G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

Rozměr: px
Začít zobrazení ze stránky:

Download "G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování"

Transkript

1 Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu rovnosti, nerovnosti Sloupcový jednotový vetor Jednotová matice Parciální derivace/ řád, rozměr rozměrný prostor reálných čísel Vetor veličin nezávislých/závislých, µ, ν, λ Diagonální forma, µ, ν, λ #,,, N, N nezáporné přídatné proměnné, Optimální, analyticé centrum L U, Interval hodnot vetoru L U Interval přípustných hodnot = Gradient salární funce N, 2 Matematicé programování : Є =, přípustný prostor = proměnných ( λ,ν Φ (, µ ( θ ( θ µ µ Lagrangeovy-multipliátory podmíne rovnosti a nerovnosti. Rozšířená cílová funce Funce q pro et. a inter. penalizaci ξ,, vetory eterních a interních =, λ, ν penalizačních oeficientů složený vetor proměnných f f f derivace funce podle f = =,..., f Gradient salární G f = = funce Jaobiova matice [ J ] = = Γ Γ v [ H ] = f ( Hessova matice Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

2 3 Matematicé programování Evivalence omezujících podmíne a operací. operace původní tvar nový tvar ransformace nerovnosti na rovnost ( transformace typů nerovností ransf. rovnosti na dvě nerovnosti transformace ma Náhrada volné proměnné zanedbání ofsetu a multipliativní onstanty ( + =, =, ( Є ( = Є, Є ma( ( { λ + } arg opt. C, λ,, 2 2 arg opt { } Operace s maticemi ( y [ A ] = y [ A] ( [ A] y = y A ( [ A] = [ A] + A = 2 [ A] n n A = A ([ ][ ] [ ] [ ] [ ][ ] [ ] [ ] A B = B A A B = B A 4 Matematicé programování Charateristiy bodu ε X O ε X { : ε, X} O = ε Bod je vnitřním bodem množiny X, eistuje-li O X taové ε Bod je hraničním bodem množiny, obsahuje-li jeho libovolné oolí alespoň jeden bod z X a alespoň jeden bod nepatřící do X Množina všech hraničních bodů množiny X tvoří hranici množiny X otevřená množina, má pouze vnitřní body. uzavřená množina, obsahuje všechny své hraniční body. Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

3 5 Matematicé programování ohraničená (omezenámnožina, je-jestli eulidovsá vzdálenost mezi dvěma libovolnými body z X je onečná, jina množina je neohraničená (neomezená, 6 Matematicé programování Konvení množiny Průni onveních množin je taé onvení. ompatní množina je uzavřená a ohraničená Konvení množina obsahuje spolu se svými dvěma libovolnými body i úseču, terá tyto body spojuje. Konvení ombinace bodů vytvoří onvení množinu. Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

4 7 Matematicé programování Reálná funce f ( se nazývá onvení na množině X, dyž pro libovolné dva navzájem různé body a 2 z X platí: 8 Matematicé programování Derivace ve směru. f ( f ( ( 2 ( ( 2 f β + β f + β f < β < f ( f tgα = D f ( d 2 Přípustný směr: D je přípustný směrvbodě jestliže eistuje ε >, že + αd X pro α ε f ( 2 d D f ( lim f ( + td f ( df df = = dd t t dt f d df d d t d ( =, = + = = dt df ( f d = = f (. d dt = dt Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

5 9 Matematicé programování Formulace optimalizační úlohy: { f } opt = arg R optimalizace bez omezení optimalizace s omezením typu nerovnosti = : Γ R = optimalizace s omezením typu rovnosti Matematicé programování Aproimace funce. vadraticá f( + αd = f + α. f D. +.5 α2. D. H. D+ zbyte lineární věta o eistenci optima. Každá spojitá funce definovaná na ompatní množině (ohraničená, uzavřená má maimální i imální hodnotu. Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

6 Matematicé programování Podmíny pro optimum:...pro imum...pro maimum 2 Matematicé programování Vázané etrémy Γ R ( = b Je-li bodem loálního optima,pa pro libovolný přípustný směr d platí. řád Hraniční bod ( f D Vnitřní bod f ( = 2. řád 2 d f D [ H ] H Ativní omezení Γ a ativně zúčastňuje (má relaci =!! = jsou ativní vždy je ativní v hraničních bodech Neativní omezení: neplatí = v ativně se nezúčastňuje ignoruje se Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

7 3 Matematicé programování Regulární bod. = R je regulární, dyž J ( Γ má plnou řádovou hodnost (=nezávislé gradienty 4 Matematicé programování Situace v optimálním bodě: Γa Γa g Γ a JΓ = = = a Γ a Γ g Γ Γ Γ ečná nadrovina { τ : Γ (. } a R τ = ( = ( τ ( ( τ = τ = = = t 2 vrstevnice = const ( ( = 2 t ( t f ( V etrému platí: Gradient účelové funce je lineární ombinací gradientů ativních omezení. a( R τ f ( R ( R λ a( R Γ = τ = f + Γ = Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

8 5 Matematicé programování KK podmíny optima. věta:je-li regulárním bodem loálního optima, pa eistují λ, ν ta, že platí: f + λ + ν. = ( =, ( neativního = ν ν ν Lagrangeova funce: je zonstruována ta, aby ve stacionárním bodě (podmíny.řádu byly splněny KK omezovací podmíny. řád Podmíny optimality:. ( λ ν ( λ ν λ 2.,, =,,, = ( ν (, λ, ν,, λ, ν. ν = ν ( νl( Ověření maimum/imum = = + λ. [ H] L ( Є ( 2 + ν. ( pozitivně (imum H je semidefinitní negativně (maimum [ ] ( ξ = + λ Є + ν 6 Matematicé programování Interpretace λ = stínové (marginální ceny =citlivost na změnu omezovacích podmíne df dl = = df + λ dє λ = dє b.. změna { } = ( + λ. Є ( Є ( ( b Є ( ( b ( b ( ( b b Є v L b f b b b b Є = = = b b b = ( [ ] ( Є L f f b b Є = + λ = = λ f b f b = b = b ( Є b b b = ( b f b b = λ = λ b = b b b = [ ] d Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

9 7 Matematicé programování Interpretace KK podmíne. f, = : =, { } 2 ( λ. ν. L= f zdůvodnění ν { :,, } X = = b b Minimum na větší množině X nemůže být větší než na podmnožině X. f f { } f = ν f = ν. b b pro b je f viz ν ν = ν = { } zdůvodnění ν = L 2 = 2ν = ν = ν 8 Matematicé programování Varianty relaovaných funcí. ξ =, λ, ν vetor proměnných µ, µ ( ϑ ϑ eterně řízené penalizační oeficienty eterní penelizace interní penalizace Lagrangeova funce: ξ = + λ. Є + ν. Rozšířená cílová funce: { } (, µ, µ µ. ( ϑ µ. ( ϑ Φ = + + Rozšířená Lagrangeova funce: ( Є ( ξ =Φ, µ, µ + λ. + ν. Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

10 9 Matematicé programování 2 Matematicé programování Dualita a sedlový problém. úloha { }. 2 : = : , 3 Lagrangeova funce má sedlový bod, terý je řešením optimalizace. ( λ ( λ ( λ ( λ ( λ ( λ L, L, L,...bodimau λ L, L, L,...bod maima Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

11 2 Matematicé programování Lagrangián duální -.5 Optimum primární.5 22 Matematicé programování platí : L(, λ L(, λ pro, λ Λ nerovnost se neporuší maimalizací ma ma L(, λ L(, λ pro λ Λ λ Λ ma L(, λ ma L(, λ λ Λ λ Λ maimum z im imum z maim rovnost platí pouze pro optimální řešení. Rozdíl funčních hodnot při společném řešení obou úloh = dualitní mezera nese informaci o vzdálenosti atuálního řešení od optima. Dualitní mezera (gap δ dualitní mezera, λ Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL, λ Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

12 23 Matematicé programování primární duální ma funce LP = { L( ξ } L (, L λν, D λ ν = ξ úloha Úloha: { L } P { f } : ma λν, L D λ ν { } { (, } LP (, ν = ( f + ν. ma f / LD (, ν = ( f + ν. ν / X ma f = { f + ν. ( } R, ν > Primární úloha je totožná s výchozí úlohou, duální úloha hledá hodnoty duálních proměnných (λ, teré maimalizují duální funci. Duální úloha duální úloze je primární úloha! 24 Matematicé programování /opt ma ν < ν > ν < ν > Relace primární-duální. omezení proměnné polarita omezovacích multipliátorů λ N Primarní duální c ma [ A] [ A] [ A] primární maimalizace vetor Vetor omezení Vetor cílové funce ma λ b b ν b ν = b λ volné [ A] [ A] volné [ A] ν c ν c λ = c duální imalizace ransponovaný vetor Vetor cílové funce Vetor omezení proměnné omezení Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

13 25 Matematicé programování Interní a eterní penalizace Optimalizaci s omezením se nahrazuje optimalizací bez omezení. Výchozí úloha: opt { f / : (, = } (, p, b π µ µ opt Vnější penalizace ψ p Vnitřní penalizace ψ b = penalizovaná úloha { f ± µ p( ψ p( ϑ ± µ b ( ψb( ϑ } R µ µ µ p >, b >, b, podmíny ψ p ( ϑ =, ϑ = / ψ p ( ϑ >, ϑ < ψ p ( ϑ, ϑ > lim ψ p ( ϑ = ϑ vyžaduje vnitřní body Г N ma volí autor výpočtu Realizace ψ = + = a ma, = { ( } ( = 2 b ln ( 2 + ( penalizace penalizace 4 26 Matematicé programování obr.4. Eterní penalizace µ=.5 µ=3 µ= > obr.5 Interní penalizace µ=.5 µ=3 µ= > Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

14 27 Matematicé programování Přílad formulace: (, p, b π µ µ = f pi bi = = i... čísloiterace + µ µ ln Algoritmus řešení.. i= volba µ bi >, µ pi >, ε>, ε b > ω bi >, ω pi > stanovení přípustného i 2. i=i+ argopt i = p b X π µ µ { (,, } 3. ontrola onvergence je-li i i ε pa stop jina orece µ µ bi = µ bi. ω bi µ pi = µ pi. ω pi jdi na 2. Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL 28 Matematicé programování Metody vnitřního bodu (Interior point ( µ ( µ # ( µ = µ = Předp: ( jsou onvení a hladé { } případ : = : <, ohraničená ( ln ψ b ( = = if if arg Γ ac arg ma = ln ( = ln ( = = ac = arg ma ( (.. analyticý střed nerovností = Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

15 29 Matematicé programování metoda centrální cesty { :, } = úloha : f α > relativní váha mezi f a = ( = α f ln π α opt ( α = arg π ( α metoda středů volená proměnnáγ > f ln γ α =...analyticýstřed α >...centrální cesta úloha : f (, = : (, π γ { } ( f ln ( opt ( γ = arg π ( α ( γ f ( ( γ = = α = γ = α 3 Matematicé programování Paradigma IP originální problém - omezení nerovností { } f, a = : upravený problém - omezení rovností a b { } f, b = : =, obsluha nezápornosti c = { } Γ f µ ln (, c = : = relaovaný problém: ξ =, λ, Γ ln ξ = f µ ( λ R = podmíny. řádu ξ = f = λ =, = = λ = µ. + λ =. λ. = µ Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

16 3 Matematicé programování 2 2 f J =, H(, λ = λ. 2 2 (, λ [ ] J Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL J H J [ ] λ [ ] [ Θ ] [ Ω] eliací f H(, λ J J λ = J [ ][ ] λ Θ Ω ( + µ [ Ω] 32 Matematicé programování Paradigma IP vadraticého programování. originální problém - omezení nerovností c + [ Q], = : [ A] b, 2 upravený problém - omezení rovností { } f, = : [ A] b =,, obsluha nezápornosti, { } b [ ] ln c + Q µ + ln, 2 = = = :[ A ] b= { } relaovaný problém: ξ =, λ, b ( ξ = c + [ Q] µ ln( + ln + R 2 = = R ( b [ A] + λ + podmíny. řádu ξ = [ ] { } c + Q µ A λ =, z z = µ { } = b [ A] + = λ = µ + λ = Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

17 33 Matematicé programování [ ] c + Q µ. z A λ =. = µ z [ ] λ = µ b A + = [ ] µ ( λ λ c + Q + z + z A + = + z + z = µ ( ( + ( λ ( λ + = µ b [ A]( + + ( + = [ Q] [ ] A z [ ] [ ] z = [ ] [ ] λ [ A] [ ] [ ] λ t c [ Q] + z + A λ µ z = µ λ [ A ] b Systém 2 ( + b rovnic pro 2 ( + b proměnných Jaroslav Doležal, atedra eletroenergetiy ČVU -FEL

opt [ ] Vyjádření subvektory (báz. a nebáz.) B,N Index bázových a nebázových proměnných β, ν Množina indexů veličin B,N

opt [ ] Vyjádření subvektory (báz. a nebáz.) B,N Index bázových a nebázových proměnných β, ν Množina indexů veličin B,N 1 2-LP-Lineární programování Lineární funkce i omezovací podmínky opt t X c R c R b b b R...vektor limitů (kapacitních), a i i R b A...matice strukturálních koeficientů, > b! R hod = b, 0,..vektorproměnných,...vektor

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Optimální ustálený chod Optima Power Flow -OPF

Optimální ustálený chod Optima Power Flow -OPF 1 Optimalizace režimu sítě-newtonovský přístup Optimální ustálený chod Optima Power Flow -OPF C i (P i ) cena výroby i-tého zdroe Cílové funkce: 1. minimalizace přenosových ztrát. minimum ceny vyráběné

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního

Více

x 2(A), x y (A) y x (A), 2 f

x 2(A), x y (A) y x (A), 2 f II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné:   s1a64/cd/index.htm. KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1

Více

f ( x) = 5x 1 + 8x 2 MAX, 3x x ,

f ( x) = 5x 1 + 8x 2 MAX, 3x x , 4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x). 9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus. (1 [B] Nechť A : R 6 R 6 je lineární zobrazební takové, že A 26 = I. Najděte lineární prostory V 1, V 2 a V 3 takové, že R 6 = V 1 V 2 V 3 dim V 1 = dim V 2 = dim V 3 AV 1 V 1, AV 2 V 2 a AV 3 V 3 (2 [B]

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Optimální řízení procesů

Optimální řízení procesů Vysoká škola báňská Technická univerzita Ostrava Optimální řízení procesů učební tet Milan HEGER Ostrava 7 POKYNY KE STUDIU Optimálního řízení procesů Pro předmět Optimálního řízení procesů jste obdrželi

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

MA2, M2. Kapitola 4. Vektorové funkce jedné reálné proměnné. c 2009, analyza.kma.zcu.cz

MA2, M2. Kapitola 4. Vektorové funkce jedné reálné proměnné. c 2009, analyza.kma.zcu.cz 79 Kapitola 4 Vektorové funkce jedné reálné proměnné 80 Definice 4.1(vektorová funkce jedné reálné proměnné) Nechť D R.Zobrazení x: D R n se nazývá vektorová funkce jedné reálné proměnné t s definičním

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK213 Lineární modely. 5. Dualita v úlohách LP 4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického

Více

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

4EK201 Matematické modelování. 2. Lineární programování

4EK201 Matematické modelování. 2. Lineární programování 4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

EKONOMETRIE 2. přednáška Modely chování výrobce I.

EKONOMETRIE 2. přednáška Modely chování výrobce I. EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Problém lineární komplementarity a kvadratické programování

Problém lineární komplementarity a kvadratické programování Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Michal Bulant. Masarykova univerzita Fakulta informatiky

Michal Bulant. Masarykova univerzita Fakulta informatiky Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2

Více

Elektroenergetika 1. Základní pojmy a definice

Elektroenergetika 1. Základní pojmy a definice Základní pojmy a definice Elektroenergetika vědní disciplína, jejímž předmětem zkoumání je zabezpečení elektrické energie pro lidstvo Výroba elektrické energie Přenos a distribuce elektrické energie Spotřeba

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

1 Duální simplexová metoda

1 Duální simplexová metoda 1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní

Více

Diferenciální počet funkce jedné proměnné 1

Diferenciální počet funkce jedné proměnné 1 Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programování, dopravní úloha. 1 Úvodní pojmy Metody na podporu rozhodování lze obecně dělit na: Eaktní metody metody zaručující nalezení optimální řešení, např. Littlův algortimus,

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Předpoklady: a, b spojité na intervalu I.

Předpoklady: a, b spojité na intervalu I. Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní

Více