Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu"

Transkript

1 - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN Dostupné z Englsh vrson: Enrgy balancs of turbomachns. Wb: Pops použtých vlčn a symbolů j uvdn v článku. Měrná vntřní prác tplné turbíny př adabatcké xpanz v T-s dagramu Odvozní j provdno pro dální plyn c p =konst., (nkolv směs dálních plynů), q=0. Expanz dálního plynu z tlaku p do p bz přívodu tpla a bz ztrát j zontropcká a z. Prác této xpanz j ohrančná příslušným zobaram a xpanzní křvkou: p p a z z Obr. 1. Křvka zontropcké xpanz v tplné turbíně z tlaku do tlaku a zontropcká prác a z vykonané př této změně.

2 Pro zontropcký děj platí:,z a z =,z v dp= d=c p (T T,z ) [TT11, d544] V T-s dagramu platí pro zobarcký děj dálního plynu, ž křvky zobar jsou stjné pouz vzájmně posunuté vz. [TT47, d310]. V takovém případě lz prác př zontropcké změny vyjádřt plochou a-b-c--a. Vzdálnost a musí být stjná jako b. Vzhldm k této skutčnost lz znázornt zontropckou prác tzv. náhradní plochou (a-b-c--a). Plocha a-b-c--a j náhradní plocha k ploš zontropcké prác z obr. 1. (b) p p c a z z b a Obr. 2. Náhradní plocha měrné prác v T-S dagramu př c p =konst. Př xpanz plynu (pohybu) vlvm jho vazkost, třním a vířním (dál zkrácně jn třním) s část kntcké nrg přměňuj na tplo a (tplo q z ), ktrým j ohříván okolní plyn. To znamná, ž př xpanz s vlvm ztrát vykoná mnší prác, al tplota na konc xpanz bud vyšší:

3 - 3 - p p z qz Obr. 3. Skutčná xpanz v tplné turbíně s ztrátam a vyjádřní tpla vygnrovaného ztrátam př proudění turbínou. Tplo q z s vyjádří z rovnc II. zákona trmodynamky. Vznk ztrát př xpanz v tplné turbíně způsobí pokls vykonané prác proto musí pro xpanz s ztrátam platt a <a z : a = [TT11, zl. 544] Jaká plocha v T-s dagramu vyjadřuj skutčnou tchnckou prác? Ekvvalntní plocha v T-s dagramu k skutčné tchncké prác bud mnší nž odpovídá ploš v T-s dagramu vyjadřující tchnckou prác př zontropcké xpanz. Nabízí s odčíst ztrátové tplo q z od prác vykonané př zontropcké xpanz a z. To al nvd k správnému výsldku protož plyn v turbíně xpanduj a koná prác postupně př průchodu turbínou. Rozdělím-l turbínu rspktv xpanz v turbíně na několk částí bud v každé část probíhat xpanz s vntřním ztrátam, tím s v této část vykoná méně prác nž př zontropcké xpanz, al do další část turbíny vstupuj plyn o vyšší tplotě nž by vstupoval v případě zontropcké xpanz. To znamná, ž část ztrátového tpla vznklého v přdchozí část turbíny s využj k konání prác v násldující část turbíny. To znamná, ž od zontropcké prác a z nodčtm pro získání skutčné prác clé tplo vznklé př vntřních ztrátách q z al jn určtou část z, protož část ztrátového

4 - 4 - tpla s v jné část turbíny využj k konání prác. Tato část ztrátového tpla s nazývá tplo znovu využté : q z = z Ztráta z, tplo znovu využtlné lz v T-s dagramu vyjádřt porovnáním adabatcké xpanz s ztrátam v turbíně s dální polytropckou xpanz v této turbíně. Idální polytropcká xpanz s od zontropcké lší tím, ž běhm xpanz j z vnějšku přváděno xpandujícímu plynu tplo, přčmž s tím zvýší prác xpanz v turbíně: p p (a) (b) p p z q pol a pol Obr. 4. Porovnávací dální polytropcký děj k děj adabatckému s ztrátam. (a) tplo přvdné pracovnímu plynu př dální polytropcké xpanz, (b) prác dálního polytropcké xpanz. Z tpla přvdného běhm xpanz př polytropckém děj s pouz část odpovídající ploš -- z - přměnla v prác zbylé tplo zvýšlo vntřní nrg plynu na konc xpanz. 2 a pol = 1 v dp= r n 1 (T T 1 2 ) [1, str. 98]. Ztrátové tplo q z u adabatcké xpanz s ovlvňuj xpanz stjným způsobm jako by toto tplo bylo přvdnou zvnčí a část tohoto tpla s přmění v prác a část zvýší vntřní nrg pracovního plynu na konc xpanz. To znamná, ž prác plynu s nsníží o clé tplo q z al pouz o část z, ktrá tvoří rozdíl mz prác

5 - 5 - vykonanou př zontropcké xpanz a adabatcké s ztrátam: a =a z z=a z q z +Δ. a z p Δ p z a z z = Obr. 5. Prác adabatcké xpanz s ztrátam. Odtud j tdy zřjmé, ž třcí tplo způsobuj zvýšní ntrop: ds= dq z T. Odkazy 1. KALČÍK, Josf, SÝKORA, Karl. Tchncká trmomchanka, vydání, Praha: Acadma.

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

ž ú Ď ň ň ú Á É ž Ý Ě É ň Ě É É ž Ť Ť Ť ú Ň ŤŤ Ť ó Á ú ú Ť ň ú ň ž É Š Š ž ó ó Ť É Ť Ě Ť ň Ťň Ť ž ňž Ť Ó Ť ú ž Ť ú ž Ť ó ž ž Ť Ť ž Ě Š ú ž ž ň Č ž ž ž ž Ť Ť Ť Č Ň Á Ť Ý ú Ť ž ň ž Ť Ý Ť Ť ž ň Ťň Š ž ú ž

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

Vývoj energetického hospodářství města Plzně

Vývoj energetického hospodářství města Plzně Magistrát města Plzně Odbor správy infrastruktury Vývoj hospodářství města Plzně Črvn 211 Vývoj nrgtické Vývojj nrgttiické hospodářsttvíí městta Pllzně Obsah 1. Úvod... 2 2. Enrgtika v ČR... 2 3. Enrgtické...

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP NVEZTA PADBCE FAKLTA CHEMCKO-TECHNOLOGCKÁ Kadra fyzky ZÁKLADY FYZKY Pro obory DMML, TŘD a AD prznčního suda DFJP NDr. Jan Z a j í c, CSc., 005 3. ELEKTCKÝ POD 3. ZÁKLADNÍ POJMY Pod pojmm lkrcký proud chápm

Více

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ SPECIÁLNĚ ZAMĚŘENO NA PŮLROK ČESKÉHO PŘEDSEDNICTVÍ ZPRAVODAJSTVÍ STRANA 2 & 4 NOVINKY Z BRUSELU Několik akcí dostalo Zlínský kraj v Bruslu na scénu! Na jdn týdn si události připravné zastoupním monopolizovali

Více

AMW 469 www.whirlpool.com

AMW 469 www.whirlpool.com AMW 469 C S K R O D E.hirlpool.com 1 C MONTÁŽ SPOTŘEBIČE INSTALACE PŘI INSTALACI SPOTŘEBIČE s řiďt samostatnými přiložnými instalačními pokyny. PŘED PŘIPOJENÍM KONTROLUJTE, DA NAPĚTÍ na typovém štítku

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

VEJCE MIKROVLNNOU TROUBU nepoužívejte na vaření

VEJCE MIKROVLNNOU TROUBU nepoužívejte na vaření UVNITŘ TROUBY A V JEJÍ BLÍZKOSTI NE- OHŘÍVEJTE, ANI NEPOUŽÍVEJTE HOŘLA- VÉ MATERIÁLY. Kouř můž způsobit nbzpčí požáru nbo výbuchu. DŮLEŽITÉ BEZPEČNOSTNÍ POKYNY PŘEČTĚTE SI PROSÍM POZORNĚ A USCHOVEJTE PRO

Více

Vyvážené nastavení PI regulátorù

Vyvážené nastavení PI regulátorù Vyvážné nastavní PI rgulátorù doc. Ptr Klán, Ústav informatiky AV ÈR Praha a Univrzita Pardubic, Prof. Raymond Gorz, Cntr for Systms Enginring and Applid Mchanics, Univrsity d Louvain PI nbo PID rgulátory

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Í ž š Ě Í š Ď Ť Í Ó ú ž š Ť š ž ž Ť Ť ž ž Ď Ď š š š š Ť ž ž š ž ň ž Ť š Ť ž š š š Ť ž ž ň š ž ž ž š ž ú ň š Ť Ť Ť Ť ž Í Ť ž ň ž š Ť Ť š š ž ň ž ň Ť ž š ž ž ž ž Ť Ť Í ž Š Í Í Ě Í Ř É É Í Ě ž ž ň š Ž ž ž

Více

ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š

Více

Řešení Navierových-Stokesových rovnic metodou

Řešení Navierových-Stokesových rovnic metodou Řšní Navrovýc-Stoksovýc rovnc mtodou končnýc prvků Lbor Črmák prosnc 2009 Označní: Abstrakt Txt obsauj klasckou a varační formulac 2D-úloy nstlačtlnéo nstaconárnío proudění, pops prostorové dskrtzac mtodou

Více

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ Prof. Ing. Mloš Mařík, CSc. BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ RESUMÉ: Jedním z důležtých a přtom nepřílš uspokojvě řešených problémů výnosového oceňování podnku je kalkulace

Více

Ž ž ť Ž Ž ž š š Ž Ž Ť Ž š Ž Ž Ž Ť š Ť š Ť Ě Ú š ž Č Ž ž Ž Ě ž š Ž Ž Ě ž Ě Ě Ě Ť ť ť Ť Ě Ž Ě ž ž Ě ž Ť Ž š Ť ť Ž š ť Ž Ž Ž Č Ě Ť Š Š žš š Ě Š š Ť š š Ú š š ť Ž Ž ž š Ť Č š ť Ž š Ť š šť ž š ť ú Ó Ě š Ž

Více

č Ť Ť Ď Ť č č šš š č š Í Í š č š š ň č Í Í š ň š š š š č š č š š š š č š š č č š š ď č č š ť š š ň č ďč č č Í š š Í š šš š Í š ď Ť Ť Í Á č š č Ť Í Ů Ú č č š š š š ď ď ň ť ď ď Ě š ď ď ď š č ď Í č š Ť Ž

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 05 9-3-5 Frvnční odzva - odvozní Automatcé řízní - Kybrnta a robota Na vtup tablního ytému přnom y () = Gu ()(), trý j

Více

ekonomické a moderní systémy Vytápěcí a větrací jednotka s rekuperací tepla DUPLEX RDH s rekuperací tepla DUPLEX RB3 secventilátory a chlazením

ekonomické a moderní systémy Vytápěcí a větrací jednotka s rekuperací tepla DUPLEX RDH s rekuperací tepla DUPLEX RB3 secventilátory a chlazením konomké a modrní systémy TEPLOVZDUŠNÉ VYTÁPĚNÍ, VĚTRÁNÍ S REKUPERACÍ TEPLA nízkonrgtké rodnné a bytové domy nrgtky pasvní rodnné a bytové domy bazény rodnnýh domů Vytápěí a větraí jdnotka s rkupraí tpla

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Teorie a praxe dluhopisů. Ing. B.Stádník Ph.D.

Teorie a praxe dluhopisů. Ing. B.Stádník Ph.D. Tor a prax dluhopsů Ig. B.Stádík h.d. Obsah Úvod do matmatky dluhopsů Spojté úročí Tor Řšé příklady Vtří výosové proto a vst Tor Souvslost s složým úročím Vyjádří vtřího výosového prota Vtří výosové proto

Více

Ý Ť Ť ť Ž Í Ž Ť Ť Ť Ť š Ž Ť š š Ť Ť Ž Ť Ý Ť š Ť š š š Ť š Ťš Ť Í š š š š Ž Ť Ť š š š Ť š š Ť š š Ť š Ť ď Ť Í Š Ť š Ť Ó Ť š Ť š Ť Š š š šť š Ť š š Ť Í ď š š š Ť š Í Ú š Š š š š š ř š š Ťš Ť š ť š š Š Ť

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

INŽ ENÝ RSKÁ MECHANIKA 2002

INŽ ENÝ RSKÁ MECHANIKA 2002 Ná dní konference s mezná dní účastí INŽ ENÝ RSÁ MECHANIA 00 1. 16. 5. 00, Svratka, Č eská republka PODRITICÝ RŮ ST TRHLINY VE SVAROVÉ M SPOJI OMORY PŘ EHŘÍVÁ U Jan ouš, Ondřej Belak 1 Abstrakt: V důsledku

Více

Fotografujeme módu. Móda. Móda v exteriéru v interiéru. černobíle. Jak na to

Fotografujeme módu. Móda. Móda v exteriéru v interiéru. černobíle. Jak na to Fotografujm módu Módní fotografi j všud kolm nás. Nalznm ji v katalozích, spolčnských magazínch i billboardch. Má mnohé skvělé autory, i když fotografování módy nní jdnoduché. Jd o jdno z njnáročnějších

Více

Postup tvorby studijní opory

Postup tvorby studijní opory Postup tvorby studijní opory RNDr. Jindřich Vaněk, Ph.D. Klíčová slova: Studijní opora, distanční studium, kurz, modl řízní vztahů dat, fáz tvorby kurzu, modl modulu Anotac: Při přípravě a vlastní tvorbě

Více

Á Ú Č ú ř ř ř ú ř ť Ú ň ž Á ď ž š ž ř ž É ž ř ž ú ř ú ú ž ť ř ň ú ď ť ť Ý š Ý Ě ž ž ť ď Ď ž ř ž ř š ž Ť ž ř Ú Ú ř ú ú ň ž ó ř ž ž š Ň ň ť ž ú š ž ž ž ž ř ř ž ř ř ř ř ž š ř Ý ň Á ó ú ř ť ú Č ř ú ž ť ř

Více

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU

ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU ŘÍZENÍ OTÁČEK AYNCHONNÍHO MOTOU BEZ POUŽITÍ MECHANICKÉHO ČIDLA YCHLOTI Petr Kadaník ČVUT FEL Praha, Techncká 2, Praha 6 Katedra elektrckých pohonů a trakce e-mal: kadank@feld.cvut.cz ANOTACE V tomto příspěvku

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

Í Ř á ž á ž á ž š á ě Ž Í š á č č ť š š ě ě áč ě Ť áš Ž č Í Č ě Ž Ž č á š ě á á ě á áš č š ě á č ě Ť š á ě á Ě š ě Ť ě š ě š Ť áž ě č á ě ě áč Č ě č á Š á Ž á Ť ě á ť ě ž ě Č š á á ě č ěť č á č ě š š Ž

Více

Všeobecné pojistné podmínky pro pojištění vozidel VPP HAV 2014/02

Všeobecné pojistné podmínky pro pojištění vozidel VPP HAV 2014/02 Všobcné pojtné podmínky pro pojštění vozdl 99.60.10.13 10.2014 vrz 03 Obah: A. Obcná čát Článk 1 Úvodní utanovní Článk 2 Výklad pojmů Článk 3 Uzavřní a změny pojtné mlouvy Článk 4 Vznk a trvání pojštění;

Více

DIPLOMOVÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY

DIPLOMOVÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Mateatka úvěrů Vedoucí dploové práce: Mgr Eva Bohanesová, PhD Rok odevzdání: 2010

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

ZNALECKÝ POSUDEK. č. 101-31/99. na dendrochronologický rozbor dřevěných stavebních konstrukcí domu Vračovice č.p.2, okr.

ZNALECKÝ POSUDEK. č. 101-31/99. na dendrochronologický rozbor dřevěných stavebních konstrukcí domu Vračovice č.p.2, okr. ZNALECKÝ POSUDEK č. 101-31/99 na dendrochronologcký rozbor dřevěných stavebních konstrukcí domu Vračovce č.p.2, okr. Ústí nad Orlcí Posudek s vyžádal: SOVAMM, společnost pro obnovu vesnce a malého města

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

Á Á Í Á Í ř ú Č ř řů Č ř ů Č Č ú Ň ř Ť Č Č Á Ř ř ř ř Š ř ř ň ř Ý ř ů ú ř ú ř ů ř ř ú ř ů ň ř ň ú ř ů ú ř ř ů Č Á Í ů ú ř ř ř ř ř ř ř ř ů ů Ý ř ů ň ř ř Í Í ú Í Ř Á Á ů ř ř ř ú ú ú Č Ď Á ř ř ř ď ř ř ú ů

Více

LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ

LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ MASARYKOVA UNIVERZITA FAKULTA PŘÍRODOVĚDECKÁ LABORATORNÍ CVIČENÍ Z FYZIKÁLNÍ CHEMIE ÚLOHY ZÁKLADNÍHO PRAKTIKA PRO POSLUCHAČE VYSOKOŠKOLSKÉHO STUDIA ODBORNÉ A UČITELSKÉ CHEMIE KOLEKTIV: PAVEL BROŽ MIROSLAV

Více

Á Ž É Š Í É Ě É Ě Ť Í š Ť Ť š Ť Ť š š š ň š Ť Ť Ó Í Ť š Í Ť ň š Ť Í Ť Ť Í Ž Ý š š ň š š ň ú Ť ň š š Ů Ť š Ť ň ň Ť Ť š Ů ď Ť Ě Ť Í š Ť Ť Ť Ť Ť Ť š ň Ť Ť Ť ť Ť Ů Ť Ť Ť ť ť š š Í Ť Í ď Í Í šš Ž š Ť ť Í Í

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Vánoce se kvapem blíží V pátek 29. listopadu rozsvítíme vánoční strom!

Vánoce se kvapem blíží V pátek 29. listopadu rozsvítíme vánoční strom! Ročník 14 Číslo 11 ZDARMA 27. listopadu 2013 Vánoc s kvapm blíží V pátk 29. listopadu rozsvítím vánoční strom! Foto: Archiv MMPv 5 Katalog nmovitostí ralitní kanclář DACHI, s.r.o. Mgr. Mark Novotný řditl

Více

VÍKA K VÁLCŮM TYP 9800-0300 (EH)

VÍKA K VÁLCŮM TYP 9800-0300 (EH) VÍKA K VÁLCŮM TYP 9800-0300 (EH) ČÍSLO VÝKRESU AL (mm) S (mm) D (mm) F LF (mm) L1 (mm) L (mm) HMOTNOST Kg CENA PRODEJ Kč CENA S TĚSNIVEM PRODEJ Kč 9801-0300 40 22 50 M45x1,5 15 36 40 0,267 184 Kč 274 Kč

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

VLIV KINETIKY KRYSTALIZACE NA TVORBU SULFIDŮ V OCELÍCH THE INFLUENCE OF CRYSTALLIZATION KINETICS ON THE SULPHIDES FORMATION IN STEELS

VLIV KINETIKY KRYSTALIZACE NA TVORBU SULFIDŮ V OCELÍCH THE INFLUENCE OF CRYSTALLIZATION KINETICS ON THE SULPHIDES FORMATION IN STEELS METAL 25 24.-26.5.25, Hradec nad Moravcí VLIV KINETIKY KRYSTALIZAE NA TVORBU SULFIDŮ V OELÍH THE INFLUENE OF RYSTALLIZATION KINETIS ON THE SULPHIDES FORMATION IN STEELS Jana Dobrovká a Hana Francová a

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

IES, Charles University Prague

IES, Charles University Prague Insttute of Economc Studes, aculty of Socal Scences Charles Unversty n Prague Trh práce žen: Gender pay gap a jeho determnanty artna ysíková IES Workng Paper: 13/2007 Insttute of Economc Studes, aculty

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru J s m e j e d i n ý s l e v o v ý s e r v e r B E Z P R O V I Z E s v o u c h e r y p r o u ž i v a t e l e Z D A R M A! Z í s k e j t e n o v é z á k a z n í kzy v! i d i t e l n t e s e n a i n t e r!

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

É ř ď ý Ě ý Č š ž ň ó ř ř š ž ž š š ž š š š š ž ž ž š ó Ž ž ť ž ž ň ž ó Č š ž ž š ž ž ž ž š ž ž ó ó š ž ž š š š ž ž ž ď ď ž ž šž ž š ž ž ž š š š ž š ž šť š ž š š ž š š š š š š ž š ž ž ú Ú ň š š š š š š

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

CHARAKTERISTIKY M-DENNÍCH A MINIMÁLNÍCH PRŮTOKŮ

CHARAKTERISTIKY M-DENNÍCH A MINIMÁLNÍCH PRŮTOKŮ Čská vědckotchnická vodohospodářská spolčnost, z. s. CHARAKTERISTIKY M-DENNÍCH A MINIMÁLNÍCH PRŮTOKŮ METODY JEJICH ODVOZOVÁNÍ A POUŽÍVÁNÍ V PRAXI Prh 29. září 2015 Obsh doprovodných mtriálů: Rozvodnic

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Ě Ó ó ó ž ž Ú ž Ř ž ž Ý ó Ú ž ň ž ž ž ž ž ó ž ň Ú ň ó ž Ť ň Ť ň Ě É ž ň Ť Ú ó ň ó ó ž ó ž ž ó ň Ť Ř Ť ó ó ž ž Ťž ň ž ž ž ž ž Ř ž ž Ř Ř ó ó ž ó ó ž ó Ť Ř Ť ň ň ž ň ň Ť ž Ý ž Ó Ě ó ó ó Ť ž ó ň ó ó Ť ó ó

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU

VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU 6. KONFERENCE PROJEKTOVÁNÍ POZEMNÍCH KOMUNIKACÍ Praha, 19.5.2015 VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU Václav Sížk Fakulta stavbí ČVUT

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

8. Využití tepla Země

8. Využití tepla Země Obsah Rejstřík Symboly Přílohy pdf Tisk 8. Využití tepla Země Autor: Jiří Škorpík, skorpik@fme.vutbr.cz: naposledy aktualizováno 2014-06 Energii sdílí povrch Země (myšleno několika kilometrová hloubka)

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

Magazín ČAW číslo 3/2009. Dokonalé wellness centrum

Magazín ČAW číslo 3/2009. Dokonalé wellness centrum Čská Asociac Wllnss Magazín ČAW číslo 3/2009 Dokonalé wllnss cntrum s jménm Frištnský Zcla nové, modrní wllnss cntrum Frištnský wllnss klub v Brně - Líšňi s přdstavilo 27. srpna odborným zájmcům. Čská

Více

Vždy na Vaší straně. Uživatelská příručka. Thermolink P Thermolink RC

Vždy na Vaší straně. Uživatelská příručka. Thermolink P Thermolink RC Vždy na Vaší straně Užvatelská příručka Thermolnk P Thermolnk RC OBSAH ÚVOD 1 Základní dokumentace... 3 2 Označení CE... 3 INSTALACE 3 Instalace zařízení... 3 3.1 Seznam balení... 3 3.2 Uchycení... 3 4

Více

Rady mě sta Frýdku- Místku

Rady mě sta Frýdku- Místku ZPRAVODAJ Rady mě sta Frýdku- Místku Břzn 2008 č. 6 Ročník XVIII. Náklad 25 000 Zdarma do všch schránk Téma zpravodaj otvřné dopisy Odpověď na otvřný dopis opozic Vážná kolgyně, vážní kolgové, vlmi nás

Více

Dovolená pro seniory

Dovolená pro seniory Dovolná pro sniory 55+ Dovolná ušitá ru právě Vá, io hlavn turistickou szónu a za skvělé cny. Vtjt stě, kd i pouhý pobyt á léčivé a blahodárné účinky. MAr Mnor LÁZNĚ A RELAX MEZI DVĚMA MOŘI dl PiSan Pdro

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

KATALOG VÝROBKŮ A CENÍK

KATALOG VÝROBKŮ A CENÍK KATALOG VÝROBKŮ A CENÍK OBSAH 4 O společnost 6 Přednost automatckých kotlů TEKLA 8 Hořáky a palva 10 Elektroncké regulátory 12 Šetříme žvotní prostředí 14 16 DUO 18 DUO VERSA 20 BIO COMPACT 22 BIO 24 DUO

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. Spalovací turbíny Základní informace Historie a vývoj Spalovací

Více

Bezporuchovost a pohotovost

Bezporuchovost a pohotovost Bezporuchovost a pohotovost Materály z 59. semnáře odborné skupny pro spolehlvost Konaného dne 24. 2. 205 Česká společnost pro jakost, ovotného lávka 5, 6 68 raha, www.csq.cz ČJ 205 Obsah: Ing. Jan Kamencký,

Více

Názvosloví anorganických sloučenin

Názvosloví anorganických sloučenin Chemické názvosloví Chemické prvky jsou látky složené z atomů o stejném protonovém čísle (počet protonů v jádře atomu. Každému prvku přísluší určitý mezinárodní název a od něho odvozený symbol (značka).

Více

Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona/číslo materiálu: III/2 VY_32_INOVACE_TVD535 Jméno autora: Mgr. Lucie Křepelová Třída/ročník

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více