KINETICKÁ TEORIE PLYNŮ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "KINETICKÁ TEORIE PLYNŮ"

Transkript

1 KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu ouz kintickou translační nrgii olkul, nikoli otnciální nrgii ziolkulárních intrakcí latí ouz ro idální lyny, a otnciální a kintickou nrgii azb olkulách uažuj částic bz nitřní struktury. Kintická tori j založna na třch řdokladch:. Plyn s sstáá z olkul o hotnosti a růěru d, ktré jsou nustálé náhodné ohybu.. likost olkul j zandbatlná zhld k zdálnost, ktrou urazí zi jdnotliýi srážkai.. Molkuly jsou tuhé koul, zi niiž dochází k lastický srážká. Elastická j takoá srážka, ři ktré s zachoáá clkoá kintická nrgi sraziších s olkul.. Mawlloo rozdělní rychlostí Molkuly lynu s nohybují stjnou rychlostí. Při zájných srážkách olkul s nustál ění likost i sěr jjich rychlostí nlz určit okažité rychlosti olkul, al rotož osuzuj lký soubor olkul, lz yužít statistických tod a určit rozdělní rychlostí. Přdoklady: rychlost (likost i sěr) jdnotliých olkul s nustál ění, al clkoé rozdělní rychlostí na čas nzáisí, rychlost ohybu trojrozěrné (D) rostoru lz rozložit na složky odl os, y a z, ktré jsou na sobě nzáislé. 5

2 d sybolizuj čtnost olkul (část z clkoého očtu olkul ) ajících rychlost z intralu <, + d > Tato čtnost j funkcí rychlosti a šířky intralu d d f () d f()d tdy současně udáá raděodobnost, ž náhodně ybraná olkula s ohybuj rychlostí z intralu <, + d > f() j tz. hustotní funkc Pan Mawll ododil (86) hustotní funkci taru f () π π kd j hotnost jdné částic a k Boltzannoa konstanta ( k A ) M k Grafické znázornění této funkc (a) ro různé tloty, - f(), - T K 8, - T 98 K, - T 5 K, α u / s - 5

3 (b) ro lyny o různé olární hotnosti, - f(), - 8 T 98 K, - 8, -, / s - Zná-li hustotní funkci, ůž určit njraděodobnější rychlost α d f ( ) π d π d f ( ) d slněno ro : α iniu aiu střdní arittickou rychlost ážný arittický růěr rychlostí f () d 8 π střdní kadratickou rychlost u _ odocnina z ážného arittického růěru kadrátů rychlostí u f () d. 5

4 Z distribuc rychlostí lz získat distribuci translační kintické nrgi olkul. Ztotožní-li translační kintickou nrgii olkuly ε s ýraz /, dε d, ro čtnost olkul, ktré ají kintickou translační nrgii intralu <ε, ε + dε > získá d ε πε dε. π ε Pro střdní hodnotu translační kintické nrgi ak latí ( ε ) ε f ε dε. řdní kintická translační nrgi j řío úěrná tlotě. Kdybycho rodli odozní střdní kintické translační nrgi ro dojrozěrný rs. jdnorozěrný ohyb, získali bycho hodnoty ohyb rostoru f() f(ε) ε D D D ε π πε π π π ε ε ε π kiartiční rinci: a jdn stuň olnosti ohybu řiadá ždy stjná střdní hodnota nrgi. 5

5 srážkoé torii rakční rychlosti bud otřboat znát, jaká část olkul á nrgii, odoídající děa stuňů olnosti (děa sěrů ohybu), ětší nž j určitá hodnota ε o ε f D () ε d ε d ε - Boltzannů faktor Odozní ztahu ro c, onoolkulárního idálního lynu c, Q U n T n T U Aε A c, id.lyn T du n dt Příý rintální důkaz toho, ž různé lyny s ohybují různou střdní rychlostí, j j zaný fúz lynů. EFÚZE PLYŮ unikání lynů alý otor z lkého rzroáru do nádoby, řičž usí být slněno:», aby raděodobnost, ž olkuly budou ronikat z nádoby zět do rzroáru, byla zandbatlná otor j li alý, takž ndochází k látkoéu toku lynu rzroáru sěr k otoru, 55

6 Tlak lynu nádobě (na očátku akuoané) o čas t bud dán očt částic, ktré rojdou otor o loš S z rzroáru do nádoby, tdy očtu části, ktré by narazily na lochu S. Částic, ktré ají -oou složku rychlosti (řsněji z intralu <, + d >), urazí za čas t dráhu t. Otor o loš S rojdou za čas t šchny částic s touto -oou složkou rychlosti, ktré s nacházjí obju S t. J-li očt částic clé rzroáru, oto očt částic s -oou složku rychlosti j rzroáru f( ) d a obju S t S t f( ) d. 56

7 57 Otor oš rojdou i částic s ktroukoli jinou kladnou hodnotou -oé složky rychlosti, jjich očt bud dán jjich čtností a likostí obju, z ktrého stihnou rojít za čas t otor S d )d f( π π Obcně očt nárazů na jdnotkoou lochu za jdnotku času z Měřitlnou ličinou j tlak nádobě o čas t A A T T yužití ) z ěřitlných ličin (,,, S, t) ůž určit, a tak oěřit sránost Mawlloa rozdělní rychlostí, ) záisí na a ta na olární hotnosti lynů fúz lz yužít k urční olární hotnosti nznáého lynu z oronání rychlosti tohoto lynu s lyn o znáé hodnotě M M M Grahaů zákon. z.

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Ý Í Á Í Ž ý č ý ů ů ž ž ý č ť ú ď ů ó ž ý ž č ž ž ú č č č ď č ž ť ž ž ž č ž ž ď č ž ž ď ú ť ť ý ň ž ú ž ť č ž ú ž ú ž č ž ý ž ý ň ž ž č ď č ž č ť ú Ď ž č ž č ó ůž ť ú ž č ý ž Ď ď ď ž ž ž ďť ť ú č č ž Ž

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

É ř ď ý Ě ý Č š ž ň ó ř ř š ž ž š š ž š š š š ž ž ž š ó Ž ž ť ž ž ň ž ó Č š ž ž š ž ž ž ž š ž ž ó ó š ž ž š š š ž ž ž ď ď ž ž šž ž š ž ž ž š š š ž š ž šť š ž š š ž š š š š š š ž š ž ž ú Ú ň š š š š š š

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š

Více

ň Ý Á Ú ú ň Ó š š š ú ó ú ů ů ů š ů ů ů š ů ů ú ů ů ů ú ů ů ů ů ů ů ó ú ú ó ů ů ň ů ň ů ů ú ú ú ó š ó ú ú ó š ú š š š ú ú ů ň ú ů ú ú ú ů ú ú ň ů ú š ň ú š š š š ú ň ů ň ú š ů ů ň ů ů ů ů ú ů ú ú ň ú ú

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

Í ó ů š ú ý š ň Ž ý ů š ý Í ž ů ý ý ů Č Č š ý ž ž ý ý ý ž š š ž ý š ů ů ů ž ýú š š ů Í š ž š Ž ý ž ž š ý ý ů Ž š ú Í š š Ž ů ů ý ů Ž ů šš ý šš ý ý šš š ý Ž š Ž ýš ó š ý š ž ýý Ž Ž ú š ž ů š ž š ý š ň š

Více

í Č í í ř í š Č í ČÚ í ž í ř í í í í í í ř í íž í í í ž ž ž í í í í ří Č í í í í ž ší ž žší ř í ž í í í ř í í í í ž ší ž žší ř í ž í ů í ž í ř í í ří žší ř í ž ž ř í í í ří í ů ř ů í í ž í í ší í í ř ří

Více

Ý Ř ÁŘ Í Ť Č ú š ž é ú ř é é Ň ÁŘ Á Í É Í ú ř ř ř š š é š é ř é ů Ň Ý ť ÁŘ Á Ř ř é ř š ž ů é ř ú ú é ř é ú ů ř ů ř ó ž é ř é ř é ů ř é ž é ó ůž ž ř ř ú ž ř é ž ř é é é ř ž ž é é é š ž é š é ž é š é É š

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

Á Á Ě ĺ ć É Í řč Áľ Á Á ř č ě ě ě š ř ů ä č š ě ě ĺ ě ě š ř ů č č ý ě ř ý ě ě š ř ů ě š ř ž Ú š ě š ě ř Ú š ě Š ě Č ĺ č úč ě ĺ ž ě ĺ ě řč ä š ě ě ř Úř Č Í Í Č ě ří ě č úě ď Š ě ý Ú ľĺ ě ř ř ř ř š ě ř ä

Více

š š ř š ř š ží ř ý úř ř š ř š ř ř š ř Ž Ž ý ý ú ú š ř ř Ž š ý ř ř ý ř š ř ř ž ý ý ř ř ú ý ř Ó ř ý ř š ř ý ží ř ř š ž ř ý ý ř Ž Ž ř ří ý ý ž ř ý ř Ž ý Ž ř š ú ř ř ý ř ú ř Ž š ř Ž ý ž ř ú Ž ř ř ř ž ř š Ž

Více

Í Í ó š ú ú Ž Ž Ž Ž š ů Ž Ž Ž Ž š Ž š ú š ú Í ť Ž Í Í Ž Ž ú ů š ň ů ů ň Ž Ú Ž ú ů š ů Ž ú Ž š Ž ď Š ů š ú ň š š Ž Ž Žš Ž ú Í Ž ú š ú š ů Ó ůž Ž ú š Ž ů Í ň Ó Ž Ž Ž ů ů š š š Ž Ž Í š ů Ž ů ů ú ú š ž š ů

Více

ž ž ž ú ú ž ž ů š ú Ž ů ž š šť š ů ú ž šť ž ž ů ů šť ň ž šť ž ú ž ů ů ž š š ú š ž ů Ž Ř Ř ď Ř Ř š ž š ů ž ú ú ú ů ú ú š ď ů ú ůž ú ů Ť ú ž ů ů š ž ú ů š ů ů ů ž š Ť ú ž ú ú š Ž Ž ů ů Ž ů š ů ů ů ů š ť

Více

ů š Ú š ů Č Š ú Č Ú Č Ż Ž Š Č Č Ú Š ů š ÚČ ů Ž ú ů Č Ú Č Č Č Č Č ú Č ą Ú Č Č Č Ž Č š Č ą Ú Č Š ů Ú Ú Ž ž Ž š ů š ľí Ú Í Š ú ů Í ů Í ů ů Í Ž š š Ž Ž ň Š Ž ú ů ú Í ů Í Ž Í Í š Ž ň Š Ž Í ż ů Č ů š ů ů ž Ž

Více

í Á É Á Ř Ň Á í É í š í á á ě š Ú ý ů ě í á ý ř ří í í č á á ř čň á í ý í ů á í ě š á Š í čí á ě í Š Žá á č ý š á ě ě ě í ší á ů á ý š á í ý č í ě á Ú ří ě č í ýš ý ý í čň á á Ú ý ů ě á ř č čň á í ýš í

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

ř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

Tento projekt byl realizován za finanèní podpory Evropské unie.

Tento projekt byl realizován za finanèní podpory Evropské unie. VÝCHODNÍ OHLED +, +, -, -, ZÁADNÍ OHLED +, +, -, JIŽNÍ OHLED +, -, -, SEVERNÍ OHLED +, -, projektant: Veronika aulerová měřítko : Tento projekt byl realizován za finanèní podpory Evropské unie. Za obsah

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

ď ď ř ď ž ď ť č ž Č ř ď ď č ď ž ž ž ý ř ť ď ť ž ů Ú ý ř ý óř č ý ž ž žž č ř ď ý ý ý ý ý ř ž ř č ý ž ž ž ŘÍ Í č ý ř č ď ú č ý ž ú č č č ř č ř ý č ž ž ů č Í ž č Í ž ř ú ú ř ž ř ž ú ž č ť ť Ž ř ú ý ž ú ý

Více

É í í í í í í ů í Í ů í í í í í í í óíď í ží í ú í í í í Č É í ú í ů í í í í ň Í í í í í í ů í í ž í í Č ů í í íí ť í ž í ů ů í ž í í ú í í Č Í ží í í í í íř ů ů ů ů í í í í í Č í í ň Í í í í í ňť ž ň

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

Ě Ě Á ž č ž č č é š é Š Č š Č Ž é č é č ž č Š é Č č é č Á é Ú Ř Ě ž ť č é š č é č é č úč ů č é ů É Ž ů š ž Ů é É č č ó Ž č č š š č ň Ž é úč ť č č ů č č š éč š š ů š š ů ť č ó ů ů é š éč č ů č ó ů é č é

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

ř ě ě š ě ě š ř ů ě ě š ř ů ú ů ě ě š ř ů ř ě š ě š Š ž Š ř ě š ř ú ě ě ž ů ě ě ř ě ě éš ě ě š ě ř é Í š ř é ě ě ř é š š š š ž š Í ě ž ů ě ů Í ř š ě ř ů Í ě ě š ě ě š ř ů ů é ř š ř ř é úř é Ř ú ě š ě é

Více

Í Č Č ň Ž ó ň ů ů ň Ž ť Ť ŽÍ Í ů ů Č Č Í ů ú ň ň ň Č Č ů Č ň ň ň ó Í ů Ů Č Č Ů Š ů ů ť ů ú ů ů ď ů Ž ň Ů ů Č Á Ý Ž ů ů Á Ů ú Č ú ň Ž Š Č Š Š Ů Ů Ž ů ú ú ň ů Č ó ú Ž Č ó Ž Ž Č ó Í ů ÍŠ Ž Ů Ů ů Č ú ň ů ů

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

š ě ě č š š š ů š Í š ň ě š šč š Ť š ě č č š č ó č č š č ě ů ň ě š č ě ů ž š ň ž ň č ě ě ž ě ž ě š ď ě ě š ž ž Ř č ě č š ů ů ě š š č ě ě Ž Í š ě ě ů ů š ž ů ů ů Í ě š ě ů ž š ů ž ů ď ě ž ž ě ěž šť ž č

Více

ý ě ě ě ú Ť ř ě ě ř ě Ž ě Ř Í Í ě ě Č ř ě ě ř ě ř ě ú ú ř ě ě ř ě Ť ě ě ěř ú ř ý ý ž ů Í ý šó š š ě ů ý ů ž ěř ý ž ž ý ř ě ěš ěř ý ř ř ů ů ů ý ů ů ý ý Ž š š ý Ž ů ž Ž ě ř ý ý ě š ů Í ř ř ě š ů ř ý ů ž

Více

ř Š ř Ú Ž ý ř ý Ž ř š Ž š Š ý ř š ř Ž Ž Ž ý Š ý š ů ř ý ý ů ř Ž ř ř ů ý ůž Í Ž Í ř Š Ž ý Ž Í ř Ž Ž ý š ž Ž ů ý Ž š Ž ř Ž ř š š Ž ř ř ž Ž ř ř ý Ž Ž Š š ů Í Ž ř ř Ú š ř Ž Ž Ž Ó Ž Ž ř š Ž ů Ž ř ú Ž ř Ž ý

Více

Ý ÚŘ Č Ý Č É Ý ó Ě Ř Ř Ý é Ú ú Č é é ě ě š ů Ú Í ů ů ě ě š ů ú é é é ě ň ě é ú ě é ě ě ů Š ú Ú Ž Č é ě ě ě é é Ú ů ě ů ě Ú Ó ě ú é ň é Ú ě ě é ů ě ě ě Í ň Ú ů ů Š š ě ě Š Ů š ě é é Ž ě š ě Ů ť Š ě é ž

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Ě Ý Í Č ě ř Í Í Á Č ř č Č é č č šř Č é č ě é ř č č š ě ř č ď ě š ř ě č é ř ďů ž ě š š Č é éú ě ě ž éč Í ř ě éú ů č ů ř č ů č ř ř šť é řč Žď ž ú ů ř š ř éž ů ů é ž ú č ř č ř šť č ž č ě ř č č č ů ř é ř č

Více

č é č ě ší Ž ý ý ší ů í č á č í á ž á žň ř ě ší í ě ě ý ří é á í é ý í ší á á í ě á Ž ú ě ý ů á í č ý ž á á í ů Č š á é é é á ě á ř ý ž á í ž ě á í éč ž ě š ý é č í í ů ří é é ý ž á é í é í á á í é ě é

Více

Í Á Ž É Ý Š Á Í ó Ěú Í š ž ř č č š ř Ů š č ř Í ř š ř č Ú č ú ř Í š ř úč Ž ř č ř Ž ř Ž č č ů č Š ú Ž ř Ž č Š ů Ž ř ó Ž ř č Í Ž ř Í Ž Š č ř Ž č č ů ř Ž š ů Ž ř ů ů ř Úč Í č ř š č Ž ří č ř ř Ž Ž ř Í Š ř Ž

Více

í Š í í ď í í é č ř čí ě ěř é é íč š ří č ř Ž é č í í é ř Ž é č í Š Š í í ěř é č í ý č ř í é í č í ý é ě í í í í í ř ě Ž í Ť ě úř í í úř í ý é ě í ř í Ž ří č š í é í ří é í ě í í ď ě ř ý š ěř í ěř íč š

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

í ř š ř í é í ě é ěř é é í ě ě í ů š é ě í š é ú é í ň í é Č Č í é í é é í í ž éž í í í ří ř ř ě í ě ší ě ň ů í é ř ř íž í é ě é ě í ě ů ě é í é ě ěř í é ú í í ě í ří é í ě í í ř é éž é ď í í í í í š Ž

Více

ý ý ě ý ý ě ý ž š Ž ý ý š ě Ž ý ů ž ý Ž ý ý š ě ý š ž ů ý ě ě ý ž ž Ý ú ů ž š ý ž Ý ýš ž ů Ž ý ý š ě Ž š ů ě ě ý ž ě ý ě ý ž ý ž Í š ý ý ě ů ý ě ý Ž ě Ž ý ýš ý ý ý ů ě Í Ý ž ž ě ě ě ž ú ě ě ě ú ě ě ň ě

Více

ř řč č Í ř č ú Í ř č š č č ř č ď č š Ž č š ň č ř š ř ú ř ř ř Í š Ý š š ří ó š ď ř š ř š Ž Ž Á š Í ó š ř š ř č ň čš ř Ž č č š Ď ř Ž říč ď ó ď č ň Í š Š Á š ř ř ř ó č ř š ř Š Ť ř č č ř ň č ř ňš č É Ž Ř ÚŽ

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

Ý Á Ř é á ší ě ý ů á é ří á í á í í ěří ř á á í á ř č áš ý ý é á í Š ší é ů ř č ý ří Ž ě ý í á ý ó é č ý ý ó ý á í š čá í á Ž é á í Ž á í Í š ě ší ě ž í ě ě ě éř é žř č ó žč ě ěř ž á í ě é óž ý é ř í é

Více

í í ť í í í š ř í ří ř š í ý í í íí ůú ú ůů ů ů í ř řú ý ř ý ý ř í ří ů ří Ú í ř ý ř ý ý í ří í ý š í ř í š ší ž í í ř í í ú í ů ú ř í š í ž ž ů ý í Č Ú í í í ť Á ří í ř í ý í í ů ů ď ý í í ů íí ů í ž

Více

Kinetická teorie plynu

Kinetická teorie plynu Kineticá teorie plnu Kineticá teorie plnu, terá prní poloině 9.století doázala úspěšně spojit lasicou fenoenologicou terodnaiu s echaniou, poažuje pln za soustau elého počtu nepatrných hotných částic oleul,

Více

Vyvážené nastavení PI regulátorù

Vyvážené nastavení PI regulátorù Vyvážné nastavní PI rgulátorù doc. Ptr Klán, Ústav informatiky AV ÈR Praha a Univrzita Pardubic, Prof. Raymond Gorz, Cntr for Systms Enginring and Applid Mchanics, Univrsity d Louvain PI nbo PID rgulátory

Více

č ú ř č ř č č ř ú Í ř č č ří č č č č č ž ř č Íř ř ř Š ř ř č ř č č ž č č Í ř ž ž Í ú ř ř ú ž ř č č ž ž č ž Š ž č č Č ř ř ú č č č č č Í č ž Ů č ř č úč ž ř č č č Í Í č ř ří č ř Í č ó ŘÍ č ž č ž č č ž ř ž

Více

ÝČ Í Č Í Á Č Á Á š Ř Ý É Ú Ý Á Ř Á Í Á Ý Á É ŤŤ Á Í Á Á Č Š ďí Í Ý Í ó ú Č ó Í Ý Ž Ž Í Í Í Í Ž Ó ň ň Ó Í ú ú Í š Í š Ó úš Ž Á Č š Ť š š Ú Í Ý Ú Š Š š Ú Ť ó Áš Ó Ž ÁŤ ó Í š Ó š Š Í Ď š ÓŽ Í Ž Ó ň Í Í š

Více

ó ý ú Ú Ú ě Ú ě ú Č Č Č ž ě ě ž ž ž Č ý ž ě ý žú Ž Ť Ž ý ž ě ý ě ý ě ý Č ý ó ž ý š ý ě ý ó ě Č ě ý ě ý ž ý ě ý š ě ů ů š ě ýš š ý ů ě ů žďý š ů ýš ů ý ě š ě ýš Ý ý ú ý Ý ó ý Ý ů ý ů Ý ů ý š ž ýš ě ů ě

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

č ú č ů ř é č č ú Úč ř š ř Šč š ř š č Š č ř č ř ř ů č ů é č é ř é č č č ů š ř ů ů é é č ř ř éč ž ř č š č ů š ř č ů č é č ř ř é č é š é ř é ř č Ž ř Š ř š ř é é ř š ř ř ř Ž ř š ř š é é č ů é Ž č č ř ř é

Více

ž ž íú ž í í í í ří í í ó ří ů Ž í í í ří ží ž ž ů ů ří í ž ž í í ů ř ž ž ž íú ž í í í ří í í í ó ří ů ž ů í í í ř ž ž ů ů ří ž ží í í ů Ř ř í í Ť ř í í ří Č Ž ř Ť ů í Ž ří í ů ž ří ří ž í ř ů ď í ž ť

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

ó ň ó ý ý é š é ň é ž éž ý é ě ý ž ó ž é ě ě é é ý ý ů é š ž ě ó ž ě ů ú ů ě é ž ě é é š š ž ě ž ě ú ž é ž ú ě ý ž é ě ý é ý ý é é é é ý ž ž š ě ž é ú š ů ú ů ú š ů ý ú ů ž ů ž ě ý ýš ý ú ý ě ěš ý ě ě

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

ů Ž íúř Ú í Ú Í Ě Ú í ť í ě í í ř Ř Á ÁŠ ě í ň ř ě í ě ší ř ů ž š ú í ě í ú ř š í í úř Ú Č ří ě é í ř ř ř ř ř ř ř ř ř ř ř ř í ř ř Č í ž ň Ů é ě í í ú í ů é ě Ň Ý Ě í š ú í šť í úř ů ří í í ř í Ř ó úř ú

Více

Í ě ě ž í ě í ý ř í ř í ě ě ě ý ů ě í ě ší ř ů é ší í ř ů ý Č é í í í ší í ě í ě ší ř ů í í ě ř í í ď í í ý ů ý ů í ě ě ší ř ů ě ú í ý í ř ž Š É í ú í é ú í ě í í ř í ň í ě Í í ě í í ě í ř í í Í í ř í

Více

ě ý ř č úř ě Í č Č ř č Ú Ř č č Ř úš Ú Ř Í Í Ř É Ú ě č Č ě č ě ě é ř ý é ůž Ž ž ú ě ž č ý ý ý ý ú Í ě č č ů ů ů ý ý Ú ě č ř ě é ř ě é ž úč ýš č Í Ú ě č é é Úč ř é ž Ž ň ý Ů ů ž ř č ě ž ý ž š ě ů č ž Ž ř

Více

Ř É Ě Á Ů š Ž Á š Ř č Ř Ě ž š Ř Ů Á š Ě Šš Á š Á Ř Ů Á š Á Ř Ů Á š Í š šš Á š Ř Ř Ě Á š Ř ů č šš Á š Ř Ů Á š Ř Š Á šš Á š Á Ř Á š š Ž šš Á š Ř Ů Á š Á š Ř Ž ě Ř Ů Á š Á š Ě č Á š Ř Á Š Ř Ů Á š Á č č Á

Více

óš ř Ř Í É ŘÍ Í Á Í Á Á Ý Á Í Č Á Ž Í Ř Í ŠÍÚ Ý Í Í Č Í Ú ÁŠ Í Č Á Í ĚŘ ú é ú ěš é ř š ě č ř š ř š č ě š ě é é č ř č č é é ž ř ě ěš ž óě Í ř ě ř ě ě š ě ě ř ě é ž é šť ě ř ě ě č č č šé ě ř ě é é Č é š

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ.

POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ. POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ. Ing. Jan Follr, Martin Eyr, Vodárnská akciová spolčnost, a.s. OČEKÁVANÝ CÍLOVÝ STAV NORMY

Více

č í í žá é ý í í č é ý á íč ř íž é ě ýš á áš ů š í ů ří š á č á ě Š ří é í š ž í ř í é č í č ž í í á á í ě Ž é č á á á ý ě í í á íč č ř ří í š í á ě í ž í čí á ž í á ě í ý č ý ě ý ě í ř í ě ř š ě í í ě

Více

Š Ě Ý č Ř Ý Ě Ý Ř É Á Á É Ž ó č Ž č ž ý č ř ř č ž ř ž ý č ř Č Č Č úč Č Č Č úč ý ř ý ř ý ř ř ř ř ř Ž č úč Ž ř ř š ý ří č ú ů ř ý š ř ů ř š ř ý ř ř ř ř č ř Ž Úč ř ř ř ř ř ř ř ř ř ř ý ů ř ř ř úč ř š ř ř ý

Více

Ě Á Í ř ř é č č ř ů ě ě ž ů Š č ř ý ě č č ě č ú Í Í š č Ě é ř ě é é č ř č ř Í ý Š Í Á Ž Ě Ý ť ř ě ú ň Ě Á Í Í š ě ř č č ú ř Ě ř Š Í Č ě é ř ř ě ý ý ř ě ý ř é ř ě ř ě ů ý ř ě ý ů ř ý ů ř ý Š Á Ž Ě Ý ř žé

Více

á ň á í í í á í í ž áž ří č čí é ě ě á Ž á ž ě á í í č é íš ý ěč é ě ší Í ž í č ý í í ř š ť é á í ě ž ť ří ě í ř ý á ě é é é í ž ř í ř ý á ě ší á á ě ě í ř é é ž í á š í ě á ž ž ý í á ř č ř š ř íž š ř

Více

Astronomie (a astrofyzika) tradičně patřila k disciplínám

Astronomie (a astrofyzika) tradičně patřila k disciplínám č 5 Čs čas fyz 6 (1) Hvězdy v úloá Mezináodní fyzikální olyiády vznik a ovnováa Jan Kříž, Ivo Volf, Bouil Vybíal Ústřední koise Fyzikální olyiády, Univezita Hade Kálové okitanskéo 6, 5 Hade Kálové ředstavujee

Více

Á Á Ř Á Í í ě í í í é í ý é ř í é ž í ž ě í é ř č é ť í í ý ý č é é é ě é í ě ů í ý č íč Ř č í í í é ť Ž ý í í ů íž ě í ř ší ž í ů ř ě ý í ý ž ě ý ů ú ů ř í í čí í ř í ší č é ř ě í í ý ý ť é ý ú é éř íž

Více

sl UŽBY PFto VAŠl BUDoUcNosT Ů Š É É É É č Ž Š á á í é í ř í á í Č Č úč í í Á Ě Ý Š Ě í Ů Š Ý č í í Č Š Ě í Ý í č Ě Á Á í č š ě í ů ě ů á í í ů ůč š ě í í ů ě á ý č účč ž á č á é č á ý í ě č č č

Více

ř ě ě Š ř ů Š Ř Ž ě ú š ř é ř é é š ý ě ř é ý é Ž Ž é š ý ú ř ě Í ý ř Ž é ř é é ž ř ě ř ě Ó é ž ř Ž ž ř ž ž ř ě ř ř ž ř ř ř Ž ř ř Ž ý ý ě ž ž ý ě ř Ž Ž ř ě é ě ř Ž é ř ě ů ř Ž ě ě Í ě ě ů ů ř ž é ř ž Ž

Více

ř ě í í í č ý č ý č ě úč ř ě í í í č ý č ý č ě ř ě í í í č ý č ý č ě úč Ú í í ě í í č é č é í é ý ý ů í í í ě č í ř ř í ů ě ě í ž ů ž í é ží í šť ě ří ě ý Ůž ů í í ú í č ž ž ř ě í ý ů ě č í ř í í ů í ří

Více

Ř š ý Ť Ť Ť ř š ř š ů ž ó ů ó ó óř ý ý Š Š ř Ú ř ó ů ž ář Ú ů ž ú ý ý ž ů š ó ý ó á Ž ó š ú ý ž ó ú š ó š ú ý ř ú ň ó ú ý ů ú ů ý Ý š úř ř ó ý ř ó ř á š á Žá ř ř řá á ý Žá ž á ř ř š ž ň á ý á ý ž ž ř á

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

Č Č ř ů ě ř Í ř ú ů ě ů ů ů ě ě ž ř ř ě ř Ž ě ě ě ě š ů ř ř ě ř ě ř ě ě ě ě ř šř ů ř ř ř ě Ž š šš ř ž ě š Č ě Ž šř ě š Ž š ů ů ě ů ě ě ů Č ř ř Ž ě ě ř ř Š Ž ň ě ůš Ř ů Č ř ř úř ř šř Š ř ě Ú ř ě ř Ú ř Ž

Více

í ž ý í í í ří ě čí íž ž ě čí Ž ý č ř čí ě é í é íž í ě ř í ě í ř ž ě é é ě í ď í ě ý ž é Ž ě í ě é ě í í í é é ů ě Ž Ž ě ě ř í ý ý ě ř í ů í ý í ů ý íč ě ý č Ž íž č ř ě ří Š í í íť í Ž ý í ř íť í ě í

Více