Laboratorní práce č. 1: Měření délky

Podobné dokumenty
Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu

Bezpečnost práce, měření fyzikálních veličin, chyby měření

RNDr. Božena Rytířová. Základy měření (laboratorní práce)

Měření délky, určení objemu tělesa a jeho hustoty

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 4: Určení hustoty látek

Laboratorní práce č. 4: Určení elektrického odporu

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

1. Změřte rozměry a hmotnosti jednotlivých českých mincí a ze zjištěných hodnot určete hustotu materiálů, z nichž jsou zhotoveny. 2.

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová

Laboratorní práce č. 3: Měření elektrického proudu a napětí

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

OVMT Měření vnějších rozměrů

Laboratorní práce č. 2: Ověření činnosti transformátoru

Posouzení přesnosti měření

Úvod do teorie měření. Eva Hejnová

Chyby měřidel a metody měření vybraných fyzikálních veličin

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla

Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Měření délky Číslo DUM: III/2/FY/2/1/2 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Teorie: Hustota tělesa

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin

Sada 1 Klempířská technologie

Počítání s neúplnými čísly 1

Zvyšování kvality výuky technických oborů

Měření délky tělesa. VY_52_Inovace_154. Vzdělávací oblast: Člověk a příroda. Vzdělávací obor: Fyzika. Ročník: 6

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Praktikum I Mechanika a molekulová fyzika

Měřicí přístroje a měřicí metody

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Laboratorní práce č. 4: Srovnání osvětlení a svítivosti žárovky a úsporné zářivky

METROLOGIE pracovní sešit

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

Laboratorní práce č. 3: Měření vlnové délky světla

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 1 _ 0 7. o d c h y l k a

Škola VOŠ a SPŠE Plzeň, IČO , REDIZO

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Obr. 1. Tvary drážek. Drážky mohou být rovné nebo šroubovité (pravotočivé nebo levotočivé), a to:

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny

PRAKTIKUM II Elektřina a magnetismus

Korekční křivka napěťového transformátoru

Měření zrychlení volného pádu

Náhodné chyby přímých měření

Laboratorní práce (č.10)

Fyzikální praktikum FJFI ČVUT v Praze

Určení plochy listu. > 3. KROK Plánování. Cíl aktivity 20 MINUT

Buffonova jehla. Jiří Zelenka. Gymnázium Zikmunda Wintra Rakovník

STAVEBNÍ LÁTKY CVIČEBNICE K PŘEDMĚTU AI01

Střední průmyslová škola elektrotechnická a informačních technologií Brno

MĚŘENÍ FYZIKÁLNÍCH VELIČIN. m = 15 kg. Porovnávání a měření. Soustava SI (zkratka z francouzského Le Système International d'unités)

OVMT Kontrola měřidel Kontrola mikrometru

Náhodné (statistické) chyby přímých měření

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

RUČNÍ ZPRACOVÁNÍ KOVŮ I UOV Petr Svoboda

MĚŘENÍ A ORÝSOVÁNÍ. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu

Určení hustoty látky. (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

5. Měřidla. Měření délek. Měřidla přímá

PRAKTIKUM II Elektřina a magnetismus

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

HUSTOTA PEVNÝCH LÁTEK

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Zadání. Pracovní úkol. Pomůcky

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

PRACOVNÍ INSTRUKCE č. 03 Revize : 0

2.2.1 Posuvná měřidla

Zpracování experimentu I

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

11. Měření závitů. Profil metrického závitu je určen jmenovitými rozměry:

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Název: Studium kmitů na pružině

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství

Chyby měření 210DPSM

Praktikum I Mechanika a molekulová fyzika

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

2 Přímé a nepřímé měření odporu

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: Ročník: 7., 8.

4. Statika základní pojmy a základy rovnováhy sil

Stanovení hustoty pevných a kapalných látek

VY_52_INOVACE_J 05 07

6 Měření transformátoru naprázdno

Měření zrychlení na nakloněné rovině

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

Význam měření druhy měřidel a způsoby měření při frézování

Transkript:

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Gymnázium G Hranice Laboratorní práce č. 1: Měření délky Měření posuvným měřidlem Popis posuvného měřidla Základní částí měřidla jsou dvě ramena (1), kolmá ke stupnici (4), mezi která vkládáme měřené těleso. Na posuvném ramenu je umístěna druhá stupnice, tzv. nonius (6). Nonius je na našem posuvném měřítku rozdělen na padesát dílků. To znamená, že nejmenší dílek stupnice je mm, tj. 0,02 mm. Nultá ryska nonia určuje celý počet milimetrů, zlomky milimetrů určujeme podle čísla rysky, která splývá s některou ryskou hlavní stupnice. Posuvným měřidlem můžeme měřit nejen vnější rozměry těles, ale také rozměry vnitřní: pomocí hrotů (2) měříme šířku dutin a pomocí tyčinky (3) měříme hloubku dutin. Horní stupnice (5) a nonius (7) slouží k měření délek v palcích. Odečítání na stupnici posuvného měřidla Před nulou nonia je na hlavní stupnici ryska označující 24 mm. Ryska nonia označená trojkou splývá s ryskou hlavní stupnice. Naměřená délka je tedy 24,30 mm.

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Gymnázium G Hranice Laboratorní práce č. 1: Měření délky Měření mikrometrickým měřidlem Popis mikrometrického měřidla Mikrometrickým měřidlem můžeme měřit poměrně přesně tělesa malých rozměrů. V laboratorní práci použijeme mikrometr s rozsahem do 25 mm. Základní částí měřidla je mikrometrický šroub se stoupáním 0,5 mm. To znamená, že při jedné otočce šroubu se čelisti rozestoupí o 0,5 mm. Na pevné čelisti měřidla je stupnice, na které odečítáme počet celých otoček šroubu. Nad ryskou jsou vyznačeny celé milimetry, pod ryskou poloviny milimetru. Se šroubem je pevně spojen bubínek se stupnicí rozdělenou na 50 dílků. To znamená, že jeden dílek na vodorovné stupnici (0,5mm ) je rozdělen na padesátiny. Nejmenší dílek stupnice je tedy 0,01 mm. Pro zajištění stejnoměrného přitlačení čelistí na měřené těleso je bubínek spojen se šroubem opatřeným momentovou spojkou ( řehtačkou ), která se začne protáčet v okamžiku, kdy dosáhneme daný kroutivý moment. Je nutné v každém případě dotahovat mikrometr tímto šroubem. Odečítání na stupnici mikrometrického měřidla Hrana bubínku je za ryskou označující 3 mm, na stupnici bubínku s vodorovnou ryskou splývá čtvrtý dílek. Naměřená hodnota je 3,04 mm

Laboratorní práce č. 1: Měření délky Chyby měření Při každém měření fyzikálních veličin se dopouštíme chyb, příčinou jsou nepřesnost přístrojů, ovlivnění měření fyzikálními podmínkami (změny teploty, tlaku, vlhkosti vzduchu ), nedokonalost našich smyslů. Chybou měření rozumíme rozdíl mezi skutečnou hodnotou veličiny a hodnotou naměřenou. Skutečnou hodnotu ovšem neznáme. Podle charakteru chyby dělíme na soustavné, náhodné a hrubé. Soustavné (systematické) chyby se pravidelně vyskytují při daném způsobu měření. Jejich příčinou je použitá metoda (ne zcela vhodná), kvalita měřících přístrojů a kvalitou měření (osobní chyba). Soustavnou chybu nelze odstranit výpočtem. V rámci laboratorních měření by měly být použity vhodné metody i dostatečně kvalitní měřicí přístroje, aby k soustavným chybám nedošlo. Náhodné chyby jsou dány nepravidelnými změnami podmínek vnějších (teplota, tlak vlhkost vzduchu, elektromagnetické rušení, vibrace a otřesy) i vnitřních (kolísání měřené veličiny). Tyto vlivy jsou malé, ale četné a výsledek měření snižují a zvyšují s přibližně stejnou pravděpodobností. Náhodně vzniklé chyby korigujeme zpracováním výsledků opakovaného měření. Hrubé chyby jsou údaje, které se od ostatních naměřených hodnot výrazně liší. Chyba zřejmě vznikla nepozorností pozorovatele nebo nějakým netypickým ovlivněním měření. Tyto hodnoty ze souboru naměřených hodnot vyřadíme.

Laboratorní práce č. 1: Měření délky Zpracování výsledků měření Fyzikální veličinu opakovaně n krát změříme, naměřené hodnoty označíme a 1, a 2, a 3.. a n. Nejpravděpodobnější hodnota veličiny je aritmetický průměr z naměřených hodnot: Pro každou naměřenou hodnotu určíme její odchylku od aritmetického průměru Δa i. Δa 1 =, Δa 2 =,.. Δa n = Hodnoty odchylek jsou kladné i záporné, součet všech odchylek je roven nule. To znamená, že součet všech kladných odchylek je stejně velký jako součet všech záporných odchylek. Průměrná odchylka Δa je aritmetickým průměrem absolutních hodnot všech odchylek. Průměrnou odchylku zaokrouhlíme na jednu platnou číslici, průměrnou hodnotu veličiny zaokrouhlíme v řádu odchylky. Výsledek měření zapíšeme ve tvaru a = Pro posouzení přesnosti měření je významná relativní odchylka absolutní průměrné odchylky a aritmetického průměru veličiny: Určíme ji jako podíl.100% Za přesné považujeme měření s relativní odchylkou menší než 1%.

Postup pro početní zpracování souboru naměřených hodnot: 1. Naměřené hodnoty a 1 zapíšeme do tabulky. 2. Vypočítáme aritmetický průměr naměřených hodnot. Aritmetický průměr uvádíme s přesností o jedno desetinné místo větší než naměřené hodnoty. 3. Určíme a zapíšeme odchylky jednotlivých měření od aritmetického průměru Δa i. 4. Vypočítáme průměrnou odchylku Δa jako aritmetický průměr absolutních hodnot všech odchylek. 5. Průměrnou odchylku zaokrouhlíme na jednu platnou číslici. 6. Aritmetický průměr naměřených hodnot zaokrouhlíme na stejný počet desetinných míst jako má průměrná odchylka. 7. Určíme relativní odchylku měření a vyjádříme ji v procentech. 8. Výsledek měření zapíšeme ve tvaru: a = 100% Určení odchylky veličiny stanovené výpočtem z veličin naměřených Je-li výsledná veličina součtem nebo rozdílem veličin naměřených, je její absolutní odchylkou součet absolutních odchylek naměřených veličin. c = a + b c = a - b Je-li výsledná veličina součinem, podílem, mocninou nebo odmocninou veličin naměřených, potom určíme nejprve odchylku relativní z relativních odchylek naměřených veličin. c = a. b c = a : b c = a 2 c = Pro absolutní odchylku výsledné veličiny platí: Pro zápis a zaokrouhlování platí pravidla uvedená v předcházející kapitole.

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého studia a 1. ročník čtyřletého studia Gymnázium G Hranice Test k laboratorní práci č. 1: Měření délky Varianta A 1. Na kterém z obrázků je mikrometrem naměřena délka 13,03 mm? A) na prvním B) na druhém C) na třetím D) na čtvrtém 2. S jakou přesností měří tento mikrometr? A) 0,05 mm B) 0,01 mm C) 0,005 mm D) 0,001 mm 3. Jaká hodnota je naměřena na posuvném měřítku? 4. Urči relativní odchylku objemu válce: V = ( 66,5 ± 0,9) dm 3 A) 59,5 % B) 1,35 % C) 5,95 % D) 0,42 %

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého studia a 1. ročník čtyřletého studia Gymnázium G Hranice Test k laboratorní práci č. 1: Měření délky Varianta B 1. Na kterém z obrázků je mikrometrem naměřena délka 14,1 mm? A) na prvním B) na druhém C) na třetím D) na čtvrtém 2. Jaká hodnota je naměřena na mikrometrickém měřítku? A) 20,29 mm B) 20,59 mm C) 21,29 mm D) jiná hodnota 3. S jakou přesností měří toto posuvné měřidlo? A) 0,02 mm B) 0,05 mm C) 0,01 mm D) 0,005 mm 4. Urči relativní odchylku průměru válce: d = ( 25,3 ± 0,8) mm A) 31,6 % B) 3,16 % C) 20,2 % D) 0,6 %

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého studia a 1. ročník čtyřletého studia Gymnázium G Hranice Test k laboratorní práci č. 1: Měření délky Varianta C 1. Na kterém z obrázků je mikrometrem naměřena délka 10,14 mm? A) na prvním B) na druhém C) na třetím D) na čtvrtém 2. S jakou přesností měří tento mikrometr? A) 0,05 mm B) 0,01 mm C) 0,005 mm D) 0,001 mm 3. Jaká hodnota je naměřena na posuvném měřítku? 4. Urči relativní odchylku výšky válce: v = ( 25 ± 1) mm A) 0,25 % B) 2,5 % C) 25 % D) 1,51 %

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého studia a 1. ročník čtyřletého studia Gymnázium G Hranice Test k laboratorní práci č. 1: Měření délky Varianta D 1. Na kterém z obrázků je mikrometrem naměřena délka 12,68 mm? A) na prvním B) na druhém C) na třetím D) na čtvrtém 2. Jaká hodnota je naměřena na posuvném měřítku? 3. S jakou přesností měří toto měřidlo? A) 0,02 mm B) 0,05 mm C) 0,01 mm D) 0,005 mm 4. Urči relativní odchylku šířky hranolu: b = ( 12,4 ± 0,7) mm A) 23 % B) 2,3 % C) 5,6 % D) 0,6 %

Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia G Gymnázium Hranice Laboratorní práce č. 1: Měření délky Provedení: Úkol: Změřte průměr válečku posuvným měřidlem a mikrometrickým měřidlem, určete aritmetický průměr a odchylku měření a porovnejte přesnost měření těmito měřidly. Postup práce: A) Měření posuvným měřidlem 1. Zkontrolujte nulovou polohu posuvného měřidla. 2. Na různých místech válečku změřte desetkrát jeho průměr, naměřené hodnoty zapište do tabulky. 3. Vypočítejte aritmetický průměr. 4. Vypočítejte odchylky naměřených hodnot od hodnoty průměrné. 5. Vypočítejte průměrnou odchylku a zaokrouhlete ji na jednu platnou číslici. Ke všem výpočtům můžete využít vzorce programu Excel. 6. Podle odchylky zaokrouhlete průměrnou hodnotu naměřené veličiny. 7. Vypočítejte relativní odchylku. 8. Zapište výsledek měření ve tvaru. B) Měření mikrometrickým měřidlem 1. Při každém z deseti měření nejprve určíme nulovou polohu mikrometru a zapíšeme do tabulky, potom změříme průměr válečku d a zapíšeme do stejného řádku tabulky. 2. Body 3. až 7. opakujeme jak pro nulovou polohu mikrometru, tak pro průměr válečku. 3. Skutečný průměr válečku určíme jako rozdíl.

4. Určíme absolutní odchylku průměru válečku. 5. Určíme relativní odchylku průměru válečku. 6. Porovnáme přesnost měření posuvným měřidlem a mikrometrickým měřidlem Závěr: Shrňte vaše poznatky z této laboratorní práce. Doplňující úloha: Úkol: Změřte výšku válečku posuvným měřidlem a vypočítejte jeho objem. Postup práce: 1. Zpracujte pro měření výšky válečku tabulku stejně jako při měření průměru. 2. Vypočítejte objem válce z jeho průměru naměřeného posuvným měřidlem v úvodu laboratorní práce a výšky. 3. Z relativních odchylek průměru a výšky určete relativní odchylku objemu. 4. Vypočítejte absolutní odchylku objemu, správně zaokrouhlete odchylku i objem a zapište výsledek měření. Závěr: Shrňte vaše poznatky z této úlohy.

Posuvné měřidlo Mikrometr

G y m n á z i u m H r a n i c e Přírodní vědy moderně a interaktivně G Gymnázium Hranice Protokol č. 1: Pracoval: Spolupracoval: Třída: Hodnocení: Pracováno dne: Vlhkost vzduchu: Tlak vzduchu: Teplota vzduchu: Název úlohy: Měření délky Pomůcky: Vypracování: Teoretická příprava: K přesnějšímu měření kratších délek používáme kontaktní měřidla, u nichž měřené těleso vkládáme mezi čelisti měřidla. K nejrozšířenějším kontaktním měřidlům patří: A) Měření posuvným měřidlem: Zkontrolovali jsme nulovou polohu posuvného měřidla a desetkrát jsme na různých místech změřili průměr válce. Naměřené hodnoty jsme zapsali do tabulky, spočítali jsme aritmetický průměr, odchylky od průměrné hodnoty a průměrnou odchylku:

Číslo měření d d / mm mm mm d 1 2 3 4 5 6 7 8 9 10 průměrné hodnoty Po zaokrouhlení jsme zapsali průměr válečku: Vypočítali jsme relativní odchylku: B) Měření mikrometrickým měřidlem: Desetkrát jsme zjistili a zapsali nulovou polohu mikrometru a průměr válečku. Hodnoty jsme zapsali do tabulky a pro obě veličiny vypočítali aritmetický průměr, odchylky od průměrné hodnoty a průměrnou odchylku. Číslo měření d 0 d 0 / mm mm d 0 mm d 1 mm d 1 mm 1 2 3 4 5 6 7 8 9 10 průměr. h.

vypočítali jsme průměr válečku: Určili jsme absolutní odchylku: Po správném zaokrouhlení je hodnota průměru válečku: Určili jsme relativní odchylku: Porovnali jsme přesnost měření mikrometrickým měřidlem a posuvným měřidlem. Závěr:

Doplňující úloha: Posuvným měřidlem jsme desetkrát změřili výšku válce, výsledky měření jsme zapsali do tabulky a vypočítali jsme aritmetický průměr, odchylky od průměrné hodnoty a průměrnou odchylku. Číslo měření m v. s 1 v m. s 1 1 2 3 4 5 6 7 8 9 10 prům. hodn. Po správném zaokrouhlení je hodnota výšky válečku: Určili jsme relativní odchylku výšky válečku: Vypočítali jsme objem válečku: Vypočítali jsme relativní odchylku objemu: Vypočítali jsme absolutní odchylku objemu: Po zaokrouhlení je objem válečku: Závěr doplňující úlohy: Zdroje: Bednařík, Milan a Miroslava Široká. Fyzika pro gymnázia. Mechanika. Praha: Prometheus, 2000. ISBN 80-7196-176-0. Obrázky: http://vernier-caliper.com/, http://www.cordonline.net/michigan/er/er_08.htm