Modifikace profilu absolventa biologických studijních oborů na PřF UP: rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů
|
|
- Leoš Neduchal
- před 6 lety
- Počet zobrazení:
Transkript
1 Univerzita Palackého v Olomouci Modifikace profilu absolventa biologických studijních oborů na PřF UP: rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů CZ.1.07/2.2.00/ Biostatistika II. Pravděpodobnost a pravděpodobnostní rozdělení Martin Duchoslav Katedra botaniky PřFUP Olomouc 2012
2 Náhoda, náhodné jevy Náhoda= = vyjadřujeme tím skutečnost, že v dané situaci nejsme schopni předpovědět jednoznačně výsledek určité situace Náhodný pokus = každá opakovaná činnost prováděná za stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě Prostor elementárních jevů (Ω)= soubor všech možných výsledků Elementární jev (ω) = každý možný výsledek Příklad: házení 2 kostkami Náhodný jev (A, B,...) = podmnožina Ω, jakékoliv tvrzení o výsledkupokusu, o kterém lze rozhodnout, zda-li je pravdivé Př.:Náhodný jev = podmnožina prostoru elementárních jevů pro součet = 5
3 Př.: Uvažujeme hod dvěma kostkami. Zajímá nás, s jakou pravděpodobností dostaneme jevy, že součet padlých ok bude 2, 3, 4,...,11, 12. (Deventhal et al. 2003, p )
4 Pravděpodobnost (probability) I. Pravděpodobnostjevu [P(A) P(A)]je mírou očekávání toho, že daný náhodný jev nastane. Klasická (Laplaceova) teorie pravděpodobnosti problém s definicí kruhem omezující předpoklady všech možných výsledků je konečný počet stejné pravděpodobnosti jevů všechny výsledky se navzájem vylučují P(A) = m(a)/ (A)/m kde mje počet všech možných elem. jevů pokusu a m(a) je počet elem. jevů, při nichž nastává jev A pravděpodobnost jevu jsem schopen spočítat před pokusem Pravděpodobnostní strom pro elem. jev -házení mincí 2x
5 Pravděpodobnost (probability) II. Frekvenční teorie pravděpodobnosti založena na velkém počtu opakovaných pokusů a sledování četnosti daného jevu Relativní četnosti hodu kostkou pro různě velké výběry relativní četnost jevu A = n(a)/ (A)/n se s počtem pokusů nblíží stále těsněji k pravděpodobnosti P(A) výskytu náhodného jevu A v pokuse zvyšuji n odhadujeme tedy pravděpodobnost relativní četnos<, tj. empiricky pravděpodobnost = limitní rela>vní četnost Další čtení: Polák (1991), str Delventhal et al. (2004), str (Wonnacot a Wonnacot 1993) p = 1/6 = 0,167 n = počet hodů
6 Zákon velkých čísel Při opakované nezávislé realizaci téhož pokusu se počet výskytů daného jevu ustaluje kolem nějaké konstanty! Pravděpodobnost lim (f/n) pro n = popisuje relativní možnost, že jistý jev nastane nebo ne relativně vůči jiným jevům Příklad: Ilustrace ZVČ na příkladu konkrétních dat (Gotelli a Ellison 2004)
7 Od četnosti k pravděpodobnosti (Relativní četnost) Hustota relativních četností Hustota relativních četností (vyšší n) Zvýšení n a zmenšení intervalů (nse blíží k nekonečnu) Hustota pravděpodobností (density curve curve) a b (Wonnacot a Wonnacot 1993)
8 Pravděpodobnost (probability) III. Axiomatická teorie pravděpodobnosti pravděpodobnost jako základní, nedefinovaný pojem = stanovíme pravidla (axiomy; Kolmogorov 1930) 0 P(A) 1 P( P(Ω) = 1 P(A B) = P(A) + P(B) pro libovolné dvě disjunktní množiny A, B Subjektivní pravděpodobnost pokus o řešení jedinečných historických jevů, které se nemohou opakovat (nelze užít interpretace četností) Pravděpodobnost jako šance (odds) P šance d 0.9 9: : : : : : : d = P(A)/(1-P(A)) často se uvádí jako (celočíselný) zlomek, např. kurz Př.: mám šanci jedna ku dvěma (1:2; d=0,5), že udělám zkoušku znamená totéž jako je pravděpodobnost 0,33, že udělám zkoušku.
9 Náhodné veličiny a teoretické modely rozdělení pravděpodobností Statistik je ten, kdo s hlavou v rozpálené troubě a s nohama v nádobě s ledem na dotaz, jak se cítí, odpoví: V průměru se cítím dobře. Anonym Náhodná veličina(random variable) znak, který nabývá různých hodnot s určitou (většinou různou) pravděpodobností rozlišujeme diskrétní(nabývá pouze jistých hodnot z konečné množiny) a spojitou náhodnou veličinu (nabývá všech hodnot z nějakého intervalu) Známe-li pravděpodobnost výskytu hodnot veličiny X,, máme dáno tzv. rozdělení pravděpodobností (rozložení, distribuci, probability distribution) Soubor pravděpodobností P(x) (u diskrétní náh. vel.) Jak ho vyjádřit? Hustota pravděpodobnosti f(x) (u spojité náh. vel.)
10 Co je to distribuční funkce (cumulative probability)? F(x) = P (X x) Distribuční funkcev bodě xje rovna pravděpodobnosti jevu, že náhodná veličina Xnepřevýší hodnotu x. Diskrétní n.v. F(x) = x i x P x ) i Spojitá n.v. ( F(x) = x f ( x) dx P (x 1 < X < x 2 ) = P(X x 2 )- -P(X < x 1 ) = F(x 2 ) F( F(x 1 ) P(a X b) = F(b)-F(a) F(a) = b = a f ( x) dx
11 Grafické vyjádření f(x), P(x) a F(x) 1 1 f(x) Velikost vybarvené plochy odpovídá hodnotě distribuční funkce Fv bodě x k P(x) F(3)= P(x 1 )+P(x 2 )+P(x 3 ) 0 1 F(x) x X 0 k 1 x k=3 F(x) X 0 X 0 x k Spojitá náhodná veličina x 1 x 2 x k=3 X Diskrétní náhodná veličina
12 Střední hodnota a rozptyl (pro diskrétní n.v.) E(X) = Σ x i P(x i ) -budeme-li hodnoty x i proměnné chápat jako hmotné body s hmotností P(x i ), pak střední hodnota [E(X) E(X)]je těžiště této soustavy, tj. vážený průměr (očekávaná hodnota = expected value) D(X) = E(X-E(X)) 2 = n p x n i i i= 1 i= 1 x i p i 2 -měří variabilitu náhodné veličiny = střední kvadratická odchylka náhodné veličiny od E(X), tedy jak daleko jsou hodnoty náhodné proměnné od očekávané hodnoty [σ 2 (X)]
13 Teoretické jednorozměrné modely rozdělení náhodných veličin I. Diskrétní náhodné veličiny
14 Rovnoměrné a alternativní rozdělení Rovnoměrné (diskrétní) rozdělení (Uniform prob. distribution) 1 P( X = xi ) =, i = 1,2,..., k k 0 p x 1, E( X ) = k + 1, D( X ) 2 = -jev může nabývat jednoho z k-stavů, všechny stavy mají stejnou pravděpodobnost k 12 Alternativní (Bernouliho, nula-jedničkové) rozdělení(bernoulli distr.) -jev může nabývat jednoho ze dvou stavů (0 = neúspěch nebo 1 = úspěch) 2 P( X = xi ) = p( = π ), P( X = 0) = 1 0 p 1, E( X ) = p, D( X ) = p(1 p) 1 p
15 Binomické rozdělení (1) (Binomial distribution) -opakujeme-li pokus s alternativní náhodnou veličinou nezávisle na sobě vícekrát (n-krát), veličina X, jejímiž hodnotami je počet pokusů z oněch nprovedených, které skončily s výsledkem 1 (celkový počet úspěchů = success) ) má binomické rozdělení ; (neúspěch = failure) P( X n = x = x) = n! x!( n n x x)! p x x q n binomický koeficient ( = kombinační číslo) zvláštní případy: p+q=1 tato rovnice je x-tý člen rozkladu rovnice (p+q) n E(X)=np D(X)=np(1-p) n n = 1, n 0 = 1
16 Binomické rozdělení (2) Obecně se tedy můžeme ptát: pokud provedeme výběr o velikosti nz z binomické populace, s jakou pravděpodobností se vyskytne právě xindividuí dané kategorie v našem vzorku?
17 Binomické rozdělení (3) Binomické rozdělení pro n=5 a různé p Př. (Zar 1996)
18 Binomické rozdělení Cvičné příklady Příklad č. 1: Vzorek n=5 je odebrán náhodně z populace obsahující 50% samců a 50% samic. Jaká je pravděpodobnost, že náš vzorek bude obsahovat 1, 2, 3, 4, a 5 samců? (viz Obrázek a v předchozím snímku). Příklad č. 2: Pokud dva nositelé genu (rodiče) pro albinismus mají děti, pak každé z jejich dětí má pravděpodobnost ¼ (= 25%), že bude albín. Pokud mají rodiče dvě děti, jaká je pravděpodobnost, že žádné nebude albín, jedno dítě bude albín a obě děti budou albíni?
19 Multinomické rozdělení (Multinomial distribution) -uvažujeme situaci analogickou Binomickému rozdělení, kdy ALE v každém opakování pokusu musíme rozlišovat mezi více než dvěma možnými výsledky(jevy A 1, A 2,...,A d ) -ptáme se s jakou pravděpodobností nastanou jevy A 1, A 2,...,A d s četnostmi a 1, a 2,...,a d v nopakováních pokusu (n = a a d ). n a a P a a a p p d =! (,,..., ) a! a!... a! d p d a d
20 Poissonovo rozdělení (Poisson distribution) - tzv. rozdělení vzácných jevů -popisuje náhodné rozdělení objektů (událostí) v jednotceprostoru či času,, tj. takové, že každý bod v prostoru (čase) má stejnou pravděpodobnost, že může obsahovat daný objekt a výskyt objektu v daném bodě nemá žádný vliv na výskyt jakéhokoliv jiného objektu ve stejném či jakémkoliv jiném bodě prostoru (času) distribuce je významná pro popis náhodných jevů s řídkým výskytem (tj. Př. -distribuce je významná pro popis kde operuje jen náhoda a jevy mají malou pravděpodobností výskytu) P( X e = x) = µ x µ = x! µ E( X ) = D( X ) µ = σ e µ x x! 2 Základní vlastnosti Poiss. rozdělení: 1. Nezávislost 2. Jednotlivost 3. Homogenita
21 Poissonovo rozdělení Příklady Příklad č. 1: Na louce jsme rozmístili náhodně 100 plošek o známě velikosti a v každé plošce jsme spočítali počet jedinců jitrocele. Chci vědět, zda-li jsou jedinci tohoto druhu rozmístěni na ploše náhodně = na sobě nezávisle, či ne. Příklad č. 2: Na základě předchozích údajů víme, že jistý typ genetické mutace se vyskytuje v populaci hmyzu s frekvencí 0,002. V pokusu vystavíme účinku jisté chemikálie velké množství jedinců a ptáme se, zda-li tato chemikálie zvyšuje výskyt této mutace. Příklad č. 3: Roztok obsahuje bakteriální virus v koncentraci 5x10 8 virových objektůna1ml.vestejnémroztokuje2x10 8 bakteriína1ml.zapředpokladu,že virus je náhodně distribuován mezi baktérie zjistěte, jaká část baktérií nebude infikována virem, jaká část baktérií bude obsahovat po 1 virové částici na baktérii atd.
22 Poissonovo rozdělení (2) Poissonovorozdělení pro různé hodnoty µ. (Zar 1996)
23 Poissonovo rozdělení cvičný příklad Příklad: Předpokládejme, že v určité populaci krys se vyskytuje albín s pravděpodobností p=0,001, ostatní krysy jsou normálně pigmentované. Ve vzorku 100 krys náhodně vybraných z této populace určete pravděpodobnost, že vzorek a) neobsahuje albína, b) obsahuje právě 1 albína.
24 Poissonovo rozdělení (3) Jak přibližně určit, pochází-li náš výběr z Poissonovy distribuce? Lze využít vztahu mezi předpokládanou rovností střední hodnoty a variance: Koeficient disperze: CD = >1 agregované uspořádání 2 (tzv. OVERDISPERSION) =1 náhodné uspořádání x <1 pravidelné uspořádání (tzv. UNDERDISPERSION) s x binomické r. negativně binomické r. Poissonovo r.
25 Test disperse Pocházejí data z populace s Poissonovým rodělením? Hypotézu možno otestovat tzv. testem disperse (Dispersion test): 2 χ =( n 1) s x 2, kde s 2 je odhad variance, x je výběrový průměr a nje velikost výběru; poměr má Pearsonovo rozdělení s (n-1) 1)DF Příklad: : Byl studován výskyt vnitřních parazitů u dvou druhů ptáků otevřením břišní dutiny post mortem.. Mají data Poissonovo rozdělení? Druh n průměr s A 119 2,126 1,232 2 A: χ *1,518 = = 84,3 P = 0,008*2 = 0,016 2, *16,362 2,739 B 119 2,739 4,045 B: = = 704,9 P << 0,001*2 =<< 0, 001 χ Postup: 1) vypočítám χ 2, 2) zjistím příslušnou P hodnotu (levá strana distribuce v případě underdispersion, pravá u overdispersion), 3) pozor, test je oboustranný, proto násobím P * 2 = výsledná hodnota P Výsledek: Data druhu A vykazují tendenci k pravidelnému uspořádání (= underdisperion), protože s 2 je signifikantně menší než průměr, data u B naopak vykazují shlukovité uspořádání (= overdispersion), protože s 2 je signifikantně větší než průměr (Grafen & Hails 2002, p )
26 Teoretické jednorozměrné modely rozdělení náhodných veličin II. Spojité náhodné veličiny
27 Exponenciální rozdělení (Exponential distribution) -rozdělení vhodně popisuje přežití jedince za předpokladu, že rizika úmrtí se s věkem nemění Relative Frequency (%) Variable VAR1 ; distribution: Exponential Chi-Square: , df = 0, p = f(x) f x 1 ( x) = e Θ pro x 0 Θ pro f ( x) = 0 < x < 0 Má jediný parametr: Θ E(X)= Θ,, D(X)= Θ 2 Relative Frequency (%) Expected Category (upper limits) Variable VAR1 ; distribution: Exponential Chi-Square: , df = 0, p = F(x) Expected Category (upper limits)
28 Normální rozdělení (Gaussovo r., r., normal distribution) * - je rozdělení spojité proměnné na intervalové a poměrné stupnici -značí se N (µ,σ 2 ) - hustota pravděpodobnosti je symetrická, zvonovitá - funkce obsahuje dvě konstanty (e, π) a má dva parametry: µ a σ 2 f ( x µ ) 1 i ( x) = e 2 2σ σ 2 π 2 < x < + E( X ) = µ D( X ) = σ 2 Příklad: Má-li populace lidí normální rozdělení výšky s průměrem 170 cm a standardní odchylkou 25 cm, jaká část populace je vyšší než 170 cm, vyššínež190cmajakáčástpopulacemávýškumezi150a170cm?
29 Normální rozdělení v praxi...
30 Normální rozdělení (2) F(x) Hustota pravděpodobnosti a distribuční funkce normálního rozdělení 68.27% 95,45% 99.73% f(x) (Zar 1996)
31 Normální rozdělení (3) Hustota pravděpodobnosti normálního rozdělení při (a) různém µ a stejném σ a (b) při různém σ a stejném µ (Zar 1996)
32 Normální rozdělení (4) Příklady (1) V komerční produkci vajec je jejich poškození rozbitím skořápky největší problém. V jedné studii byla sledována variabilita tloušťky skořápky chovaných hus. Zjistilo se, že tloušťka skořápek má přibližně normální rozdělení s µ= = 0.38 mm a σ= 0.03 mm. (2) U jistých typů nervových buněk u hmyzu bylo zjištěno, že se změny elektrického potenciálu dějí poměrně pravidelně ( clock-spikes ). Ačkoliv se délka periody (čas mezi dvěma vrcholy) jevila poměrně stejná, byla zaznamenána jistá variabilita. V jedné studii byla měřena délka intervalů mezi vrcholy (v ms) u jednoho jedince myši domácí, a bylo pozorováno, že délka intervalu má přibližně normální rozdělení s µ= = 15.6 msa σ= 0.4 ms. (3) Přístroj používaný pro počítání částic (např. počet krevních buněk) vykazuje při opakovaném měření stejného počtu buněk standardní odchylku 1.4% od skutečného počtu. Tak pokud by skutečný počet buněk byl 7000/mm 3, standardní odchylka bude 98 buněk/mm 3 = Measurement error chyba měření, populace těchto chyb mívá většinou normální rozdělení.
33 Normální rozdělení (5) Co je to normované (standardizované) normální rozdělenía k čemu je dobré? Chceme-li spočítat s jakou pravděpodobností se vyskytuje v populaci s normálním rozdělením nějaký interval hodnot, musíme buď umět integrovat (spočítat plochu pod křivkou) neboprovést standardizacia a pro odhad použít tabulované hodnoty pravděpodobnosti: Pokud má proměnná Xnormální rozdělení s parametry µaσ 2, pak po její, tzv. Z-transformaci, transformaci,má má proměnná Znormální rozdělení se střední hodnotou 0 a variancí jedna (1) = = standardizované normální rozdělení N (0;1) Z i x = i µ σ kvantily tohoto rozdělení jsou dostupné ve statistických tabulkách!!!
34 Normované normální rozdělení (6) Příklad: převod normálního normálního rozdělení na standardizované normální rozdělení reškálováním osy x (Samuels& Witmer2003, p. 122)
35 Standardizované normální rozdělení - animace Z-skóre Hustota pravděpodobnosti f(x) Distribuční funkce F(x) Pravděpodobnost
36 Statistická tabulka normovaného normálního rozdělení (tabulka uvádí proporci normály, která leží za hodnotou z i (tj. je více extrémní) (Zar 1996)
37 Od populace k výběru Výběrová distribuce (sampling sampling distribution) Co se stane, když provedu opakovaně výběr o velikosti n z normální populace, s průměry těchto vzorků? 1. Průměry budou méně variabilní než individuální pozorování. 2. Získané průměry budou kolísat jednotlivý výběrový průměr bude v průměru roven střední hodnotě populace. 3. Histogram (výběrová distribuce) těchto průměrů bude mít (téměř) normální rozdělení: Centrální limitní věta (central central limit theorem) (= Pravidlo normální aproximace): jestliže původní populace je normální nebo je-li rozsah výběru dostatečně velký, pak rozdělení výběrových průměrů je vždy (zhruba pokud není populace normální) normální!
38 Od populace k výběru (2) Populace Výběr o velikosti n Tvar rozdělení výběrových průměrů se zvětšujícím se n z populace (Wonnacot a Wonnacot 1993)
39 Centrální limitní věta - animace Sleduj Distribuce výběrových průměrů se zvětšující se velikostí výběrů (n)
40 Rozdělení výběrových průměrů (Výběrové rozdělení = sampling distribution of x) Střední chyba průměru (standard error, SE) σ = x σ n Rozdělení výběrových průměrů N (µ;σ/ n) (Moore 2007)
41 Od populace k výběru (3) ale jak kolísají tyto průměry, O KOLIK? Potřebujeme najít rozptyl průměru!!! Variance průměru 2 2 σ x σ = n Střední chyba σ σ x = průměru n (standard error, SE) Jak se ale ptát na řadu otázek týkajících se průměru výběru? Z i x = i µ σ Z = x µ σ x
42 Od populace k výběru (4) Je tu jeden velký problém: musíme znát parametry populace a většinou neznáme σ (!!!) Z i x = i µ σ Z = x µ σ x t = x µ s x s x = s n Známe pouze odhad standardní chyby střední hodnoty populace, tzv. střední chybu výběrového průměru Pak se už ale nejedná o normální rozdělení průměrů, ale o tzv. Studentovo t-rozdělení
43 -je podobné standardizovanému normálnímu rozdělení -je symetrické kolem střední hodnoty µ = 0 Studentovo t-rozdělení t(ν) - má pouze 1 parametr: stupně volnosti: ν = n-1 -modeluje rozdělení průměrů všech možných vzorků o velikosti n z populace Příklad: (Student t- distribution) t = x µ s x Hustota pravděpodobnosti t-rozdělení při různých stupních volnosti Příklad: Má-li náhodný výběr n= 25 lidí průměrnou výšku 170 cm se standardní odchylkou 25 cm, s jakou pravděpodobností mohu takový a vyšší průměr (nebo takový a nižší) dostat ze základního souboru s průměrnou výškou 160 cm? * (Zar 1996)
44 Co to jsou stupně volnosti? Stupně volnosti (degrees of freedom; ; značíme dfnebo DF): počet pozorování mínus počet parametrů zahrnutých ve vzorci pro výpočet daného parametru (např. variance) pro výpočet rozptylu proto df= n-1, protože ve vzorci je použit jeden parametr (počítaný z dat) = průměr
45 Tabulky Studentova rozdělení (Zar 1996,upraveno)
46 Tabulky Studentova rozdělení (Moore 2007)
47 Další teoretické modely spojitých náhodných veličin Pearsonovorozdělení rozdělení (Pearson= χ 2 distribution) χ 2 (v) Fisher Fisher-Snedecorovo Snedecorovorozdělení rozdělení (Fisher Fisher-Snedecor Snedecor= F -distribution distribution) F (v 1,v 2 ) Uniformní kontinuální rozdělení (Uniform continual distribution) f(x)= 1/(b-a), pro a<x<b
48 Doporučená literatura Delventhal K.M., KissnerA., Kulick M. (2004): Kompendium matematiky. - Universum. Grafen A., Hails R. (2002): Modern statistics for the life sciences. - Oxford. Hendl J. (2004): Přehled statistických metod zpracování dat.- Portál. Polák J. (1991): Přehled středoškolské matematiky.- Prometheus.
Univerzita Palackého v Olomouci
Univerzita Palackého v Olomouci Modifikace profilu absolventa biologických studijních oborů na PřF UP: rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů CZ.1.07/2.2.00/28.0158
Modifikace profilu absolventa biologických studijních oborů na PřF UP: rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů
Modifikace profilu absolventa biologických studijních oborů na PřF UP: rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů CZ.1.07/2.2.00/28.0158 Biostatistika II. Pravděpodobnost
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
ROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.
ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu
Poznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce
Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života
Počet pravděpodobnosti
PSY117/454 Statistická analýza dat v psychologii Přednáška 4 Počet pravděpodobnosti Je známo, že když muž použije jeden z okrajových pisoárů, sníží se pravděpodobnost, že bude pomočen o 50%. anonym Pravděpodobnost
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Deskriptivní statistické metody II. Míry polohy Míry variability
Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
IB112 Základy matematiky
IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
populace soubor jednotek, o jejichž vlastnostech bychom chtěli vypovídat letní semestr Definice subjektech.
Populace a Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 populace soubor jednotek, o jejichž vlastnostech bychom
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
Rovnoměrné rozdělení
Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot
Cvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
2. přednáška - PRAVDĚPODOBNOST
2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
a způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Pravděpodobnost, náhodná proměnná. Statistické metody a zpracování dat. III. Pravděpodobnost, teoretická rozdělení. Pravděpodobnost, náhodná proměnná
Pravděpodobnost, náhodná proměnná Statistické metody a zpracování dat III. Pravděpodobnost, teoretická rozdělení Petr Dobrovolný Popisné a průzkumové metody umožňují přehledné shrnutí informací, které
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
TEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
JAK MODELOVAT VÝSLEDKY
JAK MODELOVAT VÝSLEDKY NÁHODNÝCH POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Design Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30 17:00
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Intuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním