Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13



Podobné dokumenty
Fakulta informačních technologií. Teoretická informatika

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

Vlastnosti regulárních jazyků

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43

Vztah jazyků Chomskeho hierarchie a jazyků TS

Třída PTIME a třída NPTIME. NP-úplnost.

Naproti tomu gramatika je vlastně soupis pravidel, jak

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Teoretická informatika průběh výuky v semestru 1

Z. Sawa (VŠB-TUO) Teoretická informatika 11. prosince / 63

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Třída PTIME a třída NPTIME. NP-úplnost.

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie

Formální jazyky a automaty Petr Šimeček

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu.

Teoretická informatika průběh výuky v semestru 1

Turingovy stroje. Turingovy stroje 1 p.1/28

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

1 Linearní prostory nad komplexními čísly

Složitost Filip Hlásek

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory

Poznámky k přednášce NTIN090 Úvod do složitosti a vyčíslitelnosti. Petr Kučera

Formální jazyky a gramatiky Teorie programovacích jazyků

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

NP-úplnost problému SAT

AUTOMATY A GRAMATIKY

Syntaxí řízený překlad

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:

Doporučené příklady k Teorii množin, LS 2018/2019

Od Turingových strojů k P=NP

TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

Báze a dimenze vektorových prostorů

Poznámky k přednášce NTIN090 Úvod do složitosti a vyčíslitelnosti. Petr Kučera

Modely Herbrandovské interpretace

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

PŘÍJMENÍ a JMÉNO: Login studenta: DATUM:

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Teoretická informatika - Úkol č.1

Úvod do informatiky. Miroslav Kolařík

Teoretická informatika TIN

Lineární algebra Kapitola 1 - Základní matematické pojmy

Jednoznačné a nejednoznačné gramatiky

Logika. 6. Axiomatický systém výrokové logiky

Lineární algebra : Násobení matic a inverzní matice

Pravděpodobnost a statistika

Matice. a m1 a m2... a mn

Třídy složitosti P a NP, NP-úplnost

4 Pojem grafu, ve zkratce

5 Orientované grafy, Toky v sítích

Lineární algebra : Násobení matic a inverzní matice

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR

Základy matematické analýzy

Výpočetní složitost I

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Principy indukce a rekursivní algoritmy

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Bezkontextové gramatiky nad volnými grupami

[1] samoopravné kódy: terminologie, princip

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

Cvičení ke kursu Vyčíslitelnost

Matematická analýza pro informatiky I. Limita funkce

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická logika. Miroslav Kolařík

Rozhodnutelné a nerozhodnutelné problémy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 24. dubna / 49

GRAFY A GRAFOVÉ ALGORITMY

Množiny, relace, zobrazení

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

3. Podmíněná pravděpodobnost a Bayesův vzorec

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

FEI, VŠB-TUO, Teoretická informatika( /01) zadání referátů 1

Matematická indukce, sumy a produkty, matematická logika

ZÁKLADY TEORETICKÉ INFORMATIKY

PŘEDNÁŠKA 2 POSLOUPNOSTI

Vrcholová barevnost grafu

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda

Minimalizace KA - Úvod

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Vyčíslitelnost a složitost 1. Mgr. Viktor PAVLISKA

Přednáška 6, 6. listopadu 2013

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase

Automaty a gramatiky

Teoretická informatika TIN 2013/2014

Výroková a predikátová logika - II

Stromy, haldy, prioritní fronty

Transkript:

Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α 1,β 1 ),...,(α k,β k ), α i,β i Σ +, k 1. Řešením Postova systému je každá neprázdná posloupnost přirozených čísel I = i 1,i 2,...,i m, 1 i j k, m 1, taková, že: α i1 α i2...α im = β i1 β i2...β im (Pozor: m není omezené a indexy se mohou opakovat!) Postův problém (PCP) zní: Existuje pro daný Postův systém řešení? Příklad 10.1 Uvažujme Postův systéms 1 = {(b,bbb),(babbb,ba),(ba,a)} nad Σ = {a,b}. Tento systém má řešení I = 2,1,1,3 : babbb b b ba = ba bbb bbb a. Naopak Postův systéms 2 = {(ab,abb),(a,ba),(b,bb)} nad Σ = {a,b} nemá řešení, protože α i < β i pro i = 1,2,3. Meze rozhodnutelnosti 2 p.2/13

Nerozhodnutelnost PCP Věta 10.1 Postův korespondenční problém je nerozhodnutelný. Důkaz. (Idea) Dá se ukázat, že nerozhodnutelnost PCP plyne z nerozhodnutelnosti tzv. iniciálního PCP, u kterého požadujeme, aby řešení začínalo vždy jedničkou. Nerozhodnutelnost iniciálního PCP se dá ukázat redukcí z problému náležitosti pro TS: Konfiguraci výpočtu TS lze zakódovat do řetězce: použitý obsah pásky ohraničíme speciálními značkami (a jen ten si pamatujeme), řídicí stav vložíme na aktuální pozici hlavy na pásce. Posloupnost konfigurací TS při přijetí řetězce budeme reprezentovat jako konkatenaci řetězců, která vzniká řešením PCP. Jedna z uvažovaných konkatenací bude celou dobu (až na poslední fázi) delší: na začátku bude obsahovat počáteční konfiguraci a pak bude vždy o krok napřed. V posledním fázi výpočtu konkatenace zarovnáme (bude-li možné výpočet simulovaného TS ukončit přijetím). Výpočet TS budeme modelovat tak, že vždy jednu konkatenaci postupně prodloužíme o aktuální konfiguraci simulovaného TS a současně v druhé konkatenaci vygenerujeme novou konfiguraci TS. Důkaz pokračuje dále. Meze rozhodnutelnosti 2 p.3/13

Pokračování důkazu. Jednotlivé dvojice PCP budou modelovat následující kroky: Vložení počáteční konfigurace simulovaného TS do jedné z konkatenací např. pravostranné (#,#počáteční_konfigurace), # Γ používáme jako oddělovač konfigurací. Kopírování symbolů na pásce před a po aktuální pozici hlavy (z,z) pro každé z Γ {#,<,>}, kde <, > ohraničují použitou část pásky. Základní změna konfigurace: přepis δ(q 1,a) = (q 2,b): (q 1 a,q 2 b), posuv doprava δ(q 1,a) = (q 2,R): (q 1 a,aq 2 ), posuv doleva δ(q 1,b) = (q 2,L): (aq 1 b,q 2 ab) pro každé a Γ {<}. Navíc je zapotřebí ošetřit nájezd na >: čtení, rozšiřování použité části pásky. Pravidla pro zarovnání obou konkatenací při přijetí: na levé straně umožníme přidat symbol v okolí q F, aniž bychom ho přidali na pravé straně. Simulace výpočtu TS, který načte a, posune hlavu doprava, přepíše a na b a zastaví, na vstupu aa by pak vypadala takto: # < q 0 a a > # < a q 1 a > # < a q F b > # < q F b > # < q F > # q F > # q F # # # < q 0 a a > # < a q 1 a > # < a q F b > # < q F b > # < q F > # q F > # q F # # Obecná korektnost konstrukce se dá dokázat indukcí nad délkou výpočtu. Meze rozhodnutelnosti 2 p.4/13

Nerozhodnutelnost redukcí z PCP Redukce z PCP (resp. jeho doplňku) se velmi často používají k důkazům, že určitý problém není rozhodnutelný (resp. není ani částečně rozhodnutelný). Jako příklad uvedeme důkaz faktu, že problém prázdnosti jazyka dané kontextové gramatiky není ani částečně rozhodnutelný: Použijeme redukci z komplementu PCP. Redukce přiřadí seznamu S = (α 1,β 1 ),...,(α k,β k ), definujícímu instanci PCP, kontextovou gramatiku G takovou, že PCP založený na S nemá řešení právě tehdy, když L(G) =. Uvažme jazyky L α, L β nad Σ {#,1,...,k} (předp. Σ {#,1,...,k} = ): L α = {α i1...α im #i m...i 1 1 i j k,j = 1,...,m,m 1}, L β = {β i1...β im #i m...i 1 1 i j k,j = 1,...,m,m 1}. Je zřejmé, že L α, L β jsou kontextové (dokonce deterministické bezkontextové) a tudíž L α L β je také kontextový jazyk (věta 8.10) a můžeme tedy efektivně sestavit gramatiku G, která tento jazyk generuje (např. konstrukcí přes LOA). L α L β zřejmě obsahuje právě řetězce u#v, kde v odpovídá reverzi řešení dané instance PCP. Hledaná redukce tedy přiřadí dané instanci PCP gramatiku G. Meze rozhodnutelnosti 2 p.5/13

Souhrn některých vlastností jazyků Uvedeme nyní souhrn některých důležitých vlastností různých tříd jazyků; některé jsme dokázali, důkazy jiných lze nalézt v literatuře a (u otázek nerozhodnutelnosti se často užívá redukce z PCP) R = rozhodnutelný, N = nerozhodnutelný, A = vždy splněno: Reg DCF CF CS Rec RE w L(G)? R R R R R N L(G) prázdný? konečný? R R R N N N L(G) = Σ? R R N N N N L(G) = R, R L 3? R R N N N N L(G 1 ) = L(G 2 )? R R N N N N L(G 1 ) L(G 2 )? R N N N N N L(G 1 ) L 3? A R N N N N L(G 1 ) L(G 2 ) je stejného typu? A N N A A A L(G 1 ) L(G 2 ) je stejného typu? A N A A A A Komplement L(G) je stejného typu? A A N A A N L(G 1 ).L(G 2 ) je stejného typu? A N A A A A L(G) je stejného typu? A N A A A A Je G víceznačná? R N N N N N a Např. I. Černá, M. Křetínský, A. Kučera. Automaty a formální jazyky I. FI MU, 1999. Meze rozhodnutelnosti 2 p.6/13

Riceova věta Nerozhodnutelnost je pravidlo, ne výjimka. Meze rozhodnutelnosti 2 p.7/13

Riceova věta první část Věta 10.2 Každá netriviální vlastnost rekurzívně vyčíslitelných jazyků je nerozhodnutelná. Definice 10.2 Budiž dána abeceda Σ. Vlastnost rekurzívně vyčíslitelných množin je zobrazení P : { rekurzívně vyčíslitelné podmnožiny množiny Σ } {, }, kde, resp. reprezentují pravdu, resp. nepravdu. Příklad 10.2 Vlastnost prázdnosti můžeme reprezentovat jako zobrazení {, jestliže A =, P(A) =, jestliže A. Zdůrazněme, že nyní mluvíme o vlastnostech rekurzívně vyčíslitelných množin, nikoliv TS, které je přijímají následující vlastnosti tedy nejsou vlastnostmi r. v. množin: TS M má alespoň 2005 stavů. TS M zastaví na všech vstupech. Definice 10.3 Vlastnost rekurzívně vyčíslitelných množin je netriviální, pokud není vždy pravdivá ani vždy nepravdivá. Meze rozhodnutelnosti 2 p.8/13

Důkaz 1. části Riceovy věty Důkaz. Necht P je netriviální vlastnost r.v. množin. Předpokládejme beze ztráty obecnosti, že P( ) =, pro P( ) = můžeme postupovat analogicky. Jelikož P je netriviální vlastnost, existuje r.v. množina A taková, že P(A) =. Necht K je TS přijímající A. Redukujeme HP na { M P(L(M)) = }. Z M # w sestrojíme σ( M # w ) = M, kde M je 2-páskový TS, který na vstupu x: 1. Uloží x na 2. pásku. 2. Zapíše na 1. pásku w w je uložen v řízení M. 3. Odsimuluje na 1. pásce M M je rovněž uložen v řízení M. 4. Pokud M zastaví na w, odsimuluje K na x a přijme, pokud K přijme. Dostáváme: M zastaví na w L(M ) = A P(L(M )) = P(A) =, M cyklí na w L(M ) = P(L(M )) = P( ) =, A máme tedy skutečně redukci HP na { M P(L(M)) = }. Protože HP není rekurzivní, není rekurzivní ani P(L(M)) a tudíž není rozhodnutelné, zda L(M) splňuje vlastnost P. Meze rozhodnutelnosti 2 p.9/13

Riceova věta druhá část Definice 10.4 Vlastnost P r.v. množin nazveme monotónní, pokud pro každé dvě r.v. množiny A, B takové, že A B, P(A) P(B). Příklad 10.3 Mezi monotónní vlastnosti patří např.: A je nekonečné. A = Σ. Naopak mezi nemonotónní vlastnosti patří např.: A je konečné. A =. Věta 10.3 Každá netriviální nemonotónní vlastnost rekurzívně vyčíslitelných jazyků není ani částečně rozhodnutelná. Důkaz. Redukcí z co-hp viz např. D. Kozen. Automata and Computability. Meze rozhodnutelnosti 2 p.10/13

Alternativy k TS Meze rozhodnutelnosti 2 p.11/13

Některé alternativy k TS Mezi výpočetní mechanismy mající ekvivalentní výpočetní sílu jako TS patří např. automaty s (jednou) frontou: Uvažme stroj s konečným řízením, (neomezenou) FIFO frontou a přechody na nichž je možno načíst ze začátku fronty a zapsat na konec fronty symboly z frontové abecedy Γ. Pomocí rotace fronty je zřejmě možné simulovat pásku TS. Ekvivalentní výpočetní sílu jako TS mají také zásobníkové automaty se dvěma (a více) zásobníky: Intuitivně: obsah pásky simulovaného TS máme v jednom zásobníku; chceme-li ho změnit (obecně nejen na vrcholu), přesuneme část do druhého zásobníku, abychom se dostali na potřebné místo, provedeme patřičnou změnu a vrátíme zpět odloženou část zásobníku. Poznámka: rovněž víme, že pomocí dvou zásobníků můžeme implementovat frontu. Meze rozhodnutelnosti 2 p.12/13

Jiným výpočetním modelem s plnou Turingovskou silou jsou automaty s čítači (pro dva a více čítačů) a operacemi+1, 1 a test na 0: Zmíněné automaty mají konečné řízení a k čítačů, přičemž v každém kroku je možné tyto čítače nezávisle inkrementovat, dekrementovat a testovat na nulu (přechod je podmíněn tím, že jistý čítač obsahuje nulu). Pomocí čtyř čítačů je snadné simulovat dva zásobníky: U ZA postačí mít Γ = {0,1}: různé symboly můžeme kódovat určitým počtem 0 oddělených 1. Obsah zásobníku má pak charakter binárně zapsaného čísla. Vložení 0 odpovídá vynásobení 2, odebrání 0 vydělení 2. Podobně je tomu s vložením/odebráním 1. Binární zásobník můžeme simulovat dvěma čítači: při násobení/dělení 2 odečítáme 1 (resp. 2) z jednoho čítače a přičítáme 2 (resp. 1) k druhému. Postačí ovšem i čítače dva: Obsah čtyř čítačůi, j, k, l je možné zakódovat jako 2 i 3 j 5 k 7 l. Přičtení/odečtení je pak možné realizovat násobením/dělením 2, 3, 5, či 7. Mezi další Turingovsky úplné výpočetní mechanismy pak patří např. λ-kalkul či parciálně-rekurzívní funkce (viz další přednáška). Meze rozhodnutelnosti 2 p.13/13