Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -

Rozměr: px
Začít zobrazení ze stránky:

Download "Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -"

Transkript

1 Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda

2 Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích a dalších souvisejících jevů v definovaném prostředí. Pro použití CFD je třeba nejprve vytvořit model (virtuální prototyp zkoumaného systému), na který jsou následně aplikovány matematické postupy tak, aby byly ze zadaných okrajových a počátečních podmínek získány vybrané údaje o dějích probíhajících v celé zkoumané oblasti při respektování fyzikálních zákonů.

3 Proč CFD? 3 Popis a návrh systému Návrh je založen na simulaci místo postav a testuj více efektivní a rychlejší způsob CFD poskytuje detailní popis tokového pole Simulace systémů, které jsou problematické pro experiment simulace celků (budovy, lodě, letadla, ) vlivy prostředí (vítr, počasí, ) rizika (požáry, výbuchy, radiace, ) Poznání a výzkum fyziky tekutin Výsledky CFD simulací ověřujeme experimenty (pokud to jde).

4 Proč CFD? 4 Nízké náklady Užití experimentů pro získání základní inženýrských dat pro návrh průmyslového zařízení může být nákladné. Počítačové simulace jsou relativně málo nákladné, výpočetní čas se bude dále snižovat s rostoucím výkonem počítačů. Rychlost CFD výpočtu mohou proběhnou v krátké době. Získané výsledky se mohou okamžitě užít při návrhu nebo úpravě zařízení. Schopnost simulací reálných podmínek Některé poznatky je obtížné (nemožné) získat experimentálně, např. rychlostní profily v celém zařízení, požáry, výbuchy, Pomocí CFD můžeme teoreticky simulovat kterékoliv fyzikální podmínky.

5 Kde se CFD užívá? 5 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

6 Kde se CFD užívá? 6 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

7 Kde se CFD užívá? 7 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

8 Kde se CFD užívá? 8 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

9 Kde se CFD užívá? 9 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika heating, ventilating, air-conditioning

10 Kde se CFD užívá? 10 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

11 Kde se CFD užívá? 11 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

12 Kde se CFD užívá? 12 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

13 Kde se CFD užívá? 13 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

14 Kde se CFD užívá? 14 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

15 Kde se CFD užívá? 15 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika

16 Základní kroky při řešení Definice cílů. 2. Stanovení modelované oblasti. 3. Vytvoření výpočetní sítě. 4. Výběr správného řešiče. 5. Nastavení numerického modelu. 6. Řešení. 7. Zkonvergování řešení. 8. Prohlížení výsledků. 9. Adaptace výpočetní sítě. 10. Revize modelu.

17 Základní kroky při řešení 17 Definice cílů Jaké chci výsledky a k čemu budou dále používány? Jakou požaduji přesnost? Jak rychle chci výsledky získat? Jaké další kapacity chci použít? User-Defined Functions

18 Základní kroky při řešení 18 Stanovení modelované oblasti výpočetní síť Jaký typ buněk bude použit: quad/hex, tri/tet nebo hybridní síť? Jaká hustota výpočetní sítě je pro jednotlivé oblasti nutná? Bude použitá adaptace výpočetní sítě? Kolik buněk bude pro úlohu potřeba? Je k dispozici dostatek RAM paměti?

19 CFD: složitá výpočetní sítě 19

20 Základní kroky při řešení 20 Výběr správného řešiče (http://www.cfd-online.com/links/soft.html) Komerční CFD: ANSYS FLUENT/CFX, Star-CD, CFDRC Open CFD: OpenFOAM, SU 2 Specializované programy FLACS (FLame ACcelerator Simulator) výbuchy FDS (Fire Dynamics Simulator) - požáry Podpůdné programy Gridgen, Samome - tvorba sítě Tecplot, FieldView vizualizace toku

21 Základní kroky při řešení 21 Nastavení modelu Vybrat vhodný fyzikální model. Definovat materiálové vlastnosti: Tekutiny (Fluid), Tuhých částí (Solid), Směsi (Mixture). Nastavit okrajové podmínky na všech hraničních plochách. Provést počáteční inicializaci. Nastavit řešič, podrelaxační podmínky, diskretizační schéma. Monitorovaní průběhu konvergence (residua, plošné integrály, síly).

22 Základní kroky při řešení 22 Řešení: stacionární Výpočet může vyžadovat velký počet iterací, než je dosažena konvergence. Řešení je považováno za zkonvergované, jsou-li změny klíčových hodnot malé. Sledování konvergence zahrnuje: Residua, Bodové hodnoty, Integrální bilance toků (hmotnostním, tepelný, atd.), Integrální síly (odpor, vztlak, atd.). Konvergence může být ovlivněna: Hustotou sítě, Přesností numeriky (diskretizační chyba), Přesností fyzikálního modelu (např., model turbulence).

23 Základní kroky při řešení 23 Řešení: nestacionární Nestacionární řešení je řešeno pomocí mezi-iterací v přechodu do dalšího časového stavu. V každém časovém kroku by mělo být dosaženo konvergence před přechodem do dalšího časového stavu. Výběr vhodné délky časového kroku, která řeší daný problém. Určení hodnoty času T charakterizující daný děj, Výběr časového kroku jako vhodného podílu char. času T např. t = T /100. Přizpůsobení časového kroku, aby bylo dosaženo konvergence během 0-20 iterací. Měnění časového kroku podle intenzity změn, např. v počátečním stadiu.

24 Základní kroky při řešení 24 Prohlížení výsledků Vizualizace může být použita k získání odpovědi na otázky: Jaký je celkový charakter proudění? Existují separace proudu? Kde jsou rázové vlny, smykové vrstvy, atd.? Jsou spočteny klíčové rysy proudění? Jsou vhodné fyzikální modely a okrajové podmínky? Existují lokální konvergenční problémy? Nástroje (reporting tools) lze použít k výpočtu těchto hodnot: Vztlak a odpor Zprůměrněné součinitele přestupu tepla Integrální bilance proměnných.

25 Základní kroky při řešení 25 Adaptace výpočetní sítě Lokální zvýšení hustoty sítě podle potřeby. Adaptace podle: Gradientů proměnných nebo uživatelem definovaných proměnných, Isohodnoty proměnných nebo uživatelem definovaných proměnných, Všechny hodnoty na hranicích Všechny buňky uvnitř regionu, Buňky v objemu (Fluid), Podle hodnoty y + na stěně, Kombinací výše uvedených možností. K adaptaci napomáhá: Vykreslení kontur adaptačních funkcí, Vykreslení buněk vybraných pro adaptaci, Limit adaptace založen na velikosti buňky a počtu buněk.

26 Základní kroky při řešení 26 Adaptace výpočetní sítě 2D rovinná úloha - počáteční síť 2D rovinná úloha - finální síť

27 Základní kroky při řešení 27 Revize modelu Jsou fyzikální modely vhodné? Je proudění turbulentní? Nestacionární? Vliv stlačitelnosti? 3D efekt? Jsou okrajové podmínky správné? Je výpočetní oblast dostatečně velká? Jsou okrajové podmínky vhodné? Jsou okrajové a vstupní hodnoty přiměřené? Je výpočetní síť odpovídající? Může adaptace sítě zlepšit výsledky? Mění se významně charakter proudění s adaptací nebo je na sítí nezávislé? Nepotřebují okrajové podmínky větší hustotu sítě? Je vhodnější jiný typ sítě (quad vs. tri nebo hex vs. tet)?

28 Řešení rovnic v počítačové dynamice tekutin 28 Obecná rovnice

29 Rozdělení parciálních diferenciálních rovnic 29 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y: v závislosti na koeficientech a, b a c lze určit typ rovnice: (b 2-4ac) > 0 typ hyperbolický. (b 2-4ac) = 0 typ parabolický. (b 2-4ac) < 0 typ eliptický. Poznámka: jestliže a, b, a c závisí na x a y, rovnice mohou být různého typu v závislosti na pozici v x-y prostoru. V tomto případě jsou rovnice smíšeného typu. Typ parabolický Typ eliptický Typ hyperbolický (nestacionární vedení tepla v rovinné desce) (Laplaceova rovnice) (vlnová rovnice)

30 Rozdělení parciálních diferenciálních rovnic 30 Obecně NS rovnice je smíšeného typu Prostředí Děj ustálený Děj neustálený Viskózní typ eliptický typ parabolický Nevazké (M<1) typ eliptický typ hyperbolický Nevazké (M>1) typ hyperbolický typ hyperbolický Tenká vrstva typ parabolický typ parabolický

31 Diskretizační přístupy 31 Metoda sítí Finite Difference Method nejstarší metoda pro diskretizaci PDR; využívá diferenciálního tvaru rovnic; aproximace derivací v uzlových bodech; užívá cca 5% komerčních řešičů Metoda konečných objemů Finite Volume Method využívá integrálního tvaru rovnic; aproximace toků přes hranice kontrolního objemu; užívá cca 80% komerčních řešičů. Metoda konečných prvků Finite Element Method podobná metodě konečných objemů, ale řešení je aproximováno po částech lineární funkcí; nejvíce užívaná při pevnostních výpočtech, málo vhodná pro turbulentní proudění; užívá cca 15% komerčních řešičů. Lattice gas/lattice Boltzmann

32 Metoda sítí 32 patří mezi nejstarší numerické metody postup řešení publikoval před rokem 1910 L. F. Richardson první skutečné numerické řešení: tok kolem válce (Thom,1933) Scientific American (1965): "Computer Experiments in Fluid Dynamics." F. H. Harlow and J. E. Fromm; poprvé jasně a populárně vyjádřená myšlenka computer experiments => počátek CFD Výhoda: snadné užití Nevýhoda: požadavek na jednoduché sítě A.Thom, The Flow Past Circular Cylinders at Low Speeds, Proc. Royal Society, A141, pp , London, 1933

33 Metoda sítí 33 dopředná diference, 1. řád zpětná diference, 1. řád centrální diference, 2. řád centrální diference, 2. řád u centrální dopředná u i zpětná derivace i-1, j+1 i, j+1 i+1, j+1 u i 1 u i 1 i-1, j i, j i+1, j x i 1 x i 1 i-1, j-1 i, j-1 i+1, j-1 i 2 i 1 i i 1 i 2

34 Metoda konečných objemů 34 Jak na to? Řešená oblast je rozdělena na konečný počet malých kontrolních objemů. Základní rovnice (kontinuity, pohybové, energie, transportní, ), které popisují spojité prostředí, jsou disktetizovány do soustavy algebraických rovnic. 3D Základní tvary buněk 2D čtyřstěn jehlan (pyramida) trojúhelník šestistěn pětistěn (klín) čtyřúhelník mnohostěn vysíťovaná geometie logické znázornění

35 Metoda konečných objemů 35 Výpočetní síť - základní označení Hraniční uzel (node, vertex) Hrana (edge) Plocha stěny (face) Výpočetní uzel (centroid) Kontrolní objem, buňka (cell) Kontrolní objemy se nepřekrývají. Hodnoty složek rychlosti a skalárních veličin jsou v geometrických středech kontrolních objemů, hodnoty na hranicích objemu se získávají interpolací.

36 Metoda konečných objemů 36 Výpočetní síť - kontrolní objem Tok přes hranice kontrolního objemu je integrálním součtem přes čtyři (2D) nebo šest (3D) ploch kontrolního objemu. 2D NW N NE n yv, xu, W SW w P s S e E SE plochy: North, N South, S East, E West, W Front, F Back, B

37 Metoda konečných objemů 37 Diskretizace rovnic (příklad 1) - transportní rovnice (konstantní hustota, laminární tok, ustálený stav, 2D) 2D N n W w P e E s yv, S xu, c c A koncentrace složky A, D D A difuzní koeficient, S S A - zdroj

38 Metoda konečných objemů Diskretizace rovnic (příklad 1) 38 Integrace transportní rovnice přes objem Aplikace Gaussovy věty

39 Metoda konečných objemů Diskretizace rovnic (příklad 1) 39 Tok napříč kontrolního objemu je suma přes stěny. P Aproximace plošného integrálu ze střední hodnoty na stěně. Po úpravě

40 Metoda konečných objemů 40 Diskretizace rovnic (příklad 1) Diferenční aproximace vpřed dy n W N A n P A w A s A e E Dx 2D A ee Dy dy s S 1 Určení hodnot v centrech buněk nejjednodušší interpolační schéma: protiproud 1. řádu předpokládá se, že hodnota na stěně je rovná hodnotě v centru buňky ležící vlevo (proti proudu), např. dx w dxe

41 Metoda konečných objemů Diskretizace rovnic (příklad 1) 41 N C počet sousedících buněk koeficienty a jsou odlišné pro každou buňku při každé iteraci pole koncentrací je vypočítáno přepočtem c P z této rovnice iteračně pro každou buňku v řešené oblasti

42 Metoda konečných objemů Diskretizace rovnic (příklad 2) 42 Rovnice kontinuity (konstantní hustota, ustálený stav, jednosměrný tok ve směru x) : Diskretizace rovnice = převedení na řešitelný algebraický tvar: Prostorové interpolační schéma: protiproud 1. řádu y dz z u W w P e E dy dx x

43 Metoda konečných objemů Interpolační schémata (prostorová) (x) 43 Protiproudá interpolace 1. řádu (First-order upwind) Předpokládá se, že hodnota na stěně je rovná hodnotě v centru buňky ležící vlevo (proti proudu). Protiproudá interpolace 2. řádu (Second order upwind) Určuje hodnotu na stěně z hodnot v centrech dvou buněk ležící vlevo (proti proudu). Centrální diference (Central differencing) Určujeme hodnotu na stěně pomocí lineární interpolace mezi hodnotami ve středu sousedících buněk. Protiproudá kvadratická interpolace (QUICK) Kvadratická křivka je aproximována ze dvou uzlů ležící proti proudu (upstream) a jednoho uzlu, který leží po proudu (downstream). W W W W W W P P w (x) e P w e (x) P P w (x) w P P P e e e e e e E E E E E E interpolovaná hodnota směr toku

44 Metoda konečných objemů Interpolační schémata (prostorová) - shrnutí 44 Interpolační schémata vyšších řádů jsou více přesnější, ale méně stabilnější a výpočet trvá déle. Pro dobrou stabilitu a přesnost se často doporučuje začít výpočet s first order upwind a po cca 100 iteracích přepnout na second order upwind. Centrální diferenční schéma by mělo být užíváno krátkodobých výpočtech při dostatečně jemné výpočetní síti, při které je hodnota Pecletova čísla vždy menší než jedna. Pecletovo číslo je poměr mezi konvektivním a difuzním transportem: Pe ul D Lineární interpolace nemůže být použita při proudění s velkou vířivostí. QUICK interpolace je velmi přesná, ale v oblastech s velkými gradienty může způsobit problémy se stabilitou výpočtu.

45 Metoda konečných objemů Interpolační schémata (příklad) 45 Protiproudé 1. řádu 100 ºC Protiproudé 2. řádu 100 ºC 8 x 8 0 ºC 0 ºC 100 ºC 100 ºC 64 x 64 0 ºC 0 ºC zdroj:

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku

Více

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování

Více

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM)

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) D POČÍTAČOVÁ SIMULACE KONFEKČNÍ DÍLNY VIRTUÁLNÍ REALITA - WITNESS VR COMPUTER INTEGRATED MANUFACTURING CIM výroba integrovaná pomocí

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Historie mechaniky tekutin

Historie mechaniky tekutin Počítačová dynamika tekutin (CFD) - historie - 2 Aristotelés ze Stagiry (384 322 př.n.l) řecký filosof, žák Platónův vychovatel Alexandra III. Velikého základní koncept kontinua kontinuum = spojité prostředí

Více

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr. Eva Hrubešová, Ph.D.

Více

CFD ANALÝZA CHLAZENÍ MOTORU

CFD ANALÝZA CHLAZENÍ MOTORU CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Simulace (nejen) fyzikálních jevů na počítači

Simulace (nejen) fyzikálních jevů na počítači Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Static Load Balancing Applied to Time Dependent Mechanical Problems

Static Load Balancing Applied to Time Dependent Mechanical Problems Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných

Více

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence. Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu

Více

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU Znázornění odporů způsobujících snižování průtoku permeátu nástřik porézní membrána Druhy odporů R p blokování pórů R p R a R m R a R m R g R cp adsorbce membrána

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

Numerická simulace přestupu tepla v segmentu výměníku tepla

Numerická simulace přestupu tepla v segmentu výměníku tepla Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ

NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ Ing. Ondřej Švec Školitel: Prof. Ing. Pavel Ditl DrSc. Abstrakt : V textu se zabýváme řešením problematiky nátoku plynů do chemických reaktorů a jejich distribuce na

Více

Vybraný matematický aparát pro modelování fyzikálních polí

Vybraný matematický aparát pro modelování fyzikálních polí Vybraný matematický aparát pro modelování fyzikálních polí Milan Hokr Technická univerzita v Liberci Fakulta mechatroniky, informatiky a mezioborových studií 19. ledna 2009 Obsah 1 Úvod do modelování 3

Více

Autodesk Simulation CFD 2012. Webinář 02.12.2011, Martin Sás a Petr Fischer

Autodesk Simulation CFD 2012. Webinář 02.12.2011, Martin Sás a Petr Fischer Autodesk Simulation CFD 2012 Webinář 02.12.2011, Martin Sás a Petr Fischer Autodesk Simulation CFD 2012 - úvod Computational Fluid Dynamics (CFD) je simulační nástroj, který matematicky (MKP) modeluje

Více

Matematika-průřezová témata 6. ročník

Matematika-průřezová témata 6. ročník Matematika-průřezová témata 6. ročník OSV 1: OSV 2 žák umí správně zapsat desetinnou čárku, orientuje se na číselné ose celých čísel, dovede rozpoznat základní geometrické tvary a tělesa, žák správně používá

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

ÚSKALÍ POUŽÍVÁNÍ MATEMATICKÝCH MODELŮ POŽÁRŮ MATEMATICKÝ MODEL FIRE DYNAMICS SIMULATOR Ing. Zdenka Pezdová

ÚSKALÍ POUŽÍVÁNÍ MATEMATICKÝCH MODELŮ POŽÁRŮ MATEMATICKÝ MODEL FIRE DYNAMICS SIMULATOR Ing. Zdenka Pezdová ÚSKALÍ POUŽÍVÁNÍ MATEMATICKÝCH MODELŮ POŽÁRŮ MATEMATICKÝ MODEL FIRE DYNAMICS SIMULATOR Ing. Zdenka Pezdová Přestože vývoj matematických modelů započal v sedmdesátých letech minulého století, jejich uplatnění

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Modelování ustáleného a neustáleného proudění v okolí plynových sond. Mgr. Hana Baarová

Modelování ustáleného a neustáleného proudění v okolí plynových sond. Mgr. Hana Baarová Modelování ustáleného a neustáleného proudění v okolí plynových sond Mgr. Hana Baarová Prezentace výsledků Říjen 2010, mezinárodní konference Permon 2010, SR Nové poznatky v oblasti vŕtania, ťažby, dopravy

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008 INOVACE MATEMATIKY PRO EKONOMY NA VŠE Anketavroce2008 Dne 11.12.2008 se obrátil člen katedry matematiky doc. RNDr. Jiří Henzler, CSc. na všechny učitele Vysoké školy ekonomické v Praze s následující výzvou:

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Aerodynamika vozu, vnější proudění

Aerodynamika vozu, vnější proudění Aerodynamika vozu, vnější proudění J. Jagrik Škoda Auto TFA Aerodynamika a výpočty 11.3.2015 1 Vnější aerodynamika vozu - přehled Cíle: bezpečnost aerodynamická stabilita, špinění ekonomicky a ekologicky

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Multirobotická kooperativní inspekce

Multirobotická kooperativní inspekce Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Vypracovali: Štěpán Roučka, Jan Klusoň, Vratislav Krupař Zadání Seznámit se s obsluhou vysokovakuové aparatury čerpané rotační a difúznívývěvouauvéstjidochodu.

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

BR 52 Proudění v systémech říčních koryt

BR 52 Proudění v systémech říčních koryt BR 52 Proudění v systémech říčních koryt Přednášející: Ing. Hana Uhmannová, CSc., doc. Ing. Jan Jandora, Ph.D. VUT Brno, Fakulta stavební, Ústav vodních staveb 1 Přednáška Úvod do problematiky Obsah: 1.

Více

Návrh hydraulického rozváděče a jeho numerické řešení proudění

Návrh hydraulického rozváděče a jeho numerické řešení proudění Návrh hydraulického rozváděče a jeho numerické řešení proudění Martin Veselý Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D. Abstrakt Cílem práce je provést geometrický návrh rováděče a numerický výpočet proudění

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více