Absolutní nebo relativní?

Rozměr: px
Začít zobrazení ze stránky:

Download "Absolutní nebo relativní?"

Transkript

1 Statstcká odynaka II dální plyn chcká rovnováha a kntka bsolutní nbo rlatvní? absolutní ají přrozné a unvrzální rrnční stavy ( K), ( a), ( ), n ( ol),, rlatvní číslnou hodnotu ůž přsoudt jn zěně U, H,, G nop S II. věta rlatvní, III. věta absolutní! Q β ntřní nrg. postulát Q ln Q Q β β lnq ln Q β

2 Kanoncká Q [,, ] Q U U ( ) ( ) S ln Q ln Q S k ln Q + lnq / ln Q + zbytk s dá odvodt z odynackých vztahů ln Q U U ( ) + U S G G ( ) H U + ( ) a další ( ) U ( ) ln Q ln Q H H ( ) + G + ln Q ln Q + ln Q + partční unkc Q zná-l Q, uí určt všchny odynacké vlčny systéu

3 jště ochu nop. krokanoncký p W S k S k p ln p p ln p k lnw p. postulát S k lnw k lnw Boltzannův vztah ntřní nrg U U ( ) ln Q U l ln Q K l U K ln Q + U / ( ) zálží k ču j vztažna Q Idální plyn

4 Idální plyn bodové částc, ké nnagují! Q Q Q! j j β j j β j β j j j j stjné částc j Idální plyn klascká yzka na každý stupň volnost olkuly přpadá / nrg kvpartční prncp n přílš korktní ( β ) l Q! ln Q ln! + U ln ln! + U ( ) l l ( ) ( + ln + ln + ln ) l ranslační příspěvk Λ, Λ h / ln ln ( Λ ) S k ln + k U + S 5 H U +, U π k ( Λ ), H za nízkých tplot nplatí stavová rovnc 5 k 4

5 H,, r, Kr, X, Rn U ( ) Q! / Λ, Λ h / Jdnoatoový plyn π lnq U ( ) + ln + ln ln( Λ ) S 5/ R ln pλ G U S + R S + R G 5/ 5 Λ R ln R ln Λ Rotační příspěvk lnární dva ační stupně volnost nlnární tř ační stupně odl tuhý or J J g J + J h ( J + ) J ( J + ) I hcb Rotační partční unkc ( J + ) J ( J + ) σhcb σ hc I I I I I B I y z / βhcbj βhcbj ( πi I BI ) I I yy I y zy ( J ( J + ) + ) dj I I / zz z I, yz hcb I θ I y r ( y + z ) y ační tplota hcb > θr k σ stupň sy součn hlavních ontů svačnost / / π σ θ θ Bθ 5

6 Rotační partční unkc rncpal as and onts o nrta n atoc unts: IGLUS X Y Z... hs olcul s a prolat syc top. Rotatonal syy nubr. Rotatonal tpraturs (Klvn) Rotatonal constants (GHZ): Rotační příspěvk S U G / / ( I I BI ) σ hcb ln k ln, k,, H + k p, U, S U G, π σ hc ln k ln /, H / k, + / k p, U /, brační příspěvk lnární 5 rací nlnární 6 rací odl haroncký osclátor n n + hν 6

7 Dvouatoová olkula S U G vo, n nhν / k ln, H k ( ), hν / k ln hν / ( ) ( ) p, ln U vn vztažno k ν, hν hν θ k rační tplota,, ícatoové olkuly hν 5, 6 / ln S U G k, k k, H ( ), U p, hν / ( ) ln ( ) ln vn, brační partční unkc thylluord, 6 9 bratonal tpraturs: (Klvn) U U b(o) ( ) + U θ / U U b(bot) ( Bot) θ / θ / 7

8 lkoncký příspěvk ctované stavy lkonů njsou za běžných tplot populovány význanější u atoů s otvřnou slupkou l Gaussan a příspěvky rncpal as and onts o nrta n atoc unts: IGLUS X Y Z... hs olcul s a prolat syc top. Rotatonal syy nubr. Rotatonal tpraturs (Klvn) Rotatonal constants (GHZ): Zro-pont ratonal nrgy (Jouls/Mol) (Kcal/Mol) bratonal tpraturs: (Klvn) Gaussan a příspěvky (hral) S Kal/Mol al/mol-klvn al/mol-klvn otal lconc... ranslatonal Rotatonal bratonal Q Log(Q) Ln(Q) otal Bot.65D otal.7574d b (Bot).6769D b ().9D lconc.d+.. ranslatonal d Rotatonal.9859D

9 9 Střdní nrg θ β θ αβ αβ β > > ln / dvouatoová olkula plná kapacta...,, R R R θ > + plná kapacta θ R θ plo ta / 5/ 7/ /R, dsocac + ++ /

10 c nní dální. anharoncta rací dstorz oru orac hν n + hν n + J kor ( J + ) hcb J ( J + ) α n + J ( J + ) konst. anharoncty 4 h D D 6 8π ν I cnugální dstorzní konstanta hcká rovnováha Rovnovážná konstanta standardní olární partční unkc G G( ) ln Q + nr G G( ) ln + ln + nr G j, ΔG K G j, ( ) R ln K j j, j, R ln ν j Δ / R ν j J j nr ln rozdíl nrgí základního stavu produktů a raktantů

11 Dsocační rovnováha K X, X, ( ) X, X, X,, X (g) X (g) g X,, Δ / R l, X,, Δ X,, D ( X ) dgnrac základního l. stavu atoů hcká kntka or anztního stavu + B produkty v průběhu rakc s B stuj taková go jadr, ž z ní probíhá rakc spontánně buď v sěru raktantů nbo v sěru produktů této go říká anztní stav a j v rovnováz s raktanty

12 Rakční koordnáta anztní stav rychlost chcké rakc tplné zabarvní rakc výchozí látky produkty or anztního stavu d[ produkty] v k dt ΔG R ln K ΔG / R k k K k ΔD / R K B ξ ξ hν ξ / hν ξ k κν ξ k κ h ΔG / R [ ] k K [ ][ B] rac podél rakční koordnáty anssní kocnt κ( ) Γ( ) γ ( ) g( ) rcrossng tunlování odchylky od rovn. or anztního stavu k κ h ΔG / R yrngova rovnc

13 S S bývá ztotožňován s staconární bod na S tzv. sdlový bod. druhu n n n n n n L M O M M L L H { } λ

Á É Č ď ý ý Č Ť ž ý ý ť žž Ž ý ú ž š ý ž ž ž š š š ý Š ť ý ý š ž ž ý ž ž Ň ý ž ť ť ú ž ý š ž š ž ž š ž š ž ý ý šť ý Ý Ú ň ý ý Ý ž ý ý ť ý ž ý ý ž ý ď ý ý š ý ž ú ú ď ý ž š ž ý ž ť ý ý ý ý ý Á ý ď ž š ž

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

š š š ů ů š ž ž š É Ú Š ý ů ý ů ů É ů ů ý Ů ý Ů ť š ů š ů š Č ý ň ú Č ý ů ň ý ž š ž š ý ů ň š š ý š ž ů ů š Š Č šť Č š š ý ů ý ý š Š ů Š ů ů ý ů ů Š š š ů ý Š ů š ý ý ů ů ý š ý Š ž šť Š ž ý Č š ž š š ý

Více

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv

Více

Kinetika spalovacích reakcí

Kinetika spalovacích reakcí Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity Dfúz Fckův zákon dfúz v plynu Přdpokládjm dální plyn s konstantní tplotou T a konstantním tlakm p v kldu, v ktrém j nízká nhomognní hmotnostní koncntrac příměs Pak v staconárním stavu musí být clková síla

Více

Lambertův-Beerův zákon

Lambertův-Beerův zákon Lambertův-Beerův zákon Intenzta záření po průchodu kavtou se vzorkem: Integrovaný absorpční koecent: I nal = I ntal e ε c L A = ε ( ~ ν ) d~ ν Bezjednotková včna síla osclátoru: v cm -1 = 4.3 10 9 A Síla

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

Ó Ť Ý š ř š ř ě ě šť ě ť ó Ú š š ý ž ý ž ý ž ý ž ž ý ý ě ý ý ý ý ě š ý ý ť ě Ť ý ů ů ř ě ž ž ý É Í É Ě É ž É Ý Ě Ý ó ď ď ť ř ů ž ž ě ž ř ž ž ž ě ě ý ě ř ž š ž ž ýš ř ý ž ý ó ýš ýš ž óž ě ě ě ý ú ž ž ž

Více

š š Í š Ž š č š ď š š Ž ý Ť ý ůž š š š š č ů ž ž ž ů č ů š ý ž č ý š š ý ů ž č ý ž ýž š Ž š Ž č š Ť ý č š š č č Ž č š ý ů ž š ý Ž č š č Ť č ž ť ý ů č ž ů š š č ůž Ž ý ů č ň ž ý ž Ž ý š ň š č ů ž ýš ý ž

Více

é é ě ý ž ŘÁ ť ó ó ě ě é ů ě ě ě ý ů š é ž ý ě ě ě ý š é ý ě Ž ž š š é é Ýý ý ž ý ž š ň é ě é é é ě ť ó ě Á é é ě ě é ž é é ěž ě é ěž ě ů š ý ů ě ů é ý é ů ě é ě ě ů ě ž ě ů ů ě ýš ů ě šý ů š ěž š ě ů

Více

Ý ý Č ž ý ž ů ď ý ů ů Ýú ž ž ý ž ý ů ý Š ž Ř ý Š ý ý ý ů ý ů ý ž ý ž Ř Š Š ý ž ý ý Š ý ú ý ů ý ž ý Š ý ý ý ý ů ž ý ú ý ůž ň ůž Š ů Č ž ý ž ý ů ů ý ž ž ý ů ý Ů ý ů ý Ů ý ů ů ý ů ů ú ž Ž Š Č ú ýž ý ž ý ý

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t

Více

ů ž é ž ž ň Š é ž ů ž ž ž ž é é ž ž ž é é ž ů ž ň ž é ž ž ů Ž ž é ž ů é ž é é é ž Ř Č é ů ž é ů é é ž ž ž Ř é Š Š é é ů ž ů ů ž é ů é ů ů ů ů é é ž ů ů é Š ž ž ž ž ů é žň ž ů ž ž é é ž ž ž Ž ů é é é ž

Více

Úloha 1 Přenos tepla

Úloha 1 Přenos tepla SF Podklady pro cvční Úloa 1 Přnos tpla Ing. Kaml Staněk 09/010 kaml.stank@fsv.cvut.cz 1 Základní pojmy 1) Tplota Míra kntcké nrg částc látky. Jdnotka klvn [K] nbo stupň Clsa [ C] ( C) T(K) 7315 (1.1)

Více

Í Í Ů Č ř ů ř Í ú ů ř ú ř ů ů ů ř ú ů Ť ž ů Š ř Š ů ř ř ů ř ů ř ů ú ž ž ú ň ž ř Ú Ž Í ž ř ř É Ť Ň Ř ř ů ů ž ů Ý Ř Ě ř ž ř ř Ý ů ř ř ů ř ú ů ů ž ů Č ř ž ř ř ů ř ř Ý ř ř ř ž ř ů ž ž ž ď ů ř ů ů ů ů ž ů Í

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

ž é é Č Ž é é Č Č ú é é Ž ů š é ů š é ú ž Ž š Ž Ž é é š é Ž é š š é ů š š é ú é é Ů ů Č Ú Ú é é Š Í ž ň é é Ž ň é é ň š é Ž ň é é é š ů ů ň Ž é Ž é é ú ň é Ž ů ů ů é ů Ž Ž é ú ú ú š Ž ú ž ž Ž é ů é é š

Více

Č Č É Č ě ě ý ž ě ý ě š š ě š ě ý ý ě Č Š š ě ěž Š ň š ž Ž ě š Č ě Č ě ý ž š š óš š ý š ž ú ěš ě ó ó ž ě ž ž ě ě ň ž ě ě Ž É ý ě ž ě ě ý ě ě Ž ú ý ě ě ě ě ž ě Žú ý Ž Ó ě Č ú Š š š š ě š ý ý ý ě ě Š ý ě

Více

Ě Ý Ř úř ř ý Á Ř Á É Ř Á Ř É Á š Ž Á Ř Ž ú ř úř úř úř ř š ý ú ř Š ř ů ú ř ř š ř ů ř ř ú Ř ú ř ř ž ř ú ú ý ů ý ř ú ř ř ů ř ú ř ř Ž ů úř úř ř ř ř š ť ř š Ž ý ř ř ů ř úř ň ů ř Ž Ž ř ř ů ů ý ý Ž řň š ř š ý

Více

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje.

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje. Příklad 1 Vypočtěte počet způsobů rozdělení 18 identických objektů do 6 boxů s obsahem 1,0,3,5,8,1 objektů a srovnejte tuto váhu s konfigurací, kdy je každý box obsazen třemi objekty. Která konfigurace

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu 1 ato Příloha 307 j oučátí článku 13. Enrgtcké blanc lopatkových trojů, http://www.tranformacntchnolog.cz/nrgtck-blanc-lopatkovychtroju.html. Měrná vntřní prác tplné turbíny př adabatcké xpanz v - dagramu

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB. Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB. Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze ČESKÉ YSOKÉ UČENÍ TECHNICKÉ PRAZE Fakulta stavbní Laboratoř TZB Cvční č. 3 Stanovní účnnost výměníku ZZT Ing. Danl Adamovský, Ph.D. Katdra TZB, fakulta stavbní, ČUT v Praz Praha 2011 Evropský socální fond

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

ú Š Í Á É ú ó ý Ž ů ž ž Ž Í ú ý Ť ž ž Ž ó ň Ž É Ý ž Š ž ý ů ž Š ý ú ž ž ý ž ý ý ž ž ž ů ů ž ž Ť ý ž ů ý Í ý ž ůž ž ž ž ň ž ň ž ů ž ň ú ž ý ž ú ú ž ů ý ú ý ů ý ú ý ů ý ž ž ž ž ž Ž ů ž ý ý ž ý ú Í É Š Á

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Ť Ú Ž Ý Ý ě ě ě ý ů ě ů ů ě ů ů ř č ě č ď č ň ý š ě ž ř ě ý ě š ř š ž ý ý š š ý ě Ú ř ž ď ě ř ž ý ř š ý ČČ Č č ý ČČ Č Č Č Č ý Č Č Č Č Č Č Č ý č Ř š ř č ě ě Á ž Ž ě ě ě Šý ě ž ř ě ů č ž ě š š ý č ý ČČ

Více

Teorie her pro FJFI ČVUT řešené úlohy

Teorie her pro FJFI ČVUT řešené úlohy Tyto úlohy volně doplňují přednášky z kursu teorie her. Rozsah látky a použité značení odpovídá slajdům dostupným na stránce věnované výuce. Γ S S Γ 3 o = o = o 3 = vítězná o o Γ u u(o ) = u(o ) = u(o

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unvrzta Tomáš Bat v Zlíně LABORATORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Vntřní odpor zdroj a voltmtru Jméno: Ptr Luzar Skupna: IT II/ Datum měřní: 0.října 2007 Obor: Informační tchnolog Hodnocní: Přílohy:

Více

š š ž ý é é š ů š ž é é é š é ž ý ž é Ť ž š é ý é é é é é ů ž š ů š ů ů ý ú é ž š ý ž ý ů ůž ý é ž ů é ď ů é šš ý ý ý é é šš žý ý é é ý é šš š é ýš š

š š ž ý é é š ů š ž é é é š é ž ý ž é Ť ž š é ý é é é é é ů ž š ů š ů ů ý ú é ž š ý ž ý ů ůž ý é ž ů é ď ů é šš ý ý ý é é šš žý ý é é ý é šš š é ýš š ď Í ú ó š ů ú š Š ý é ý ž ů é é é ýš ý é é ž Ť ů ý é ý ů ď é é š é ý É é ž é ú é é Ž é Ž ý ý ý ž é é š š ž ý é é š ů š ž é é é š é ž ý ž é Ť ž š é ý é é é é é ů ž š ů š ů ů ý ú é ž š ý ž ý ů ůž ý é ž ů

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

Kmity a rotace molekul

Kmity a rotace molekul Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KINEICKÁ EORIE PLYNŮ IDEÁLNÍ PLYN plyn skládající se z velkého počtu veli alých částic stejné hotnosti částice jsou stejně velké a ají tvar koule všechny polohy a všechny sěry pohybu částice jsou stejně

Více

č ý ó É Č é ú ř ý É ú ý é ž ú ú ú ý é ú ý é ů Č Ť ú ů ů é Ó Č é é é é ú ř ů Č ř é ř é ř č ý ý ý ů ý é ó ý ú Č Č Č ý č é ý é ý úč ý é é ů ý é ý é é ů č řů ý ň ý é ž ž Ť é ý ů é ý é ž ý Č ž ž ů ů é ž ů

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

Ž Ž Á Ů Á Á ú Á ú Ž Ž Ž Ď ú ú Á Ž Ý Ž Ý Ž Ý Ú Ž Ž Ď Ú Ž ú Ž Ú Ž Ž Á Č ú Ž Ň Ů ů ŽÁ Š Ž Á Á Ů Ú ÁÁ Á Ž Ž Ž ú Ú Ž Ú Á Á ů Ú Š ú Ž Á Ž Ž ř Ů ú Ů Ž Ž Ž Ů Ž Á Ž Ž Ž Ž Ý Ž Ý Ď Ž Ž Á Ý Ů Ý Ý Ý Ž Ž Ž Ž Š Ž ř Ý

Více

ú ň ň ů ý ů ů ů ň Í ů ý ů ý ý ý ň ú ý ů ú ň ý ú ý ů ú ů ý ý ů ď ď ň ú ů ý ů ý ý ý ý ů ý ý ý ý ý ý ó ť ý ů ý ů ý ý ý ý ý ď ý ý ý ý ů ý ů ý ý ý ý ů ý ý ý ý ů Í ů ď ý ý ů Ť ý ý ý ý ý ý ý ú ý ů ú ú Í Ť ú ú

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ATOMOVÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Kvantování nrgi lktroagntického zářní opakování téa Elktroagntické zářní Planck (1900): Enrgi lktroagntického zářní ůž být vyzářna

Více

50 th IChO 2018 TEORETICKÉ ÚLOHY BACK TO WHERE IT ALL BEGAN. 19 th 29 th July 2018 Bratislava, SLOVAKIA Prague, CZECH REPUBLIC

50 th IChO 2018 TEORETICKÉ ÚLOHY BACK TO WHERE IT ALL BEGAN. 19 th 29 th July 2018 Bratislava, SLOVAKIA Prague, CZECH REPUBLIC 19 th 29 th July 2018 Bratislava, SLOVAKIA Prague, CZECH REPUBLIC www.50icho.eu TEORETICKÉ ÚLOHY Země: Česká republika Jméno a příjmení: Kód studenta: Jazyk: čeština 50 th IChO 2018 International Chemistry

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

Tepelná vodivost pevných látek

Tepelná vodivost pevných látek Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné

Více

k n ( k) n k F n N n C F n F n C F F q n N C F n k 0 C [n, k] [n, k] q C [n, k] k n C C (n k) n C u C u T = T. [n, k] C (n k) n T = k (n k). F n N u = (u 1,..., u n ) v = (v 1,..., v n ) F n d(u, v) u

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

ú ř ý ř ř ž ť ý ž ý ť Ě Í ú ý Š ž ř ř Í ř ř ř ž ť ř Í ž Ř Ý Š Ě Í Ž Í Š Ě Í ú ž Í Í ú ř ř Í ž ýž ť ÍřÍ ž ř Í ř ř Í Í ý Í ý ú Í ž ř ú ž ř ý Í Ý ř Í Í ř Í ř ý ř Í ý ř ů ý ř Í ř Š ý ř Í ř Í Í ý ř ů Í Í ží

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

3.10. Magnetické vlastnosti látek

3.10. Magnetické vlastnosti látek 3.10. Magntické vlastnosti látk 1. Sznáit s s klasifikací látk podl charaktru intrakc s agntický pol. 2. Nastudovat zdroj agntického pol atou, ktré souvisí s pohyb lktronu v lktronové obalu atou. 3. Vysvětlit

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k

Více

Š Ž Ž Í Í Í ň ž Í ž Í ž Í Í ž Ý Í Í Ť Ý Í Ť Í Š Í Í ž Ó Ť Í ň Í Í Á ď Ť Ť ú ž Ý Ú ž Ý Ž ž ž Ý Ť Í Ž Ž ž Ť Ž Í ň Í ý ž ž Í Ť Ť Ť ž Ý Í Ť Í ň Ž Ť Í ž Ý Ý Ý Ý Í Ý ž Ť Í Í ž Í Ť Í Í ž Ó Ó Í Ó Ř Í Š Ý Ý Ý ň

Více

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu

Více

Č ž ř ó ě ž ú ž ž ž ě ž é ž Ž ž ž ě ř ž ž ů ž Č ž ě ž ů ě ř ž ž ž ě ů ž ř é ě ž ů é ě ř ě ž ž ů é ž ř ě ě ě é ž ž ž ě ř ř ě ž ž ž ř ř ě ž ž ž úř ě ěř

Č ž ř ó ě ž ú ž ž ž ě ž é ž Ž ž ž ě ř ž ž ů ž Č ž ě ž ů ě ř ž ž ž ě ů ž ř é ě ž ů é ě ř ě ž ž ů é ž ř ě ě ě é ž ž ž ě ř ř ě ž ž ž ř ř ě ž ž ž úř ě ěř Č ž ž Á ž Č ž ř ř Šů é é ě ž ž é ž é ž ž é ž ý é ž ý ů ú ů ž ž ů ž ž ř é ž é ž é ú ř ž ř ý ř ž úř ě ěř ý ř ě ž ů ý ěř é ě é ě úř ě ěř ý é úř ě ěř é ř é ý ý ý ý ý ý ě ř ě ž ů ý ž ř ě éú ž ě ř ř ž é ž é

Více

Jednosložkové soustavy

Jednosložkové soustavy Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů

Více

SIC1602A20. Komunikační protokol

SIC1602A20. Komunikační protokol SIC1602A20 Komunikační protokol SIC1602A20 Mechanické parametry Rozměr displeje 80 x 36 mm Montážní otvory 75 x 31 mm, průměr 2.5mm Distanční sloupky s vnitřním závitem M2.5, možno využít 4mm hloubky Konektor

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

ř é Ů é ř ž ř é é ř ž ř Ů ř ř ř Ú é Í ř ř ř é Ž é Í ř é Ý ř ř é é é é ř ř ř é é ř é é ř é Ž ř Ý é ří ř Ř é ř ř Ž Ů ř ř ř Š Í ří ř ř řň é ř Ú řň é ř řň é ř Š ř ž é ř Ž ř Ž ř ř ř Ž Á Ž Ž Š ř ř ř ř ř é é

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Konvergence kuncova/

Konvergence  kuncova/ Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu

Více

NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ. Michal Friesl

NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ. Michal Friesl NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Princip Příklady V K.-G. modelu

Více

Vnitřní magnetosféra

Vnitřní magnetosféra Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY POSOUZENÍ KOTLE NA ODPADNÍ TEPLO ASSESSMENT OF TRANSFER LINE EXCHANGER

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY POSOUZENÍ KOTLE NA ODPADNÍ TEPLO ASSESSMENT OF TRANSFER LINE EXCHANGER VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV ENERGETICKÝ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF ENERGETIC POSOUZENÍ KOTLE NA ODPADNÍ TEPLO ASSESSMENT

Více

Historie zapsaná v atomech

Historie zapsaná v atomech Historie zapsaná v atomech Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Symposion 2010, Gymnázium Jana Keplera, Praha Stopy, kroky, znamení Historie zapsaná v atomech Pavel

Více

5. Aplikace výsledků pro průřezy 4. třídy.

5. Aplikace výsledků pro průřezy 4. třídy. 5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk

Více

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef Příkla avrhněte záklaovou esku ze ŽB po sloupy o rozměru 0,6 x 0,6 m a stanovte max. provozní napětí záklaové půy. Zatížení a geometrie le orázku. Tloušťka esky hs = 0,4 m. Zatížení: rohové sloupy 1 =

Více

Š Á Š Š ž ů Ť Í Í ž ů ů ú Ž Ť ó Č Ž ž Š ž ž ů ž Í MM& ž ó ž ž ó ú ž Í Ž ž ž ž ů ž ů ž Š Ž ď ž ž ž Í ž ž Ž ž Ž ů Ž ů ó Ž ůž ž ž ůž ůž ž ž Í ó Ů Ť ť Á ď Ú Í Ú Ě ó ď ó Ů ů ž Š Š ž ů ž ů ž ž ž ž ž ž Ž ž ů

Více

ž ž ž ú ú ž ž ů š ú Ž ů ž š šť š ů ú ž šť ž ž ů ů šť ň ž šť ž ú ž ů ů ž š š ú š ž ů Ž Ř Ř ď Ř Ř š ž š ů ž ú ú ú ů ú ú š ď ů ú ůž ú ů Ť ú ž ů ů š ž ú ů š ů ů ů ž š Ť ú ž ú ú š Ž Ž ů ů Ž ů š ů ů ů ů š ť

Více

ď ú ú Č ý ů ů ú ů ž ť ž ž ů ý ó ú ý ů ú Ž ý ú ů ú Č ď ý ž ý ž ú ů ž ý ž ž ý ý ž ů ž Č ž Š ž ž ú ů ý ů ž ú ů ž ý ť ť ů ť ů ů ůž ž ž ž ý ý ů ž ý ý Ú ů ž ý ý ů ž ž ý ú ý ž ů ů ý ý ý ů ý ý ů ý ž ý ó ů ú Ú

Více

ó Á Í ý ý š š ť š š š Ú Ý ř Ž š ř Í ř ř ě ř ě ě ř ě ř ř ň ř Š ř Í ť ú ýž ě š ý ů ú ňě Óř ú š ó É ýž ř ý ť ď ýý ť ř ěř ř ř ž ě ř ě ě ě ř š ž ý Ž ů Ž ě Ž Í Ó ů ř ž ů ě ě ů ř ě ř Í ě ř ý ř ý ž ý ě ž ž Éš

Více

ě ě Č ě ř ý ě Č ý ě ů ř ý ý Č Č Ú Ř É ř ů ů ř ú ě ě Č Č Č ř ž ř ř ú Ř Ý ř ž ř ř ř ú Ě Á Ú Č Á Ř Ý Í ř ř ů ě ž ř ž Á ý Á Á ř ř ř ú ě ů ů ě ě Č ř ů ř ů ř ž ó ř ů ř ů ů ě ě Č ě ó ř ř ý ě ř ů ř ř ě ó ř ř ý

Více

Elektrárny A1M15ENY. přednáška č. 4. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6

Elektrárny A1M15ENY. přednáška č. 4. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6 Elektrárny A1M15ENY přednáška č. 4 Jan Špetlík spetlij@fel.cvut.cz -v předmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6 Výpočty parametrů: X s 1 3.

Více

Regularita PDR zápisky z přednášky doc. J. Staré, ZS 2003/2004

Regularita PDR zápisky z přednášky doc. J. Staré, ZS 2003/2004 egularita PD zápisky z přednášky doc. J. Staré, ZS 23/24 Obsah. Prostory funkcí a rovnice............................................. 4 Technika diferencí....................................................

Více

Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30

Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 30. března 2006 1 2 3 4 5 Heterofázové fluktuace vznk nové Nově vznkající (kapalná, krystalcká... ) Matečná (podchlazená

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Řešený příklad: Požární návrh nechráněného nosníku průřezu IPE vystaveného normové teplotní křivce

Řešený příklad: Požární návrh nechráněného nosníku průřezu IPE vystaveného normové teplotní křivce Douent: SX06a-CZ-EU Strana 1 z 8 Řešený přílad: Požární návrh nechráněného nosníu průřezu IPE vystaveného norové teplotní řivce V řešené příladu je navržen prostý ocelový nosní. Pro přestup tepla do onstruce

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

é ř é ř ř é ů ř ů ř é ů ř ů é ř é ř ň Ž Ž é ř Ž ů ř é Í é é ř ř ú ú ď é ř ř é ů é é ů ř ř ú ř ř é é ř é é ř é ď ů é é ř é é ř ú ř ž ž ů é ú é ř ř é ů ř ů ř é Ž é ř ů é ů ř ř é ú ř é ř ů ř ř é ů Í ú úř

Více

Č Ů ť ď ď Ř ýď ó ě Ýú ý Ž Ř ě ď Ú Ů ť ď Ř Á Á Ň Ý Ú Ů ž ď ě ď ý ě ý ď ů ů ů ě ů ě ě ů ě ě ď ě ě ů ž ě ě ď ě ů ě ě ú ě ů ů ů ě ů Ú Č Á ó ů ě ž ž ž ě ů ě ě ý ú ů ú ě ž ě ě ď ů ž ž ž ý ě ť ý ý Ú ě ě ě ý ě

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Příběh atomového jádra

Příběh atomového jádra Příběh atomového jádra Pavl Cjnar ÚČJF MFF UK Praha cjnar @ ipnp.troja.mff.cuni.cz Stručná histori jádra Tři objvy 1896: Bcqurl objv radioaktivity paprsky z nitra atomu 191: Ruthrford modl atomu atom má

Více

Ř é Í ý ř Č ř Š ď Č ř ž ř ř ř ó ř ř ó ř é é ř é ž ř ž Č řž ř ř ó Ž é é ý Í óť ď Š ř Č ď ř ý ř ř ó Í ó ý é ý ý ř ď ž ý é ý ď ž ř ý ř é ř é ř Í ž ý ňď ú ú é ý ý ř ž ý ú ý ř Í ř ř Ó ž ž ř ž é ý ýó é ž Í é

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Ý Í Á Í Ž ý č ý ů ů ž ž ý č ť ú ď ů ó ž ý ž č ž ž ú č č č ď č ž ť ž ž ž č ž ž ď č ž ž ď ú ť ť ý ň ž ú ž ť č ž ú ž ú ž č ž ý ž ý ň ž ž č ď č ž č ť ú Ď ž č ž č ó ůž ť ú ž č ý ž Ď ď ď ž ž ž ďť ť ú č č ž Ž

Více