Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
|
|
- Emil Müller
- před 6 lety
- Počet zobrazení:
Transkript
1 Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
2 Genetické markery
3 Genetické markery = znaky, které informují o genotypu - vhodné jsou znaky, které: a) nejsou ovlivňovány prostředím b) mají jednoduchou genetickou kontrolu (nejlépe alelami jednoho lokusu = genové markery) c) dědí se s neúplnou dominancí nebo jsou kodominantní
4 Využití genetických markerů: studium populací studium geografické proměnlivosti identifikace šlechtitelského materiálu selekce na odolnost (markery rezistence) prokazování identity a původu reprod. materiálu studium genetického materiálu taxonomie
5 1. Markery morfologické - barevné a tvarové odchylky listů, popř. habitu (mutanti) stříhanolisté a kadeřavé formy purpurové formy (BK, JV, BŘ, JL..) chlorofyloví mutanti (formy aurea, albina u SM, BO)
6 2. Biochemické markery 2.1 Fenoly - sekundární metabolity - kvalitativní složení stálé, kvantita ovlivňována prostředím a mění se v ontogenet. vývoji - pokud se vlivy omezí a standardizuje se věk, lze je použít jako genetické markery Využití: - identifikace klonů TP - studium klinálních trendů proměnlivosti - markery rezistence k chorobám a škůdcům (lze identifikovat potenciálně rezistentní genotypy)
7 Nevýhody: - analytické problémy (extrakce, rychlá oxidace, problémy se skladováním) - variabilita v rámci rostliny, ovlivnění prostředím
8 2.2 Terpeny - sekundární metabolity - součást pryskyřic a eterických olejů - výskyt u jehličnanů (ve všech vývoj. stádiích a všech orgánech) - existence oddělených pryskyřičných systémů (kůra, xylem, semena, jehlice..) - méně citlivé na vlivy prostředí než fenoly - některé kódovány jedním genem ( -pinen, -pinen, myrcen, -3 karen, limonen, caryophylen, -felandren)
9 Princip analýzy: -zjišťování kvantity a kvality terpenů kapilární plynovou chromatografií
10 Výhody: - snadná a rychlá analýza (není třeba extrakce, jen u jehlic) - stálé (po extrakci se nemění) - negenetická variabilita existuje, ale dá se standardizovat Nevýhody: - složení se v počátečních vývojových stádiích mění používat materiál od určitého věku - sezónní fluktuace terpenů v jehlicích (v době rašení) - variabilita uvnitř rostliny pro odběry volit standardizovaný bod
11 Využití: a) studium variability populací geografická variabilita terpenů v kůře borovice
12 b) identifikace původu (JD) c) identifikace spontánních mezidruhových hybridů a studium introgrese (introgrese = dlouhotrvající spontánní mezidruhová hybridizace, která vede k šíření genů jednoho druhu do druhého druhu) d) identifikace klonů a kultivarů c) markery rezistence ke škůdcům (býložravcům, hmyzu) a patogenům (houbám)
13 2.3 Izoenzymy - enzymy = bílkoviny s katalytickou funkcí - soubor enzymů stálý, prostředím ovlivňována jen kvantita - enzym primární produkt transkripce a translace
14 DNA gen úsek DNA proteiny enzym protein s katalytickou funkcí genová mutace alela varaianta genu izoenzym molekulární forma enzymu Izoenzymy = enzymy se stejnou nebo podobnou funkcí v metabolismu, které se liší v primární struktuře (různé varianty téhož enzymu) - vznikají genovými mutacemi (liší se v jedné nebo více AMK)
15 - katalyzují stejnou reakci, liší se v elektrickém náboji - méně ovlivňovány prostředím než fenoly a terpeny - při analýze sledujeme přímo projevy genů
16 Postup izoenzymové analýzy 1. izolace izoenzymu z pletiv - listy, jehlice, pupeny, semena (u jehličnatých) - homogenizace v pufru a nasátí homogenátu do výřezu filtr. papíru
17 2. Elektorforetická separace a) medium pro separaci - škrobový nebo polyakrylamidový gel (polymerní řetězcové molekuly) - působí jako molekulární síto
18
19 b) elektroforéza Princip: - izoenzymy se liší nábojem (dle zastoupení el. nabitých AMK) - rychlost pohybu dle velikosti molekuly a náboje
20
21 3. vizualizace enzymově-specifickým barvením - enzymaticky katalyzovaná reakce, při níž vznikají barevné nerozpustné produkty
22 4. hodnocení zymogramu - zymogram = výřez gelu s barevnými proužky v různých polohách - všechny proužky jsou formy téhož enzymu (izoenzymy)
23
24 - počet proužků rozdílný pro enzymy monomerní a multimerní
25 - izoenzymy jsou označovány zkratkou enzymu, např. LAP leucinamino peptidáza IDH izocitrát dehydrogenáza PEPCA- fosfoenolpyruvát karboxyláza. a pořadovým číslem podle rychlosti pohybu v gelu (nejrychlejší mají nejmenší číslo LAP1, LAP2 )
26 Výhody - výskyt ve všech tkáních u všech druhů - neprojevuje se vliv prostředí - analýza snadná, nenáročná, rychlá - jednoduché zařízení - stačí malé vzorky pletiv - možné sériové analýzy Nevýhody - pro málo enzym. systémů (20-40) jsou separační a barvicí techniky lze analyzovat jen malý počet genů - neznáme vztah mezi izoenzymy a hospodářskými znaky
27 Využití: a) studium populačních charakteristik - genetické inventury (struktura populace) - potvrzení autochtonnosti (JD, SM) - tok genů, introgrese - vliv pěstebních opatření na genetickou strukturu - důsledky selekce způsobené imisemi... b) studium reprodukčních charakteristik - systém sprášení v SS
28 c) identifikace rostlinného materiálu - identifikace klonů - rozlišení blízce příbuzných druhů a hybridů - potvrzení autenticity kontrol. křížení d) studium dědičnosti a vazeb lokusů
29 3. Molekulární markery 3.1 DNA - markery - analyzujeme přímo genetický materiál (DNA) - jsou stejné ve všech vývojových stádiích a pletivech - nejsou ovlivněny prostředím - lze studovat kteroukoliv část genomu - souborný pojem, zahrnující rozdílné metody a typy markerů
30 - 2 hlavní techniky a) zjišťování polymorfismu délky restrikčních fragmentů Restriction Fragment Lenght Polymorphism (RFLP) b) techniky založené na PCR
31 a) Zjišťování polymorfismu délky restrikčních fragmentů (metoda RFLP) - využívá restrikčních endonukeláz, tzn. enzymů, které štěpí DNA v tzv. palindromových sekvencích (místech se zrcadlovou symetrií) 5..G AATT C C TTAA G EcoRI endonukleáza z Escherichia coli - počet a délka fragmentů záleží na počtu a rozdělení restrikčních míst - délka fragmentů se měří počtem párů bází (bp)
32
33 Postup: - izolace DNA - štěpení restrikční endonukleázou - vznik fragmentů DNA - elektroforéza - přenos na nylonovou membránu - podélné rozštěpení DNA - hybridizace se značenou sondou - vizualizace radiografií
34 Schéma metody RFLP
35
36 Výhody - lze použít u materiálu v každém stáří (pokud lze získat vhodné množství DNA) - neprojevuje se vliv vývoje - neomezený počet kombinací endonukleáz a vzorků - lze vzorkovat celý genom
37 Nevýhody - technická složitost - vysoké pořizovací náklady na vybavení laboratoře - časové nároky - použití radioaktivních vzorků - bezpečnost, kvalifikovaný personál - vyžaduje značné množství čisté DNA
38 b)techniky založené na PCR (PCR = polymerázová řetězová reakce) izolace DNA amplifikace (zmnožení) DNA v cykleru (nutno dodat primer deoxynukleotidfosfáty (dntp) DNA-polymerázu)
39 3 kroky cyklu a) denaturace DNA (92-96 o C) b) hybridizace primerů (45 65 o C) c) elongace nukleotidových řetězců (72 o C)
40 20 40 cyklů - elektroforéza segmentů - zviditelnění etidium bromidem
41 DNA markery využívající PCR RAPD- Random Amplified Polymorphic DNA = náhodně amplifikovaná polymorfní DNA AFLP amplified fragment lehght polymorfism = polymorfismus délky amlifikovaných fragmentů VNTR variable number of tandem repeats = minisatelity SSR simple sequencee repeats = mikrosatelity
42 Využití genetických markerů 1. taxonomie fenoly, terpeny 2. studium geografické proměnlivosti terpeny 3. studium genetické struktury přirozených a šlechtitelských populací a procesů na populační úrovni terpeny, izoenzymy 4. identifikace a verifikace šlechtitelského materiálu (klonů a jejich směsí, hybridů) izoenzymy, DNA - markery 5. selekce na odolnost (markery rezistence) fenoly, terpeny 6. studium genetického materiálu DNA - markery
43 Prokazování identity a původu reprodukčního materiálu pomocí genet. markerů v les. praxi Podmínky použitelnosti markeru: ontogenetická stabilita výskyt ve všech ontogen. stádiích izoenzymy, DNA-markery
44 Charakter reprodukční materiálu lesních dřevin klonový (TP, VR, SM) generativní z porostu (sta až tisíce genotypů, každý 1x) z klonového semenného sadu (několik desítek různých genotypů, každý zastoupen několika jedinci)
45 Princip prokazování identity a původu klonového mat. - všichni jedinci stejný genotyp srovnat zymogramy generativní materiál - srovnání genetické struktury zdrojového porostu nebo sadu a potomstva (osivo, sazenice) na základě a) přítomnosti/absence genů/alel ve zdrojovém porostu a potomstvu
46
47 problémy: - pokud se alela nalezená v potomstvu nevyskytuje ve výběrovém souboru mateřské populace, neznamená to, že se v ní nemůže vyskytovat - velikost souboru ovlivňuje spolehlivost závěru
48 b) srovnání frekvence alel ve zdrojovém porostu a potomstvu - problém, nakolik potomstvo reprezentuje mateř. porost (sběr jen z některých stromů, ztráty při zpracování a pěstování ) původ nelze jednoznačně potvrdit
49
Genetické markery - princip a využití
Genetika a šlechtění lesních dřevin Genetické markery - princip a využití Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován
Genetické markery, markery DNA
Obecná genetika Genetické markery, markery DNA Prof. Ing. Dušan GÖMÖRY, DrSc. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Mendelova genetika v příkladech. Genetické markery
Mendelova genetika v příkladech Genetické markery Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Hodnocení genetické proměnlivosti Fenotypový
Prokazování původu lesního reprodukčního materiálu pomocí genetických markerů
Genetika a šlechtění lesních dřevin Prokazování původu lesního reprodukčního materiálu pomocí genetických markerů Ing. R. Longauer, CSc. Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Využití molekulárních markerů v systematice a populační biologii rostlin. 12. Shrnutí,
Využití molekulárních markerů v systematice a populační biologii rostlin 12. Shrnutí, Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length Polymorphism) založené
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Analýza DNA. Co zjišťujeme u DNA DNA. PCR polymerase chain reaction. Princip PCR PRINCIP METODY PCR
o zjišťujeme u DN nalýza DN enetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní mutace,
Co zjišťujeme u DNA ACGGTCGACTGCGATGAACTCCC ACGGTCGACTGCGATCAACTCCC ACGGTCGACTGCGATTTGAACTCCC
Analýza DNA Co zjišťujeme u DNA genetickou podstatu konkrétních proteinů mutace bodové, sekvenční delece/inzerce nukleotidů, chromosomové aberace (numerické, strukturální) polymorfismy konkrétní mutace,
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Složky šlechtění lesních dřevin šlechtění testování rozmnožování Ověřování vyšlechtěného
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK Co je molekulární ekologie? Uměle vytvořený obor vymezený technickým
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 ZÁKLADNÍ GENETICKÉ POJMY Genetika je nauka o dědičnosti a proměnlivosti znaků. Znakem se
MOLEKULÁRNÍ TAXONOMIE - 4
MOLEKULÁRNÍ TAXONOMIE - 4 V této přednášce si představíme metody, které získávají molekulární znaky bez použití sekvenace. Všechny tyto metody je teoreticky možné sekvenací nahradit. Oproti sekvenaci celých
Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis.
Populační studie Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Molecular Ecology 10:205 216 Proč to studovali?
Analýza DNA. Co zjišťujeme u DNA
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů, záměny), chromosomové aberace (numerické, strukturní) Polymorfismy konkrétní
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 2.4 GENETICKÉ MANIPULACE in vitro - nekonvenční techniky, kterými lze modifikovat rostlinný
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské. doc. RNDr. Ivan Mazura, CSc.
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské praxi doc. RNDr. Ivan Mazura, CSc. Historie forenzní genetiky 1985-1986 Alec Jeffreys a satelitní DNA 1980 Ray
Semenné sady systém reprodukce a efektivita
Genetika a šlechtění lesních dřevin Semenné sady systém reprodukce a efektivita Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským
Využití molekulárních markerů v systematice a populační biologii rostlin. 10. Další metody
Využití molekulárních markerů v systematice a populační biologii rostlin 10. Další metody Další molekulární markery trflp ISSRs (retro)transpozony kombinace a modifikace různých metod real-time PCR trflp
Metody studia historie populací. Metody studia historie populací. 1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky.
1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky. 2)Mechanizmy evoluce mutace, p írodnívýb r, genový posun a genový tok 3) Anagenezex kladogeneze-co je vlastn druh 4)Dva
Genová vazba. Obr. č. 1: Thomas Hunt Morgan
Genová vazba Jednou ze základních podmínek platnosti Mendelových zákonů je lokalizace genů, které podmiňují různé vlastnosti na různých chromozómech. Toto pravidlo umožňuje volnou kombinovatelnost genů
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Detekce Leidenské mutace
Detekce Leidenské mutace MOLEKULÁRNÍ BIOLOGIE 3. Restrikční štěpení, elektroforéza + interpretace výsledků Restrikční endonukleasy(restriktasy) bakteriální enzymy štěpící cizorodou dsdna na kratší úseky
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
Co zjišťujeme u DNA ACGGTCGACTGCGATGAACTCCC ACGGTCGACTGCGATCAACTCCC ACGGTCGACTGCGATTTGAACTCCC
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Molekulární genetika II zimní semestr 4. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika II zimní semestr 4. výukový týden (27.10. 31.10.2008) prenatální DNA diagnostika presymptomatická Potvrzení diagnózy Diagnostika
Populační genetika a fylogeneze jedle bělokoré analyzována pomocí izoenzymových genových markerů a variability mtdna
Mendelova genetika v příkladech Populační genetika a fylogeneze jedle bělokoré analyzována pomocí izoenzymových genových markerů a variability mtdna Roman Longauer, Ústav zakládání a pěstění lesů, MENDELU
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Proměnlivost dřevin Komponenty fenotypové proměnlivosti Dědivost 1. Proměnlivost dřevin
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
Fisher M. & al. (2000): RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae).
Populační studie Fisher M. & al. (2000): RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany 87(8): 1128
Genotypování: Využití ve šlechtění a určení identity odrůd
Molekulární přístupy ve šlechtění rostlin Aplikovaná genomika Genotypování: Využití ve šlechtění a určení identity odrůd Miroslav Valárik 14.2. 2017 Šlěchtění rostlin: Cílený výběr a manipulace s genomy
Mendelistická genetika
Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Tradice šlechtění šlechtění zlepšování pěstitelsky, technologicky a spotřebitelsky významných vlastností
Populační genetika III. Radka Reifová
Populační genetika III Radka Reifová Genealogie, speciace a fylogeneze Genové genealogie Rodokmeny jednotlivých kopií určitého genu v populaci. Popisují vztahy mezi kopiemi určitého genu v populaci napříč
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních
GENETIKA U VLS ČR, s. p. Ing. Pavel Češka Vojenské lesy a statky ČR, s. p.
GENETIKA U VLS ČR, s. p. Ing. Pavel Češka Vojenské lesy a statky ČR, s. p. STRUČNÝ POPIS SOUČASNÉHO STAV GENETIKY U VLS je v současnosti využíván především reprodukční materiál z identifikovaných a kvalifikovaných
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
Charakterizace hybridních trav pomocí cytogenetických a molekulárních metod
Molekulární přístupy ve šlechtění rostlin Olomouc 14. února, 2017 Charakterizace hybridních trav pomocí cytogenetických a molekulárních metod Jan Bartoš Ústav experimentální botaniky Olomouc, Czech Republic
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
První testový úkol aminokyseliny a jejich vlastnosti
První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
KBI / GENE Mgr. Zbyněk Houdek
Dědičnost komplexních a kvantitativních znaků KBI / GENE Mgr. Zbyněk Houdek Komplexní znaky Komplexní fenotypy mohou být ovlivněny genetickými faktory a faktory prostředí. Mezi komplexní znaky patří např.
thaliana. balky. 1. Genetická analýza a identifikace počtu genů 2. Určení DNA markerů v genetické vazbě s genem
Praktikum z genetiky rostlin JS 2014 Genetická analýza a genetické markery 1. Genetická analýza a identifikace počtu genů odolnosti k padlí u ječmene. 2. Určení DNA markerů v genetické vazbě s genem odolnosti
Příklady z populační genetiky volně žijících živočichů
Obecná genetika Příklady z populační genetiky volně žijících živočichů Ing. Martin ERNST, PhD. Ústav ochrany lesů a myslivosti LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
Fingerprinting mikrobiálního společenstva (DGGE/TGGE, RFLP,T-RFLP, AFLA, ARDRA, (A)RISA)
EKO/MEM - Molekulární ekologie mikroorganizmů Fingerprinting mikrobiálního společenstva (DGGE/TGGE, RFLP,T-RFLP, AFLA, ARDRA, (A)RISA) EKO/MEM - Molekulární ekologie mikroorganizmů DNA fingerprinting genetická
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Mutace jako změna genetické informace a zdroj genetické variability
Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt
polymorfní = vícetvarý, mnohotvárný
Genetický polymorfismus s Řeckyy morphos = tvar polymorfní = vícetvarý, mnohotvárný Genetický polymorfismus je tedy označení pro výskyt téhož znaku ve více tvarech, formách, přičemž tato mnohotvárnost
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Hybridizační metody v diagnostice Mgr. Gabriela Kořínková, Ph.D. Laboratoř molekulární
Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky
Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická
Metodické listy OPVK. Molekulární metody hodnocení genotypů Marker Assisted Breeding 14.
Metodické listy OPVK Molekulární metody hodnocení genotypů Marker Assisted Breeding 14. Molekulární metody hodnocení genotypů 14.1. Izolace DNA V aplikacích zaměřených na analýzu rostlinného genomu je
Mikrosatelity (STR, SSR, VNTR)
Mikrosatelity (STR, SSR, VNTR) Repeats Více než polovina našeho genomu Interspersed (transposony) Tandem (mini- a mikrosatelity) Minisatellites (longer motifs 10 100 nucleotides) mikrosatelity Tandemová
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)
ODLIŠENÍ ODRŮD PŠENICE OBECNÉ TRITICUM AESTIVUM L. METODOU RAPD
ODLIŠENÍ ODRŮD PŠENICE OBECNÉ TRITICUM AESTIVUM L. METODOU RAPD Distinguishing of Wheat Varieties (Tritium aestivum L.) by Method RAPD Zuzana Kohutová, Zuzana Kocourková, Hana Vlastníková, Petr Sedlák
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Genetika kvantitativních znaků
Genetika kvantitativních znaků Kvantitavní znaky Plynulá variabilita Metrické znaky Hmotnost, výška Dojivost Srstnatost Počet vajíček Velikost vrhu Biochemické parametry (aktivita enzymů) Imunologie Prahové
Důsledky selekce v populaci - cvičení
Genetika a šlechtění lesních dřevin Důsledky selekce v populaci - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Referenční lidský genom. Rozdíly v genomové DNA v lidské populaci. Odchylky od referenčního genomu. Referenční lidský genom.
Referenční lidský genom Rozdíly v genomové DNA v lidské populaci Zdroj DNA: 60% sekvencí pochází ze sekvenování DNA od jednoho dárce (sekvenování a sestavování BAC klonů) některá místa genomu se nepodařilo
Využití molekulárních markerů v systematice a populační biologii rostlin. 2. Přehled aplikací a otázek
Využití molekulárních markerů v systematice a populační biologii rostlin 2. Přehled aplikací a otázek Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length
Polymerázová řetězová reakce. Základní technika molekulární diagnostiky.
Polymerázová řetězová reakce Základní technika molekulární diagnostiky. Kdo za to může? Kary Mullis 1983 Nobelova cena 1993 Princip PCR Polymerázová řetězová reakce (polymerase chain reaction PCR) umožňuje
Selekce v populaci a její důsledky
Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Genotypování markerů užitkovosti a zdraví u skotu
Mezinárodní odborný seminář Využití chovatelských dat onemocnění skotu pro management stád, šlechtění a pro racionální užívání antimikrobik. Genotypování markerů užitkovosti a zdraví u skotu Jitka Kyseľová
Genetická diverzita masného skotu v ČR
Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat Určování a ověřování paternity u koní. Bakalářská práce Brno 2006 Vedoucí bakalářské
Molekulárně biologické metody princip, popis, výstupy
& Molekulárně biologické metody princip, popis, výstupy Klára Labská Evropský program pro mikrobiologii ve veřejném zdravotnictví (EUPHEM), ECDC, Stockholm NRL pro herpetické viry,centrum epidemiologie
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
ZAKLÁDÁNÍ SEMENNÝCH SADŮ DRUHÉ
Lesy České republiky, s. p., Hradec Králové V Ý Z K U M N É P R O J E K T Y GRANTOVÉ SLUŽBY LČR Souhrn projektu ZAKLÁDÁNÍ SEMENNÝCH SADŮ DRUHÉ GENERACE PRO BOROVICI LESNÍ Řešitel Výzkumný ústav lesního
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP Polymerázová řetězová reakce (PCR) je in vitro metoda pro enzymatickou syntézu definované sekvence DNA. Reakce využívá dvou oligonukleotidových
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Polymorfizmy detekované. polymorfizmů (Single Nucleotide
Polymorfizmy detekované speciálními metodami s vysokou rozlišovací schopností Stanovení jednonukleotidových polymorfizmů (Single Nucleotide Polymorphisms - SNPs) Příklad jednonukleotidových polymorfizmů
Polyfázová identifikace kmenů Aeromonas encheleia
Polyfázová identifikace kmenů Aeromonas encheleia D. Nováková, A. Vávrová, P. Švec a I. Sedláček Česká sbírka mikroorganismů Charakterizace aeromonád G-, pohyblivé tyčky, kokotyčky, čeleď Aeromonadaceae
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
Enzymy v molekulární biologii, RFLP. Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek
Enzymy v molekulární biologii, RFLP Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek Enzymy v molekulární biologii umožňují nám provádět celou řadu přesně cílených manipulací Výhody enzymů:
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
Ivo Papoušek. Biologie 8, 2015/16
Ivo Papoušek Biologie 8, 2015/16 Doporučená literatura: Metody molekulární biologie (2005) Autoři: Jan Šmarda, Jiří Doškař, Roman Pantůček, Vladislava Růžičková, Jana Koptíková Izolace nukleových kyselin
Základní pravidla dědičnosti
Mendelova genetika v příkladech Základní pravidla dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Mendelovy zákony dědičnosti
Investujeme do naší společné budoucnosti
Investujeme do naší společné budoucnosti TECHNICKÝ LIST TOLERANCE K ALS INHIBITORŮM U CUKROVÉ ŘEPY STRUČNĚ V roce 2014 firma SESVANDERHAVE veřejně oznámila nalezení rostlin cukrové řepy tolerantních k
MENDELOVSKÁ DĚDIČNOST
MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp
Genetické markery. Marker (genetický marker) = signální gen, signální linie. morfologické bílkovinné (izoenzymy) DNA
Genetické markery Marker (genetický marker) = signální gen, signální linie morfologické bílkovinné (izoenzymy) DNA 1. založené na hybridizaci DNA 2. založené na polymerázové řetězové reakci amplifikace
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické kontigové mapy Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s konstrukcí
Genetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward
Laboratoř molekulární patologie
Laboratoř molekulární patologie Ústav patologie FN Brno Prof. RNDr. Jana Šmardová, CSc. 19.11.2014 Složení laboratoře stálí členové Prof. RNDr. Jana Šmardová, CSc. Mgr. Květa Lišková Mgr. Lenka Pitrová