I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Podobné dokumenty
Dynamika. Dynamis = řecké slovo síla

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Fyzika - Kvinta, 1. ročník

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

7. Gravitační pole a pohyb těles v něm

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

2. Dynamika hmotného bodu

V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony.

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony.

Příklad 5.3. v 1. u 1 u 2. v 2

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Dynamika hmotného bodu

FYZIKA. Newtonovy zákony. 7. ročník

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

MECHANIKA TUHÉHO TĚLESA

Dynamika hmotného bodu

Přípravný kurz z fyziky na DFJP UPa

4. Práce, výkon, energie a vrhy

Digitální učební materiál

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Test jednotky, veličiny, práce, energie, tuhé těleso

Newtonovy pohybové zákony

Dynamika pro učební obory

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

BIOMECHANIKA KINEMATIKA

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

Mechanika - síla. Zápisy do sešitu

III. Dynamika hmotného bodu

Fyzika_6_zápis_8.notebook June 08, 2015

Digitální učební materiál

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Práce, energie a další mechanické veličiny

1 Tuhé těleso a jeho pohyb

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Testovací příklady MEC2

Úvod. 1 Převody jednotek

Laboratorní práce č. 3: Měření součinitele smykového tření

Rychlost, zrychlení, tíhové zrychlení

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

Výukový materiál zpracován v rámci projektu EU peníze školám

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

Mechanika - kinematika

Obsah. 1 Newtonovy zákony Zákon zachování hybnosti Druhy sil 9. 4 Pohyb na rovné ploše 11

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

Pokyny k řešení didaktického testu - Dynamika

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

DYNAMIKA ROTAČNÍ POHYB

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -

BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_14_FY_B

DYNAMIKA HMOTNÉHO BODU

Počty testových úloh

Mechanika úvodní přednáška

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

3 Mechanická energie Kinetická energie Potenciální energie Zákon zachování mechanické energie... 9

TŘENÍ A PASIVNÍ ODPORY

Hydromechanické procesy Hydrostatika

Mechanika tuhého tělesa

Věra Keselicová. březen 2013

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

Digitální učební materiál

Transkript:

DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou tělesa deformovat síla je skalární/ vektorová fyzikální veličina pro jednoznačné určení síly nestačí její velikost, ale potřebujeme znát bod, ve kterém síla působí (působiště) a směr síly tělesa na sebe vzájemně působí přímým kontaktem nebo prostřednictvím polí (typy polí:...) 2. Skládání a rozklad sil Složit síly znamená určit výslednici dvou nebo vice sil, tak, aby měla stejný účinek jako všechny síly dohromady. Síly mohou mít působiště v jednom bodě, pak působiště umísťujeme do těžiště. Určete výslednici graficky její velikost její směr F 1 F 2 F 1 F 2 F 1 F 2 F 1 F 1 F 2 F 2 http://www.walter-fendt.de/ph14e/equilibrium.htm - 1 - DYNAMIKA

3. Newtonovy pohybové zákony a) První Newtonův pohybový zákon ZÁKON SETRVAČNOSTI: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, pokud se výslednice všech sil na něho působících rovná nule. F1 + F2 + F3 +... + F n = Fv = 0 v = konst. 1. Auto se pohybuje rychlostí 20 m.s -1. Působí na něj třecí síla 1 kn. Vypočítejte tažnou sílu motoru. TŘENÍ je základní podmínkou a zároveň překážkou pohybu (vysvětli) http://phet.colorado.edu/simulations/sims.php?sim=friction Třecí síla vzniká, když se jedno těleso pohybuje po druhém. Tato síla má vždy směr proti pohybu tělesa. Podstata třecích sil spočívá v nerovnostech stykových ploch obou těles. F t v F N F t (třecí síla) závisí na:... nezávisí na :... F = f t F N f součinitel smykového tření je materiálová konstanta, která vyjadřuje závislost na kvalitě obou povrchů, její hodnota je napsaná v MFChT (matematicko fyzikálních a chemických tabulkách), ale tato hodnota je pouze přibližná. Pokud chceme zjistit přesnou hodnotu, musíme ji změřit (úkol - vymyslete metodu) f 0... součinitel klidového tření když se těleso začíná pohybovat z klidu f... součinitel smykového tření když se těleso už pohybuje, obvyklá hodnota okolo 0,3 f 0 f... Proč? Vysvětli na příkladech z praxe F N = normálová síla - kolmá tlaková síla působící na těleso je rovna tíhové síle tělesa, souvisí s hmotností, ale také závisí na úhlu roviny, na které se těleso nachází - 2 - DYNAMIKA

α = 0 F t = mgf F N = F G = mg α 0 F 1 α α F N = F 2 mg F N = mg cosα F t = mgf cosα http://phet.colorado.edu/simulations/sims.php?sim=the_ramp 2. Ocelové těleso o hmotnosti 10 kg je rozpohybováno stálou rychlostí. Součinitel smykového tření je 0,35. Vypočítejte sílu, kterou potřebujeme vynaložit k pohybu tělesa, jestliže 0 a) α = 0 b) 0 α = 30 i) nahoru ii) dolů 3. Určete úhel mezi nakloněnou rovinou vodorovnou rovinou, jestliže se těleso pohybuje dolů konstantní rychlostí bez dalších sil. Součinitel smykového tření počítejte 0,4. 4. Určete sílu potřebnou k rovnoměrnému pohybu tělesa o hmotnosti 80 kg, jestliže součinitel smykového tření je f = 0,7. 5. K rovnoměrnému pohybu tělesa (rychlostí v = 10 m s -1 ) o hmotnosti 600 g po vodorovné podložce je potřebná síla 1,2 N. Vypočítejte součinitel smykového tření. L2/79-88 - 3 - DYNAMIKA

HYBNOST p je vektorová veličina, kterou potřebujeme k definování 2. Newtonova pohybového zákona. Newton hledal veličinu, která se mění během srážky (mech. energie to není částečně se přeměňuje na teplo) = p m v 1 [ p ] = kg m s hybnost tělesa je m - krát větší než jeho rychlost a má stejný směr jako rychlost Zákon zachování hybnosti izolované soustavy: Celková hybnost izolované soustavy zůstává konstantní. p = p př ed po = když sečteme hybnosti (VEKTORY) všech těles v izolované soustavě PŘED jejich srážkou, musí být výsledný vektor stejný jako součet vektorů hybností těchto těles PO srážce. Platí to i v trojrozměrném prostoru, ale my budeme řešit jen jednoduché příklady. 6. Střela o hmotnosti 2 g letící z pistole o hmotnosti 2 kg rychlostí 300 m.s -1. Vypočítejte zpětnou rychlost pistole a určete její směr. 7. a) Železniční vagón o hmotnosti 2 10 4 kg jedoucí rychlostí 0,5 m s -1 se srazí s druhým vagónem o poloviční hmotnosti pohybující se stejným směrem rychlostí 0,4 m s -1. Vagóny se při srážce spojí. Určete společnou rychlost jejich pohybu; b) stejná tělesa jako v bodě a) se pohybují proti sobě. Určete společnou rychlost jejich pohybu; c) jaká je rychlost po srážce, jestliže se tělesa budou pohybovat navzájem k sobě kolmo? Poznámka: srážka (ráz): pružný pouze ideální, mech. energie se nemění nepružný tělesa se po srážce spojí, mech. energie není konstantní http://www.walter-fendt.de/ph14e/collision.htm b) Druhý Newtonův pohybový zákon ZÁKON SÍLY: Výsledná síla působící na hmotný bod je rovna podílu změny hybnosti hmotného bodu a doby, po kterou působila. F p = t Poznámka 1: 1 F R... impuls síly, [ I ] t = I = kg m s - 4 - DYNAMIKA

Poznámka 2: ve většině případů zůstává hmotnost těles konstantní, pak platí m v m v F R = = = m a t t http://www.walter-fendt.de/ph14e/n2law.htm http://galileo.phys.virginia.edu/classes/109n/more_stuff/applets/collision/jarapplet.html 8. Raketové motory o hmotnosti 2.10 6 kg jsou urychlovány silou 3,3.10 7 N. Jaké je zrychlení raket? 9. Těleso o hmotnosti 300 g, pohybující se s stálým zrychlením, má počáteční moment 220 kg m s -1 a po 15 sekundách moment 400 kg.m.s -1. Jaké je zrychlení tělesa? 10. Klasická kulečníková koule má hmotnost 200 g. Během 7 ms na ni působila síla 50 N. Jakou rychlostí se po kontaktu tága bude koule pohybovat? 11. Na těleso o hmotnosti 2 kg, které je původně v klidu, působí stálá síla. Vypočítejte rychlost tělesa 5 s po začátku působení síly. c) Třetí Newtonův pohybový zákon ZÁKON AKCE A REAKCE: Jestliže těleso A působí silou na těleso B, pak těleso B působí na těleso A stejně velkou silou opačného směru. Síly současně vznikají a zanikají. Tyto síly nemůžeme sčítat, protože každá působí na jiné těleso. L2/89-104, X105-110, 111-138 - 5 - DYNAMIKA

TÍHA a TÍHOVÁ SÍLA Tíhová síla je síla, která přitahuje těleso k Zemi. Je výslednicí síly gravitační a odstředivé, směr přesně do středu Země má pouze na rovníku a na pólech. Její působiště je v těžišti tělesa. m m m Tíha je síla, kterou těleso v tíhovém poli země tlačí na podložku nebo táhne za závěs. Její působiště je v bodě, kde těleso táhne nebo tlačí. Zakresli tíhu a tíhovou sílu: - 6 - DYNAMIKA

8. Dynamika rovnoměrného pohybu po kružnici v = konst. ale v konst. F d... dostředivá síla a d...dostředivé zrychlení trajektorie není přímka, to znamená, že zde existuje výsledná síla (2. NPZ) tato výslednice je kolmá ke směru rychlosti, to mění jen směr a ne její velikost F d = ma d 2 v = ω r = r a d 2 http://phet.colorado.edu/simulations/sims.php?sim=ladybug_motion_2d 12. Pulsar o průměru 15 km se otáčí s frekvencí 8 Hz. Vypočítejte rychlost a dostředivé zrychlení hmotného bodu na rovníkovém průměru. 13. Vozidlo se pohybuje po kružnici o poloměru 0,6 m. Určete úhlovou rychlost a dostředivé zrychlení bodu na povrchu pneumatiky, když se vozidlo pohybuje rychlostí 20 m.s -1. L2/146-152, X153-160 9. Inerciální vztažná soustava V inerciální vztažné soustavě těleso zůstává v klidu nebo se pohybuje rovnoměrně přímočaře. Inerciální vztažná soustava se nepohybuje zrychleně. Když soustava není inerciální, vykazuje zrychlení, působí na tělesa zdánlivé síly = setrvačné síly. Na těleso poté působí síly, i když nejsou v přímém kontaktu s dalšími tělesy. Míč umístěný na podlaze ve vlaku. Diskutuj o jeho pohybu ve vlaku, když se vlak pohybuje s konstantní rychlostí, zrychleně nebo zpomaleně. - 7 - DYNAMIKA

Neinerciální vztažná soustava pohybuje se vzhledem ke vztažnému tělesu se zrychlením a. To může znamenat následující typy pohybů:... V této soustavě neplatí 1. a 3. NPZ (diskutujte o možnostech) a na tělesa působí setrvačná síla: F s = m a s = a a s 14. Diskutujte o pohybu míčku v těchto případech: a) ve vlaku při pohybu rovnoměrném přímočarém, zrychleném a zpomaleném b) ve výtahu při pohybu nahoru/dolu s konstantní rychlostí, zrychleně a zpomaleně L2/139-145 Odpovědi: 1. 1 kn 2. 35 N, 80 N, -20 N 3. 21,8 0 4. 560 N 5. 0,2 6. 0,3 m.s -1 7. 0,47 m.s -1 ; 0,2 m.s -1 ; 0,36 m.s -1 8. 6,5 m.s -2 9. 40 m.s -2 10. 1,75 m.s -1 11. 9 m.s -1 12. 377 km.s -1, 19.10 6 m.s -2 13. 67 rad.s -1, 1333 m.s -2-8 - DYNAMIKA