní hodnocení vzniku poruch na základě výpočtu pravděpodobnosti. Objektivitu při stanovení pravděpodobnosti nepřípustného stavu lze zaručit výpočtem, který postihne pokud možno všechny dominantní účinky ovlivňující životnost zařízení. V předloženém příspěvku je shrnuta koncepce pravděpodobnostního výpočtu životnosti kotlových těles (bubnů), které patří ke klíčovým uzlům parních elektrárenských a teplárenských kotlů. Koncepce byla zpracována formou metodického postupu, uvedeného v [5]. 2. Principy výpočtu životnosti Základem výpočtu je matematický model popisující kinetiku poškozování kotlového tělesa a umožňující vzít v úvahu stochastický charakter vstupních parametrů. Za rozhodující faktory ovlivňující životnost jsou považovány: 1. Vlastnosti materiálu (mechanické, lomové). 2. Vliv korozního prostředí. 3. Provozní podmínky kotle. Vlastní postup výpočtu pak lze shrnout do následujících bodů: 1. Vytvoření databáze vlastností materiálů kotlových těles. 2. Sběr provozních dat a jejich vyhodnocení. 3. Analýza napjatosti kotlového tělesa. 4. Výpočet doby životnosti kotlového tělesa. Jednotlivé kroky řešení jsou podrobněji popsány v následujícím textu.

3. Vlastnosti materiálu Kotlová tělesa vysokotlakých kotlů byly vyráběny z výkovků a z tlustých plechů a jako materiály bývají používány C-Mn oceli (11 416, 11 474), Mn-V oceli (13 123) a Mn-Mo oceli (15 223). Do výpočtového modelu vstupuje řada materiálových charakteristik. V první řadě to jsou základní mechanické vlastnosti, jako je mez kluzu, mez pevnosti, modul pružnosti a závislost deformačních charakteristik konstrukčních materiálů. Tyto vlastnosti jsou závislé na teplotě a pro popis teplotní závislosti uvedených charakteristik lze použít např. polynom 4. stupně, který je použitelný v rámci interpolace. Aplikace metodického postupu však vyžaduje shromáždění potřebných podkladů, proto je zpravidla nutné provést experimentální zjištění mechanických vlastností na vzorcích odebraných přímo z kotlového tělesa. Při výpočtu doby do iniciace trhliny se použije únavová křivka, která charakterizuje odpor materiálu proti iniciaci trhlin. Odvozuje se z experimentálních výsledků na hladkých tyčích, korekcí na víceosý stav napjatosti a jakost povrchu. K popisu závislosti počtu cyklů na amplitudě napětí se doporučuje užití Langrova vztahu [5]. Pro řadu materiálů, kde nejsou k dispozici experimentální podklady, lze únavové křivky odhadnout z hodnoty meze pevnosti materiálu. Pokud dojde k iniciaci trhliny, ta dále roste účinkem cyklického zatížení konstrukce. Rychlost růstu únavových trhlin se obvykle vyjadřuje v závislosti na rozkmitu součinitele intenzity napětí a v literatuře lze najít řadu vztahů pro jeho výpočet, viz např. [1,3]. Kromě toho je rychlost růstu únavových trhlin závislá na řadě dalších parametrů jako prahová a mezní hodnota faktoru intenzity napětí. Při výpočtu je třeba zohlednit asymetrie cyklu na prahovou hodnotu součinitele intenzity napětí i na samotnou rychlost růstu trhliny. Posouzení integrity kotlového tělesa na bázi lineární elastické a elasto-plastické lomové mechaniky vyžaduje znalosti lomové houževnatosti materiálu v širokém rozmezí teplot a pro materiál kotlového tělesa je tedy třeba stanovit popis teplotní závislost lomové houževnatosti v křehké, tranzitní i tvárné oblasti lomového chování materiálu. 4. Vliv korozního prostředí Vliv kotelní vody na snížení únavové životnosti uhlíkových a nízkolegovaných ocelí je závislý na mnoha faktorech materiálových a provozních. Kromě obsahu kyslíku ve vodě má rozhodující účinek obsah a forma vyloučené síry v oceli, orientace mangansulfidů a jiné. Podstatný vliv má asymetrie zatěžování, průběh zatěžovacího cyklu, amplituda napětí, teplota a zejména rychlost deformace. Uvedené vlivy jsou částečně zakotveny ve výpočtové křivce rychlosti růstu únavových trhlin podle ASME XI (Pressure Vessel and Piping Code), avšak rostoucí rozsah korozně únavových experimentů vedl i ke kombinacím podmínek (prostředí, rychlost deformace, frekvence zatěžování, atd.), v nichž byla rychlost šíření únavových trhlin vyšší než uvádí tato norma. Zkušenosti z provozu jaderných elektráren ukazují, že současné normy navrhování a kontroly tlakových nádob z uhlíkových a nízkolegovaných ocelí mohou být v některých případech nekonzervativní. Pak v kombinaci s vysokým stavem napjatosti a se špičkami sekundárních napětí při nestacionárních provozních stavech a nevhodném chemickém režimu kotle vznikají trhliny v exponovaných částech kotlového tělesa v relativně krátké době provozu.při výpočtu únavového poškození v korozním prostředí se zavádí korekční faktor vlivu prostředí, který je definován jako podíl únavové životnosti v inertním prostředí a v korozním prostředí. Korekční faktor vlivu prostředí je silně závislý na rychlosti deformace, teplotě, koncentraci kyslíku ve vodě a obsahu síry v materiálu kotlového tělesa. 5. Provozní podmínky Moderní řídící systémy elektrárenských kotlů umožňují zaznamenat a uložit velké množství údajů, které se dají efektivně využít při výpočtech zbytkové životnosti zařízení.

Takto získané podklady totiž reprezentují skutečnou historii zatížení kotlového tělesa a umožňují přesněji stanovit stupeň jeho degradace. Provozní zatížení kotlového tělesa je dáno hodnotou vnitřního tlaku a teplotním polem (rozložením teploty po tloušťce stěny, po obvodě a po délce kotlového tělesa). Jelikož se tlak i teplota během provozu mění, je třeba vyhodnotit za sledované období provozní záznamy tak, aby se zjistily výpočetní hodnoty, které reprezentují skutečné zatížení kotlového tělesa. Z hlediska zpracování provozních záznamů se dají rozlišit dva základní režimy: 1. Kolísání provozních parametrů za provozu. 2. Změny provozních parametrů za nestacionárních provozních stavů. Za ustáleného provozu kotle dochází k poměrně malým výkyvům tlaku a teploty. Tyto změny se zpracovávají za delší provozní období vhodnou třídící metodou, obvykle metodou stékajícího deště [8], která rozloží zpracovávaný záznam na jednotlivé cykly charakterizované střední hodnotou a rozkmitem. Výsledkem jsou pak spektra tlaků a teplot, která udávají četnost, popř. relativní četnost, cyklů sledovaných provozních parametrů. Obr. 1 znázorňuje spektrum tlaků vyhodnocené za období provozu v délce 18 měsíců. Během odstávky, resp. najetí kotle, dochází k výrazným změnám provozních parametrů. Každý takový stav je třeba vyhodnotit individuálně a zjistit především rychlosti poklesu a nárůstu teploty a tlaku. Zjištěné hodnoty se statisticky zpracují a zjistí se spektrum rychlostí a je-li dostatek podkladů, vyhodnotí se korelace mezi rychlostmi změn tlaku a teploty. Obr. 1 Spektrum tlaku v kotlovém tělese vyhodnocené za 18 měsíců provozu (p m střední hodnota tlaku, p rozkmit tlaku) 6. Analýza napjatosti kotlového tělesa Na základě zpracování předchozích dat lze přistoupit k analýze napjatosti kotlového tělesa, jejímž cílem je stanovení složek tenzoru napětí a deformace v kotlovém tělese pro všechny zatěžující účinky. Stav napjatosti kotlového tělesa ovlivňuje: 1. Tlak v kotlovém tělese. 2. Teplotní gradienty. 3. Silové účinky potrubních systému připojených ke kotlovému tělesu.

Z topologického hlediska představuje kotlové těleso poměrně komplikované těleso, neboť k jeho plášti, zeslabeném mnoha řadami vývrtů, je přivařeno několik řad nátrubků. Jednotlivé vývrty představují koncentrátory napětí a v těchto místech je třeba stanovit napětí a deformace s ohledem na následný výpočet únavového poškození. Analytické řešení není v takovém případě zpravidla možné, a proto se musí použít numerické postupy, obvykle metoda konečných prvků (MKP). Při jejím použití je nutno vytvořit složitý trojrozměrný výpočetní model, který respektuje všechny okrajové podmínky a který umožňuje stanovit složky tenzoru napětí a deformace s dostatečnou přesností. Příklad sítě prvků pro výpočet pole napětí a deformace je znázorněn na obr. 2. Kromě napjatosti vyvolané vnitřním přetlakem v kotlovém tělese lze pomocí MKP stanovit nestacionární teplotní pole v kotlovém tělese při odstávkách, resp. najíždění kotle a následně pak teplotní napětí. V případě výpočtu teplotních polí bývá problematické přesné stanovení podmínek přestupu tepla na vnitřním povrchu kotlového tělesa. Vypočtené teploty je proto třeba porovnat se zaznamenanými hodnotami (pokud jsou k dispozici) a výpočetní model naladit tak, aby co nejlépe odpovídal skutečným poměrům v posuzovaném kotlovém tělese. Obr. 2 Síť prvků pro analýzu napjatosti kotlového tělesa Silové účinky potrubních systémů představují síly a momenty, které působí na koncové řezy nátrubků. Ty se stanoví pomocí vhodného programu pro analýzu potrubních systémů, přičemž výpočet musí respektovat zejména teplotní dilatace potrubí a jeho uložení. Kromě výpočtu pole napětí, deformace, popř. teploty, u těles bez defektů je pro potřeby výpočtů životnosti třeba stanovit též parametry lomové mechaniky, jmenovitě součinitel intenzity napětí a referenční napětí. Pro různé typy trhlin a zatížení lze nalézt řešení v literatuře např. [2, 3, 9], často se však setkáváme s případy, kdy není řešení známo. Potom je možno opět použít metodu konečných prvků a zmiňované parametry lomové mechaniky

stanovit. Součinitel intenzity napětí lze zjistit z lineární elastické analýzy kotlového tělesa s vymodelovanou trhlinou a pro stanovení referenčního napětí je třeba provést analýzu mezního stavu konstrukce plastickým kolapsem. Při výpočtech je však nutno dodržet jistá pravidla pro vytváření sítě prvků v okolí trhliny a aplikovat vhodné metody vyhodnocení pro stanovení parametrů lomové mechaniky z výsledků MKP, viz např. [4 6]. 7. Výpočet životnosti kotlového tělesa Vlastní výpočet životnosti kotlového tělesa se skládá z těchto etap: 1. Výpočet doby do iniciace trhliny. 2. Výpočet doby podkritického růstu trhliny. 3. Stanovení kritických rozměrů trhliny. Výpočet doby do iniciace trhliny procesy únavy je založen na všeobecně uznávaných postupech a vychází z elastické napjatosti v kotlovém tělese. Pokud dojde k lokálnímu překročení meze kluzu, kontroluje se splnění podmínek pro přizpůsobení konstrukce. Únavové křivky jsou k dispozici obvykle pro střídavé zatížení. Pro obecný cyklus zatížení je vliv asymetrie cyklu zohledněn při výpočtu pomocí ekvivalentní amplitudy napětí, která se stanoví z parametrů cyklu, tj. amplitudy napětí a středního napětí. Experimentálně zjištěné únavové křivky vykazují výrazný rozptyl a statistickými metodami lze pro zadanou úroveň amplitudy napětí stanovit střední hodnotu, dolní a horní mez pro počet cyklů do iniciace trhliny, jak je schematicky znázorněno na obr. 3. Obr. 3 Rozptyl doby do iniciace trhliny pro různé hodnoty amplitudy napětí Přesněji lze kvantifikovat rozptyl doby do iniciace trhliny pomocí distribuční funkce. Použít lze logaritmicko-normální rozdělení ve tvaru: ( σ ) + Ω, ln N = µ δ (1) N a N N kde µ N (σ a ) je střední hodnota logaritmu počtu cyklů do iniciace trhliny při zadané amplitudě napětí σ a, δ N je směrodatná odchylka logaritmu počtu cyklů do iniciace trhliny a Ω N je náhodná veličina s normalizovaným Gaussovým rozdělením pravděpodobnosti N(0;1). Kumulace poškození od cyklů na různých hladinách zatížení se provádí pomocí Palmgren-Minerovy hypotézy, kdy se celkové únavové poškození vyjádří sumací: = N i D f, (2) N i kde N i je počet cyklů na hladině σ ai a N i je počet cyklů do iniciace trhliny pro hladinu zatížení σ ai jako náhodná veličina popsaná vztahem (1).

K iniciaci trhliny dojde v okamžiku, kdy kumulované poškození dosáhne hodnotu 1. Pravděpodobnostní výpočet pak respektuje distribuční funkce jednotlivých veličin a výsledkem je distribuční funkce provozní doby do iniciace trhliny, což znamená, že získáme závislost pravděpodobnosti iniciace trhliny na čase. Příklad takové závislosti ukazuje obr. 4, kde je znázorněna pravděpodobnost iniciace trhliny ve dvou místech kotlového tělesa jako funkce času. Obr. 4 Pravděpodobnost iniciace trhliny v různých místech kotlového tělesa Výpočet podkritického růstu trhliny únavovými procesy je založen na principech lomové mechaniky a rychlost růstu trhliny je obvykle vyjádřena nejjednodušeji pomocí Parisovy rovnice ve tvaru: da dn n ( K ), = A (3) kde A, n jsou materiálové konstanty. Použít lze i jiné vztahy, které popisují růst trhliny komplexněji a postihují vliv dalších parametrů jako asymetrie cyklu apod. Stochastický charakter podkritického růstu trhliny lze popsat distribučními funkcemi materiálových konstant A, n. Distribuční funkce se zjistí statistickým zpracováním experimentálního měření únavového růstu trhlin. Exponent n obvykle vykazuje minimální rozptyl, proto se obvykle uvažuje pouze rozdělení pravděpodobnosti pro konstantu A ve tvaru: ln A = µ + δ Ω A, (4) A A kde µ A je střední hodnota logaritmu A, δ A je směrodatná odchylka logaritmu A a Ω A je náhodná veličina s normalizovaným Gaussovým rozdělením pravděpodobnosti N(0;1). Závislost hloubky trhliny na počtu cyklů, resp. čase, se určí numerickou integrací diferenciálních rovnic popisujících rychlost růstu trhliny. Při pravděpodobnostním způsobu výpočtu je potom výsledkem buď distribuční funkce hloubky trhliny pro daný počet cyklů, nebo distribuční funkce doby růstu trhliny do stanovené hloubky, jak je znázorněno na obr. 5.

Obr. 5 Stanovení distribuční funkce doby růstu trhliny do hloubky a f (křivka 1), resp. distribuční funkce hloubek trhliny v zadaném čase (křivka 2) Ke stanovení kritických rozměrů trhliny pro dané zatížení kotlového tělesa se použijí metody lineární nebo nelineární lomové mechaniky. Pro defekt nalezený v konstrukci se určí přípustné zatížení ve všech režimech provozu kotlového tělesa. Pravděpodobnostní výpočet pak určí pravděpodobnost porušení lomem v závislosti na době provozu. Matematická formulace pravděpodobnostních postupů vede k poměrně komplikovaným rovnicím, které lze analyticky řešit jen v některých případech. Zvláště pokud se ve výpočtech vyskytuje větší počet náhodných proměnných, je nutno použít vhodných numerických metod. Efektivní je aplikace simulačních procedur, které jsou založeny na principu metody Monte Carlo. Podrobnosti o této metodě a příklady použití lze nalézt např. v [7]. 8. Závěr Byla zpracována metodika pro výpočet životnosti a provozní spolehlivosti kotlových těles (bubnů). Vypracovaný postup postihuje všechny účinky, které dominantně ovlivňují životnost kotlového tělesa. Aplikovány byly pravděpodobnostní postupy, které objektivně kvantifikují pravděpodobnost dosažení mezního stavu. Z dosavadních zkušeností vyplývá, že pro efektivní použití naznačených výpočetních postupů je třeba doplnit databázi materiálových vlastností, především únavových křivek. S tím souvisí i nutnost dalšího zpřesnění vlivu korozního prostředí, které může výrazně akcelerovat iniciaci a růst trhlin v kotlovém tělese. Vlastní výpočet je pak bezpodmínečně nutné konfrontovat se skutečným stavem kotlových těles, zjištěným při periodických kontrolách. Tato porovnání mohou identifikovat rezervy ve výpočetním modelu a přispět tak k přesnějším výsledkům v následné predikci zbytkové životnosti kotlového tělesa. Poděkování Práce byla podporována projektem MPO č. FD K3 /041 Materiálové řešení bezpečnosti a spolehlivosti provozu kotlů v přerušovaném provozu.

Literatura [1] Anderson T.L.: Fracture Mechanics Fundamentals and Application. CRC Press, Inc., Boca Raton, Florida, 1995 [2] Assessment of the Integrity of Structures Containing Defects, R6 Revision 4, British Energy Generation Ltd. 2001 [3] Fitness-for-Service, API Recommended Practice 579, American Petroleum Institute, 2000 [4] Korouš J.: Výpočet součinitele intenzity napětí u trhlin na hranách a uvnitř vývrtů, Sborník konference Kotle 2004, Brno, 206 213 [5] Korouš J., Bielak O., Bystrianský J. Masák J.: Pravděpodobnostní postup hodnocení životnosti a provozní spolehlivosti bubnů parních kotlů, Zpráva BiSAFE Z 04 240, Praha 2004 [6] Korouš J., Masák J.: Stanovení součinitele intenzity napětí pro trhliny na hranách vývrtů válcové tlakové nádoby, Sborník semináře Výpočty konstrukcí metodou konečných prvků, Brno, 2003, 49 58 [7] Marek P., Brozzetti J. and Guštar M.: Probabilistic Assessment of Structures using Monte Carlo Simulation: Background, Exercises and Software. Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Praha, 2001 [8] Masák J.: Vyhodnocení provozních dat kotlů s ohledem na výpočet životnosti, Sborník konference Kotle 2004, Brno, 200 205 [9] Murakami Y.: Stress Intensity Factors Handbook, Pergamon Press, New York 1987 [10] Sundararajan C. et al.: Probabilistic Structural Mechanics Handbook: Theory and Industrial Applications, Chapman & Hall, New York, 1994 Kontaktní adresa autora Jméno Ing. Jan Korouš, Ph.D. Pracoviště BiSAFE, s.r.o. Adresa pro korespondenci: Malebná 2/1049, 149 00 Praha 4 E-mail: korous@bisafe.cz Fax: 267 913 334 Telefon: 267 913 337