Spojité deterministické modely I 1. cvičná písemka

Rozměr: px
Začít zobrazení ze stránky:

Download "Spojité deterministické modely I 1. cvičná písemka"

Transkript

1 Spojité deterministické modely I 1. cvičná písemka I. část 1.ajděteoecnéřešenírovnice tx xttg x t. 2.Rozhodnětezdapočátečníúloha x t 3 x xjejednoznačněřešitelná.odpověď zdůvodněte. 3. ajděte první tři členy Picardovy posloupnosti postupných aproximací řešení úlohy 4. Odhadněte řešení prolému x x x x 1. x t+ x 1+x2 x tj.najdětefunkce ϕ ψtakovéže ϕt xt ψtprovšechna t >zdefiničníhoooru řešení x. 5. Zjistěte zda autonomní systém má nekonstantní periodické řešení. x 2x y y x+2y 6.Určeteprokteréhodnotyparametru ajeřešení xt 1 a rovnice x ax 1stejnoměrně asymptoticky stailní. II. část 1. ajděte řešení počátečního prolému x +x +2x +2x3 x1 x 1 2 x Vývojdvoupopulacíovelikostech xxt y ytjemodelovánsystémemrovnic x x x ky y ay+κx ky; parametry a k κ jsou kladné. Určete o jaký typ interakcevztahu populací jde najděte rovnovážné velikosti populací a vyšetřete jejich stailitu. 3. Model epidemie SEI ez vitální dynamiky je tvaru S βis E βis δe I δe S 1 E I1. označuje velikost populace na počátku je jeden infekční jedinec a žádný nakažený v latentním stádiu. ačrtněte fázové portréty a popište vývoj epidemie. Časnavypracování:I.část9minutII.část6minut. Bodování:I.část6 1odII.část3 2ody. Hodnocení: I. část: dosáhnout alespoň 3 odů. II. část:[56]a[45b[34c[23d2e.

2 Výsledky: I1. xttarcsinct I2.Ano;řešeníje x ařešeníjednoznačněřešitelnéúlohyspočátečnípodmínkou xt a pro t není řešením zadané úlohy. I3. x t x 1tt x 2tt+ t2 2 I4. t2 2 t xt t2 2 +t I5. Reálné části vlastních čísel matice jsou nenulové imaginární nulové; proto nestacionární periodické řešení nemůže existovat. I6. a <. II e t. II2. Dravec-kořist; úživnost prostředí pro populaci kořisti je neomezená a osahuje úkryt který pojme populaci kořisti o velikosti k a ochrání ji před dravcem; koeficient úmrtnosti dravce ez potravy je a efektivita s níž přemění zničenou kořistnarůstsvépopulace je κ. Stacionárnířešení x k+ a κk y 1+ je asymptotickystailní. Pro κk < κ a 2a a sejednáoohniskopro κk >2a a sejednáouzel. II3.S+E+I S +E +I S+E+I const StavovýprostorΩ { SEI R 3 : S E I S+E+I } E I S:Ω { SI R 2 : S I S+I } S I βis δ I S I S-nulkliny: I S I-nulklina: I S S E I:Ω { EI R 2 : E I E+I } E I βi E I δe δe I S βi I E-nulklina: E δ+βi I-nulklina: E I S E:Ω { SE R 2 : S E S+E } S E β S ES β S ES δe E E S-nulkliny: S E S β SS I-nulklina: E βs+δ S Počet zdravých jedinců monotonně klesá k nule počet infekčních monotonně roste k počet nakažených v latentním stadiu nejdříve roste a po dosažení jistého maxima klesá k nule.

3 Spojité deterministické modely I 2. cvičná písemka I. část 1.ajděteoecnéřešenírovnice y sinxylny. 2. Zjistěte zda je lokálně jednoznačně řešitelná počáteční úloha x +x x sin2t+ cost 2 x1 x. 3.Ukažtežefunkce x 1 ttax 2 te t tvořífundamentálnísystémřešeníhomogennírovnice přidružené k rovnici t 1x tx +xt 1 2 na jakémkoliv intervalu který neosahuje 1. Pak najděte řešení této nehomogenní rovnice spočátečnímipodmínkami x x. 4.ajdětemaximálníaminimálnířešeníúlohy x x t x. 5. Určete parametr a tak ay autonomní systém x 2x 5y y x+ay měl periodické řešení. 6.Zjistětezdařešení x 3rovnice x x 3 27jestailníneoasymptotickystailní. II. část 1. ajděte řešení počátečního prolému x +8x +16xcost x 1 9 x x 1 9 x. 2. Uvažujte model konkurence dvou populací takových že pro druhou z nich je kapacita prostředí neomezená: d 1 r a 12 2 dt K 1 d 2 r a dt ajděte nezáporná stacionární řešení a určete jejich typ a stailitu. Určete podmínky za kterých může druhá populace vyhynout. 3. Autonomní systém S ms d 1 S βis+γi I βis γi d 2 I všechnyparametryjsoukladnéam > d 1 představujemodelepidemiesissvitálnídynamikou za předpokladů: Potomky má pouze zdravá částs populace; úmrtnosti ve zdravés a infekčníi části populace mohou ýt rozdílné; omezenost zdrojůvnitrodruhová konkurence se neprojevuje tj. zdravá populace y rostla neomezeněexponenciálně. Může epidemie tohoto typu stailizovat populaci? Jaká musí ýt úmrtnost infikovaných jedinců ay se růst populace zastavil? Časnavypracování:I.část9minutII.část6minut. Bodování:I.část6 1odII.část3 2ody. Hodnocení: I. část: dosáhnout alespoň 3 odů. II. část:[56]a[45b[34c[23d2e.

4 Výsledky: { I1. yexp Ctg x }. 2 I2. Ano. Jedná se o lineární rovnici se spojitými koeficienty. I3.Každázfunkcí x 1tt x 2te t jeřešenímhomogennírovnicedruhéhořádu x t t 1 x + 1 t 1 x.dáleje t et 1 e t t 1et pro t 1. Řešenídanéúlohyjee t t 2 t 1. I4.Úlohamářešení xtctkde Cjeliovolnáreálnákonstantaatotořešeníjedefinovánonaintervalu[ neo ].Pro t >aliovolné c >platí ct <2ctapodoně.Maximálníaniminimálnířešenítedyneexistuje. I5.Systémmávždyřešení x y tj.řešeníkonstantnítedyperiodickésliovolnouperiodou.pro a 2má nekonstantní periodické řešení. I6. Řešení je nestailní. II1. xt 1 cost. 9 II2.Pokud a 21K 1 1existujejedinéstacionárnířešení:sedloK 1adruhápopulacenemůževymřítrostenade 1 a21k1 1 všechnymeze.pokud a 21K 1 >1existujídvěstacionárnířešení:stailníuzelK 1asedlo ;vtomto a 21 a 12a 21K 1 případětedymůžedruhápopulacevymřítpokudjejípočátečnívelikostje dostatečněmalá apočátečnívelikostprvní populaceje dostatečnělízko kapacitěprostředí K 1. II3.Systémmájedinýrovnovážnýod γ+d2 m d1γ+d2 β βd 2 kterýjepro stailním uzlem a pro m d 1 > m d 1 < 2 2d2 γ+d 2 γ 2 2d2 γ+d 2 γ stailním ohniskem. Epidemie která potlačuje plodnost tedy může zastavit růst malthusovské populace ez ohledu na tojakývlivmánaúmrtnost.

5 Spojité deterministické modely I 3. cvičná písemka I. část 1.ajděteoecnéřešenírovnice tx xxln x t. 2.Určeteparametr atakaypočátečníúloha tx x xamělaalespoňjednořešení definované na intervalu[. 3. ajděte první tři členy Picardovy posloupnosti postupných aproximací řešení počáteční úlohy x y y x+t x y. 4.ajdětemaximálníaminimálnířešeníúlohy x 3 3 x 2 xnaintervalu[. 5. ajděte všechny izolované stacionární ody autonomního systému x 2x 5y y x 2y+1 a určete jejich typ. 6.echť xxtjeřešenípočátečníúlohy x 2x 2 x 3 + x x1α.určeteprokteré hodnoty parametru α je funkce x rostoucí pro které hodnoty je klesající a pro které hodnoty je periodická. II. část 1. ajděte řešení počátečního prolému x y y z z x y z+2cost x1 y 1 2 z1. 2. Zdroj podléhající rozkladu je pravidelně dodáván konzumentovi. Tato situace může ýt popsána modelem x a x xy y xy y kde x označuje množství zdroje a y velikost populace konzumenta parametry a jsou kladné. ajděte podmínky za jakých může dojít k dynamické rovnováze zdroje a konzumenta; přitom množství zdroje i velikost populace konzumenta mají ýt nenulové. Je tato rovnováha dlouhodoě udržitelná? 3. Pokud relativní změna mezd závisí na relativní zaměstnanosti lineárně lze dynamiku mezd a zaměstnanosti při vhodné volě jednotek popsat autonomním systémem u u v 1 2 v v1 2u jedná se o speciální případ Goodwinova modelu. Rozhodněte o stailitě všech stacionárních odů tohoto systému a najděte invariantprvní integrál tohoto systému. Časnavypracování:I.část9minutII.část6minut. Bodování:I.část6 1odII.část3 2ody. Hodnocení: I. část: dosáhnout alespoň 3 odů. II. část:[56]a[45b[34c[23d2e.

6 Výsledky: I1. xtte Ct. I2.Oecnéřešenírovniceje xtct.prořešenírovnicetedyvždyplatí x.musítedyýt a. I3. xt y t x1t y 1t 1 2 t2 x2t y 2t 1 6 t3 1 2 t2 x3t y 3t 1 6 t t t2 I4. x t x tt 3. I5. Jediný stacionární od 5 2 je střed. I6.Pravástranadanérovnice fx2x 2 x 3 +x xx 2 2x+1 xx 1 2 jenulovápro xneo x1 jekladnápro x <azápornápro x \{1}.Toznamenážepropočátečníhodnotu α <jeřešenídanéúlohy ryzerostoucípropočátečníhodnotu α 1 1 jeřešeníryzeklesajícíapropočátečníhodnotu α {1}je řešení konstantnítedy periodické. II1. Daná úloha je ekvivalentní s počáteční úlohou pro lineární rovnici třetího řádu x +x +x +x2cost x x 1 2 x 1. Oecnéřešenípřidruženéhomogennírovniceje xtae t +Bcost+Csintpartikulárnířešenínehomogennírovnice je xt 1 2 tsint costřešeníúlohyprorovnicitřetíhořádutedyje xt 1 2 e t +1 tcost+1+tsint. Tatofunkcejeprvnísložkouřešenídanéúlohy.Jejídruháatřetísložkajsou ytx t 1 2 e t tcost tsint zty t 1 2 e t +1+tcost+1 tsint. II2. Systém má jediný stacionární od a.tenležíuvnitřprvníhokvadrantupokud a >.Variačnímaticeje 1 y Jxy y x J J a 1 a 2 a aplatípronitrj 1 <detj >takžestacionárníodjestokstailníuzelneoohnisko. K dynamické rovnováze zdroje a konzumenta dojde pokud < atransformovaná úmrtnost konzumenta je menší než intenzita dodávání zdroje. Tato rovnováha je stejnoměrně asymptoticky stailní tedy udržitelná. II3. Invariant systému: dv 2v1 2u du u2v 1 2v 1 v 2 1 2u du d u 2v lnv 2lnu 4u+const Invariantsystémutedyje Vuv4u+2v lnu 2 v. Stacionární ody: sedlo tj. nestailní středtj.stejnoměrněstailnínikolivasymptoticky a

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme

Více

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

y +q 1 (t)y = 0 (1) z +q 2 (t)z = 0 (2)

y +q 1 (t)y = 0 (1) z +q 2 (t)z = 0 (2) Šturmova srovnávací věta Srovnávací věta se týká nulových bodů rovnic 2. řádu. Umožňuje odhadnout jejich rozložení srovnáním s jinou rovnicí. Věta 1. Necht y je netriviální řešení rovnice y +q 1 (t)y =

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Modelov an ı syst em u a proces

Modelov an ı syst em u a proces Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Separovatelné diferenciální rovnice

Separovatelné diferenciální rovnice Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Stochastické diferenciální rovnice

Stochastické diferenciální rovnice KDM MFF UK, Praha Aplikace matematiky pro učitele 15.11.2011 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Model pro nemoc s rychlým šířením a krátkou dobou léčby. Příkladem takovéto

Více

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce 1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS SYSTÉMY AUTONOMNÍCH DIFERENCIÁLNÍCH

Více

1 Existence e²ení systému diferenciálních rovnic. 2 Jednozna nost e²ení pro systém diferenciálních rovnic

1 Existence e²ení systému diferenciálních rovnic. 2 Jednozna nost e²ení pro systém diferenciálních rovnic 1 Existence e²ení systému diferenciálních rovnic Denice. Funkci x : I R n, I otev ený interval, nazveme e²ením (DR), jestliºe 1. t I : (x(t), t) Ω 2. t I : x (t) vlastní 3. t I : x (t) = f(x(t), t) Lemma

Více

Spojité deterministické modely II cvičení

Spojité deterministické modely II cvičení Spojité deterministické modely II cvičení 1. Parciální diferenciální rovnice prvního řádu model věkově strukturované populace Uvažujme populaci, která se vyvíjí podle McKendrickova-vonFoersterova modelu

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

x = f(x), (1) existenci a jednoznačnosti plyne, že pokud je f C k, k 1, je ϕ korektně

x = f(x), (1) existenci a jednoznačnosti plyne, že pokud je f C k, k 1, je ϕ korektně Dynamické systémy Definice 1. Dynamickým systémem rozumíme dvojici (ϕ, Ω), kde Ω R n a ϕ(t, x) : R Ω Ω je spojité zobrazení, splňující,,semigrupovou vlastnost (i) ϕ(0, x) = x pro x Ω (ii) ϕ(s, ϕ(t, x))

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

9. cvičení z Matematické analýzy 2

9. cvičení z Matematické analýzy 2 9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

24. Parciální diferenciální rovnice

24. Parciální diferenciální rovnice 24. Parciální diferenciální rovnice Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2011/12 24.1 Rovnice vedení tepla Definice (Rovnice vedení tepla) Parciální diferenciální rovnici c(x)ρ(x)

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

V této kapitole si ukážeme, jak lze řešit některé nelineární autonomní soustavy rovnic. Uvažujme soustavu X = F (X), (1)

V této kapitole si ukážeme, jak lze řešit některé nelineární autonomní soustavy rovnic. Uvažujme soustavu X = F (X), (1) Nelineární systémy V této kapitole si ukážeme, jak lze řešit některé nelineární autonomní soustavy rovnic. Uvažujme soustavu X = F (X), () kde X : (a, b) R R n je neznámá funkce a F : Ω R n R n je spojitá

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Arnoldiho a Lanczosova metoda

Arnoldiho a Lanczosova metoda Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

š Ď ň ň Ď š Ž ň Í Ž ď Ú ňš ň Ř š ň ť Ó š Č Í ň Č Š ť Ť Ť š ŤÍ Í š Ť ň Ž š ň Ž ň ň š Ť š Ď š ší š ň É ť ď Ž Í ť Ý Í ň Ž ť Ť Ň š š ť Š Í ň ňš Í ň š š ň Í Ť Ď Ť ť ď ň š ň Ť ň Ď Ž š Ž šš ť Í ň ň Ž Ť Ť ň ů

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

Řešení diferenciálních rovnic v MATLABu

Řešení diferenciálních rovnic v MATLABu Řešení diferenciálních rovnic v MATLABu Základy algoritmizace a programování Přednáška 23. listopadu 2011 Co řešíme Obyčejné diferenciální rovnice prvního řádu: separovatelné lineární exaktní druhého řádu,

Více

A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)

A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení) A0B0LAA Lineární algebra a aplikace příklady na cvičení- řešení Martin Hadrava martin@hadrava.eu. ledna 0.týdenod9.9. Řešení soustav lineárních rovnic Gaussovou eliminační metodou diskuse počtu řešení..

Více

IV120 Spojité a hybridní systémy. Jana Fabriková

IV120 Spojité a hybridní systémy. Jana Fabriková IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou

Více

Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci

Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších

Více

Matematická analýza 4

Matematická analýza 4 Matematická analýza 4 LS 2015-16 Miroslav Zelený 18. Metrické prostory III 19. Křivkový a plošný integrál 20. Absolutně spoj. fce a fce s konečnou variací 21. Fourierovy řady 18. Metrické prostory III

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

Konvergence kuncova/

Konvergence  kuncova/ Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a

Více

Obecné lineární problémy

Obecné lineární problémy Obecné lineární problémy Variace konstant V kapitolách o soustavách lineárních rovnic a o lineárních rovnicích n-tého řádu jsme se naučili řešit rovnice (soustavy) s nulovou pravou stranou, resp. s pravou

Více

Příklad 1/23. Pro rostoucí spojité fukce f(x), g(x) platí f(x) Ω(g(x)). Z toho plyne, že: a) f(x) Ο(g(x)) b) f(x) Θ(g(x)) d) g(x) Ω(f(x))

Příklad 1/23. Pro rostoucí spojité fukce f(x), g(x) platí f(x) Ω(g(x)). Z toho plyne, že: a) f(x) Ο(g(x)) b) f(x) Θ(g(x)) d) g(x) Ω(f(x)) Příklad 1/23 Pro rostoucí spojité fukce f(x), g(x) platí f(x) Ω(g(x)). Z toho plyne, že: a) f(x) Ο(g(x)) b) f(x) Θ(g(x)) c) g(x) Θ(f(x)) d) g(x) Ω(f(x)) e) g(x) Ο(f(x)) 1 Příklad 2/23 Pro rostoucí spojité

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

12 Obyčejné diferenciální rovnice a jejich soustavy

12 Obyčejné diferenciální rovnice a jejich soustavy 12 Obyčejné diferenciální rovnice a jejich soustavy 121 Úvod - opakování Opakování z 1 ročníku (z kapitoly 5) Definice 121 Rovnice se separovanými proměnnými je rovnice tvaru Návod k řešení: Pokud g(c)

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:

Více

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,

Více

MATEMATICKÉ MODELY DYNAMIKY POPULACÍ CONTINUOUS MATHEMATICAL MODELS OF POPULATION DYNAMICS

MATEMATICKÉ MODELY DYNAMIKY POPULACÍ CONTINUOUS MATHEMATICAL MODELS OF POPULATION DYNAMICS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS SPOJITÉ MATEMATICKÉ MODELY DYNAMIKY

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Biofyzikální ústav LF MU Brno. jarní semestr 2011 pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl

ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl Robust 14, Jetřichovice ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Robust 14, Jetřichovice ÚVOD Úvod Analýzníkům

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Diferenciální rovnice a dynamické modely

Diferenciální rovnice a dynamické modely Diferenciální rovnice a namické modely Robert Mařík 31. srpna 2009 c Robert Mařík, 2009 G. Galilei: Velkou knihu příro mohou číst jen ti, kteří znají jazyk, jímž je tato kniha napsána. A tímto jazykem

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Leden 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193

Více

Rovnice se separovanými proměnnými

Rovnice se separovanými proměnnými Rovnice se separovanými proměnnými V této kapitole se budeme zabývat následující diferenciální rovnicí: y = g(y)f(x), (1) kde f a g jsou reálné funkce reálné proměnné. Tato rovnice se nazývá rovnice se

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A

Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.

Více