Měření a interpretace NMR spekter

Rozměr: px
Začít zobrazení ze stránky:

Download "Měření a interpretace NMR spekter"

Transkript

1 Měření a interpretace NMR spekter Bohumil Dolenský Telefon : Místnost : www : dolenskb@vscht.cz (+420) budova A, místnost 28 Řešení struktury neznámé látky a její NMR charakteristiky verze

2 Základní techniky NMR 1 H, 19 F, 31 P Počet a druh 1 H, 19 F, 31 P v molekule, symetrie molekuly, interakce 1-4 J HH,FF, PP,HF,HP,FP, 13 C, 15 N satelity 1 J HC,HN - symetrie a heteroatomy 13 C dekapling COSY HSQC Počet a druh 13 C v molekule, symetrie molekuly, APT C a CH 2 positivní signály, CH a CH 3 negativní signály Selektivní či neselektivní odstranění J-interakcí (přes vazby) Dle velikosti J, interakce 2-3 J HH, v případě LR COSY >3 J HH V případě 1 H, 13 C interakce 1 J HC, v případě 1 H, 15 N interakce 1 J HN HMBC Dle velikosti J, V případě 1 H, 13 C interakce 3 J HC, 2 J HC, 4 J HC, dihedrální úhly, struktura, v případě 1 H, 15 N interakce J HN NOE, ROE Interakce 1 H, 1 H či 19 F, 19 F jader přes prostor r < 0,5 nm, nejčastěji ROESY či NOESY 1D či 2D, NOEDIF, lze i heteronukleárně (HOESY)

3 1 H NMR 0 5H v aromatické oblasti 3.38 ppm H 2 O H9 v DMSO obvykle 3,33 ppm CHD 2 SOCD 3 H2 až H5 6H v alifatické oblasti H6 H7 H8 H9 0 1

4 13 C { 1 H} NMR dekapling 1 H F 3, P 3? CD 3 SOCD 3 C3 Nečistoty? amid? ester?? C1 C2 aromatické uhlíky alifatické uhlíky

5 13 C APT NMR C4 Nečistoty? C6F 3 C Hz Hz Hz C3 C5 C7 C8 13 C { 1 H} ghmbc 2D NMR H3 Nečistoty nemohou mít HMBC korelace s protony analyzované látky 0 1

6 19 F NMR bez dekaplingu 1 H? q, 290 q, 30 CF 3 C9?? 13 C { 1 H} ghsqc 2D NMR C9 je kvartérní uhlík = nenese žádné vodíky

7 Seznam signálů 13 C C ppm, C aromatický C ppm, CH aromatický C ppm, C aromatický C ppm, CH aromatický C ppm, CH aromatický C ppm, CH aromatický Disubstituovaný benzen? C ppm, dle posunu asi amid, N-C=O C ppm, 1 J CF = q, 290 Hz, CF 3 C ppm, 2 J CF = q, 30 Hz, C nebo CH 2 C9-C6F 3 C ppm, CH C ppm, C nebo CH 2 C ppm, C nebo CH 2 C1 C2 C4 C6 C9 C11 C12 C3 a C5 C7 C8 C10

8 1 H NMR H2, ddd, 8.3, 7.0, 2.0 Hz H3, s H4, dd, 7.6, 1.8 Hz J J J+J J J ΣJ=J+J+J 7,3 = 7,6 / 2 + 7,0 / 2 H5, dt, 7.3, 1.1 Hz, d, 8.2 Hz? H2 ΣJ = J d + 2J t

9 1 H- 1 H DQF-COSY 2D NMR H3 H4 Malá disperse signálů ( = signály blízko u sebe ) H2 H5 H3 H2 H5 H4? krospíky blízko diagonály překryvy krospíků malé rozlišení H2 H5 H4 1.0? 2.0

10 Dekapling Ozařujeme-li vzorek ve vhodnou dobu měření, frekvencí odpovídající některým jádrům, pak jejich signály ve spektru daných jader budou potlačeny, stejně tak jako všechny jejich spin-spin interakce. Neselektivní šumový dekapling Využívá se například šumový dekapling protonů při měření uhlíků, tím dojde ke zrušení interakcí uhlíků s protony, čímž přejdou všechny signály uhlíků na singlety, což značně zvýší citlivost i rozlišení. Mají-li uhlíky i při dekaplingu protonů multiplicitu, pak je jejím důvodem interakce s jinými jádry než-li protony. Selektivní homonukleární dekapling Využívá se k indetifikaci partnerů spin-spinové interakce. Mají-li dva signály vzájemnou spin-spinovou interakcí, pak ozařováním jednoho z nich dojde jednak k potlačení ozařovaného signálu, a jednak ke snížení multiplicity druhého signálu tak, že zanikne multiplicita způsobená ozařovaným jádrem.

11 1 H{ 1 H} Selektivní homonukleární dekapling J HH /2 J HH /2 H3 H2 H4 H5 8.2 C8 C3H2 C5H5 1.0 ddd dt dd t

12 13 C { 1 H} ghsqc 2D NMR 13 C satelity H3 H4 H5 C8 H C C7 C5 C3 s dekaplingem 1 H f1 (ppm) C7 C5 C3 bez dekaplingu 1 H H2 H5 H f1 (ppm) f2 (ppm) f2 (ppm) vázán na C8, H2 vázán na C3, H4 vázán na C5, H5 vázán na C7 H3 není vázán na uhlíkový atom, vzhledem k posunu asi OH nebo CONH

13 13 C satelity 13 CH- 12 CH 8,39 ppm, dd 1 J HC = 165 Hz H3 nemá satelity Hz není vázán na uhlík 3 J HH = 8,2 Hz 13 C satelity H3 1 J HC = 161 Hz

14 Seznam signálů 1 H a 13 C aromatických oblastech C ppm, C aromatický C ppm, CH aromatický C ppm, C aromatický C ppm, CH aromatický C ppm, CH aromatický C ppm, CH aromatický 8.38 ppm, 1H, d, 8.2, 1.1 Hz H ppm, 1H, ddd, 8.3, 7.0, 2.0 Hz H ppm, 1H, dd, 7.6, 2.0 Hz H ppm, 1H, td, 7.3, 1.1 Hz C8 C3H2 C5H5 C7H H2 H5 C2 nebo C4? C4 nebo C2? H4

15 1 H- 13 C ghmbc 2D NMR H2 H3 H4 H5 C8 C7 C4 C2 C5 C3 C4 C2 C8 C5 C3 C7 H2 H5 nebo C2 C4 C8 C5 C3 C7 H2 H5 H4 H4

16 5H v aromatické oblasti C2 C8 C3 H2 19 F NMR: -74,5 ppm (s)? q, 290 q, 30 C6F 3 C9?? C4 C5 C7 H5 C9 je kvartérní uhlík = nenese žádné vodíky H4 H3 není vázán na uhlíkový atom, vzhledem k posunu asi OH nebo CONH C ppm, dle posunu asi amid, N-C=O C ppm, CH C ppm, C nebo CH 2 C ppm, C nebo CH 2 6H v alifatické oblasti

17 1H-1H DQF-COSY 2D NMR H9 0 H 2 O H6 H8 1 H7 CHD 2 SOCD 3 1 dd 0 dd H9 ddd H8 H6 H7 ddd dd dd

18 1 H- 1 H COSY 2D NMR

19 1 H NMR

20 1H NMR ddd, 12.7, 8.1, 6,7 dd, 17.3, 11.1 Hz dd, 17.4, 4.3 Hz = 12.2 Hz ddq, 14.1, 8.4, 1.0 Hz d, 11.6 Hz d, 4.3 Hz dd, 14.1, 6.4 Hz

21 Alifatická část H ppm, 1H, ddd, 12.7, 8.1, 6.7 Hz H ppm, 1H, dd, 17.3, 11.1 Hz H ppm, 1H, dd, 17.4, 4.3 Hz H ppm, 1H, ddd, 12.2, 11.6, 4.3 Hz ppm, 1H, dd, 14.1, 6.4 Hz ppm, 1H, ddq, 14.1, 8.4, 1.0 Hz 17 H7 H H H J HF?? q, 290 q, 30 C6F 3 C9??

22 1 H{ 1 H} Selektivní homonucleární dekapling 1 0 H9 H8 H7 H6

23 13 C{ 1 H} ghsqc 2D NMR H6 H7 H8 H9 0 1 C12 molekula má chirální centrum C11 C10 17 H7 C11 H H9 X 12 6 H6 C C J HF?? q, 290 q, 30 C6F 3 C9?? = C12

24 C2 C8 C3 H2 H3 není vázán na uhlíkový atom, vzhledem k posunu asi OH nebo CONH C4 C5 H4 C7 H5 C ppm, dle posunu asi amid, N-C=O 17 H7 H6 0 1 C6F 3 H8 11 C11 N C10 C12 C9 4 H C9 je kvartérní uhlík = nenese žádné vodíky

25 13 C { 1 H} ghmbc 2D NMR H3 0 1 C6F 3 H7 H6 0 C6F 3 C11 N C10 C12 C9 O H3 H8 H9 1

26 13 C { 1 H} ghmbc 2D NMR H6 H7 H8 H9 0 1 C12 X X C11 H4 X X X X C10 X X C9 H2 H5 C3 C7 C8 C5 H4 C2 C4 H7 H6 0 C6F 3 C11 N C10 C12 C9 H8 H9 1 O H3

27 13 C { 1 H} ghmbc 2D NMR H3 H6 H7 H8 H9 0 1 C1 H2C3 H5C7 C8 C5 H4 chybí C2 C4 C1 O H7 H6 0 C6F 3 C11 C10 C12 C9 N C1 O C1 není vázán ani na C2 ani na C10 C1 dle ppm, asi amid, N-C=O H8 C1 N H9 C2 C10 C1 O 1 O přebývá H3

28 Kovalentní struktura 13 C APT H7 H8 C1 C5 C7 C8 C10 C1 C2 C4 C11 C12 HMBC C2 C12 C11 H4 HMBC

29 Stereostruktura neznámé látky H2 H5 C3 C7 C8 C5 C2 C4 O N C1 C11 C6F 3 O-H3 C9 1 C12 0 C10 H6 N H J HH [Hz] 6 8 H4 H7 H8 11 4

30 1 H- 1 H NOESY1D NMR NOE žádné alifatické vodíky nemají NOE => H7 a H8 nejsou v sousedství H2

31 1 H- 1 H NOESY1D NMR H7 3 J H9H6 = 12 Hz 3 J H9H7 = 11 Hz H9 0 H3 3 J H9H8 = 4 Hz H6 H7 H6 0

32 1 H- 1 H NOESY1D NMR H6 H7 H8 H7

33 1 H- 1 H NOESY1D NMR H7 H8 H9 H8

34 1 H- 1 H NOESY1D NMR H3?! H8 H9 1 H9 O-H3 + N-H9 Chemická výměna O-H9 + N-H3

35 1 H- 1 H NOESY1D NMR H6 H3 0 H6 H3 0 H7 H6 H8 H

36 1 H- 1 H NOESY1D NMR H3 1 H9 H3 H6 H9 1 H7 H6 0 H3 0 H6 0 H8 H9 1

37 NOE a 3 J HH a HMBC H2 H5 C3 C7 C8 C5 H4 C2 C4 H7 O N C1 C11 11 C6F 3 O-H3 C9 1 C12 0 C10 H6 N H9 H J HH [Hz] 8 6 NOE H7 H6 H8 H9 H H6 H3 1 H9

38 Struktura neznámé látky O C6F 3 O-H3 C1 C9 1 H2 C3 C8 C2 N C12 C10 0 H5 C7 C5 C4 C11 N H6 H9 H4 H7 H8

39

40 Ukázat model a všemožné úhly a vzdálenosti Např. W-interakce HF je pravděpodobnější pro trans H než pro cis a podobně. Dát dva úhly HCCC a k tomu klasický průběh a řez v jakém budou poměru konstanty a k tomu objem píku v HMBC atd., atp., Doměřit 19F-13C NMR

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí Jméno a příjmení:_bohumil_dolenský_ Datum:_10.12.2010_ Fakulta:_FCHI_ Kruh:_ÚACh_ 1. Sepište seznam signálů 1 H dle klesajícího chemického posunu (včetně nečistot), uveďte chemický posun, multiplicitu

Více

Postup při interpretaci NMR spekter neznámého vzorku

Postup při interpretaci NMR spekter neznámého vzorku Postup při interpretaci NMR spekter neznámého vzorku VŠCT 2017, Bohumil Dolenský, dolenskb@vscht.cz Tento text byl vypracován pro projekt Inovace předmětu Semestrální práce oboru analytická chemie I. Slouží

Více

Laboratoř NMR Strukturní analýza a 2D NMR spektra

Laboratoř NMR Strukturní analýza a 2D NMR spektra Laboratoř NMR Strukturní analýza a 2D NMR spektra Místo: Laboratoř NMR, místnost A28, Kontakt: doc. Ing. Bohumil DOLENSKÝ, Ph.D., Ústav analytické chemie, Vysoká škola chemicko-technologická, Technická

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance II. Příprava předmětu byla podpořena

Více

Naše NMR spektrometry

Naše NMR spektrometry Naše NMR spektrometry Varian NMR System 300 MHz Varian INOVA 400 MHz Bruker Avance III 600 MHz NMR spektrometr magnet průřez supravodičem NMR spektrometr sonda Tvar spektra reálná část imaginární část

Více

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 3b Využití D experimentů k přiřazení složitější molekuly ppm ppm 10 1.0 1.5 15.0 130.5 3.0 135 3.5 140 4.0 4.5 145 5.0 150 5.5 155 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0.5.0 1.5 1.0 ppm 160.6.4..0

Více

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 7 Interpretace 13 C MR spekter Využití 2D experimentů ppm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Zpracování, výpočet a databáze MR spekter

Více

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B. \\PYR\SCRATCH\

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B.  \\PYR\SCRATCH\ Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Seminář z Analytické chemie B Tento materiál vznikl za podpory projektu CHEMnote PPA CZ..7/../48 Inovace bakalářského studijního programu

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter LEKCE 1b Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR spekter Počet signálů ve

Více

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční y x COSY 90 y chem. posuv J vazba 90 x : : inphase dublet, disperzní inphase dublet, disperzní antiphase dublet, absorpční antiphase dublet, absorpční diagonální pík krospík + - - + podmínky měření a zpracování

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 40 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Struktura

Více

Základy NMR 2D spektroskopie

Základy NMR 2D spektroskopie Základy NMR 2D spektroskopie Jaroslav Kříž Ústav makromolekulární chemie AV ČR v.v.i. puls 1D : d 1 Fourierova transformace časového rozvoje odezvy dá 1D spektrum 2D: d 1 d 1 d 1 d 0 d 0 + in 0 d 0 + 2in

Více

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter LEKCE 2b NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Stanovení optické čistoty Enantiomery jsou nerozlišitelné v NMR spektroskopii není možné rozlišit enantiomer od racemátu!!! Enantiotopické

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 1a Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 4110 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Struktura

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie

Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie Jména: Datum: Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie Cílem laboratorního cvičení je prozkoumat interakce léčiva diclofenac s -cyklodextrinem v D 2 O při tvorbě komplexu

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu Autor: martina urbanová, jiří brus Základní experimentální postupy NMR spektroskopie pevného stavu Obsah přednášky anizotropní interakce v pevných látkách techniky rušení anizotropie jaderných interakcí

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANČNÍ SPEKTROMETRIE

NUKLEÁRNÍ MAGNETICKÁ REZONANČNÍ SPEKTROMETRIE NUKLEÁRNÍ MAGNETIKÁ REZNANČNÍ SPEKTRMETRIE Teoretický úvod Pracovní technika NMR 1 -NMR organických sloučenin 13 -NMR Aplikace NMR Nukleární (jaderná) magnetická rezonanční spektrometrie je založena na

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Seminář NMR Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Osnova Úvod, základní princip Instrumentace magnety, měřící sondy, elektronika

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární

Více

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter NMR a chiralita, posunová činidla Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR

Více

Spektrální metody NMR I. opakování

Spektrální metody NMR I. opakování Spektrální metody NMR I opakování Využití NMR určování chemické struktury přírodní látky, organická syntéza konstituce, konformace, konfigurace ověření čistoty studium dynamických procesů reakční kinetika

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova)

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) LEKCE 2a NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) Symetrie v NMR spektrech - homotopické, enantiotopické, diastereotopické

Více

Význam interakční konstanty, Karplusova rovnice

Význam interakční konstanty, Karplusova rovnice LEKCE 9 Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TCSY T E E 1 E 1 T 0 6 T E 1 T 0 88 7 0 T E 0 0 E T 0 5 108

Více

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Richard Hrabal Laboratoř NMR spektroskopie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, tel. 220 443

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 6 Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1 Jan Sýkora LC/NMR Jan Sýkora (ÚCHP AV ČR) LC - NMR 1 H NMR (500 MHz) mez detekce ~ 1 mg/ml (5 µmol látky) NMR parametry doba

Více

Dolenský, VŠCHT Praha, pracovní verze 1

Dolenský, VŠCHT Praha, pracovní verze 1 1. Multiplicita_INDA Interpretujte multiplety všech signálů spektra. Všechny multiplety jsou důsledkem interakce výhradně s jádry s magnetickým jaderným spinem 1/2, a nejsou významně komplikovány přítomností

Více

Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110

Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110 Techniky měření a interpretace NMR spekter Bohumil Dolenský VŠCT Praha místnost A28 linka 4110 NMR je nejsilnějším analytickým nástrojem k řešení struktury organický látek královna strukturních metod.

Více

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Karplusova rovnice ve strukturní analýze J(H,H) = A + B cos f

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

Experimentální data pro určení struktury proteinu

Experimentální data pro určení struktury proteinu Experimentální data pro určení struktury proteinu přiřazení co největšího počtu rezonancí intenzita NOESY krospíků chemické posuvy J-vazby vodíkové můstky zbytková dipolární interakce... omezení vzdáleností

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Mgr. Zdeněk Moravec, Ph.D. Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANCE

NUKLEÁRNÍ MAGNETICKÁ REZONANCE NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.

Více

Techniky měření a interpretace NMR spekter

Techniky měření a interpretace NMR spekter Techniky měření a interpretace MR spekter Bohumil Dolenský VŠT Praha místnost A28 linka 4110 MR EZ 500R JEL Supravodičový magnet ( 4,2 K ) 11,74736 Tesla 261052-krát pole Země 1 500,1599 Mz 125,7653 Mz

Více

Chemický posun v uhlíkových NMR spektrech

Chemický posun v uhlíkových NMR spektrech 13 -NMR spektrometrie rezonance jader 13 nastává ve srovnání s 1 při cca čtvrtinové frekvenci, tj. pracovní frekvenci 100 Mz (v 1 ) odpovídá 25,15 Mz ( 13 ) a frekvenci 600 Mz (v 1 ) odpovídá 150,9 Mz

Více

Nukleární magnetická rezonanční spektrometrie

Nukleární magnetická rezonanční spektrometrie Nukleární magnetická rezonanční spektrometrie bsah kapitoly Teoretický úvod Pracovní technika NMR 1 -NMR organických sloučenin 13 -NMR 31 P-NMR Aplikace NMR v analýze potravin Nukleární (jaderná) magnetická

Více

projekce spinu magnetické kvantové číslo jaderného spinu - M I

projekce spinu magnetické kvantové číslo jaderného spinu - M I Spektroskopie NMR - Teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - Instrumentace - vývoj technik pulsní metody, pulsní sekvence

Více

Univerzita Karlova v Praze. Farmaceutická fakulta v Hradci Králové

Univerzita Karlova v Praze. Farmaceutická fakulta v Hradci Králové Univerzita Karlova v Praze Farmaceutická fakulta v radci Králové VYUŽITÍ NMR SPEKTRSKPIE PŘI STRUKTURNÍ ANALÝZE SEKUNDÁRNÍC METABLITŮ IZLVANÝC Z BERBERIS VULGARIS L. (diplomová práce) radec Králové, 2014

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Středoškolská odborná činnost 2005/2006

Středoškolská odborná činnost 2005/2006 Středoškolská odborná činnost 2005/2006 Obor 3 - chemie Autor: Martin Hejda MSŠCH, Křemencova 12 116 28 Praha 1, 3. ročník Zadavatel a vedoucí práce: Mgr. Miroslav Kašpar CSc. Fyzikální ústav AVČR Na Slovance

Více

FARMACEUTICKÁ FAKULTA V HRADCI KRÁLOVÉ

FARMACEUTICKÁ FAKULTA V HRADCI KRÁLOVÉ FARMACEUTICKÁ FAKULTA V HRADCI KRÁLOVÉ KATEDRA ANORGANICKÉ A ORGANICKÉ CHEMIE DIPLOMOVÁ PRÁCE VYUŽITÍ NMR PŘI STRUKTURNÍ ANALÝZE PŘÍRODNÍCH LÁTEK Hradec Králové, 2010 Hana Dohnalová Prohlašuji, že tato

Více

02 Nevazebné interakce

02 Nevazebné interakce 02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí

Více

Vznik NMR signálu a jeho další osud.

Vznik NMR signálu a jeho další osud. Vznik NMR signálu a jeho další osud. NMR ecitace Zdrojem energie pro ecitaci jader je oscilující elektromagnetické záření s frekvencí w o generované střídavým proudem : B = C * cos (w o t) z z b b M o

Více

NMR spektrometr. Interpretace NMR spektra

NMR spektrometr. Interpretace NMR spektra N (R)--propylpiperidin C N (S)--propylpiperidin C ( bod) Pon vadž se jedná o chirální organickou bázi, bylo by možné ji rozšt pit na izomery krystalizací vínan, pop ípad kafr-0-sulfonát. C C (7,7-dimethylbicyklo[..]hept--yl)methansulfonová

Více

Techniky přenosu polarizace cross -polarizace a spinová difuse

Techniky přenosu polarizace cross -polarizace a spinová difuse (3) jiri brus Techniky přenosu polarizace cross -polarizace a spinová difuse laboratory frame, spin rotating frame laboratory frame, spin Ω H B H ω, ω, ω 0, B H ω 0, Ω C B C ω B 0,, 0 ω B, B C B B,, Zvýšení

Více

Vznik NMR signálu a jeho další osud.

Vznik NMR signálu a jeho další osud. Vznik NMR signálu a jeho další osud. NMR ecitace Zdrojem energie pro ecitaci jader je oscilující elektromagnetické záření s frekvencí w o generované střídavým proudem : B = C * cos (w o t) z z b b M o

Více

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování

Více

Stereochemie. Přednáška 6

Stereochemie. Přednáška 6 Stereochemie Přednáška 6 Stereoheterotopické ligandy a NMR spektroskopie Stereoheterotopické ligandy a NMR spektroskopie NMR může rozlišit atomy v odlišném okolí stíněny jinou měrou rozdíl v chemických

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz I v roztoku probíhá řada experimentů tak že,

Více

Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření

Praktické příklady měření a interpretace chemické é výměny a relaxací. rychlostních konstant k. Měření Praktické příklady měření a interpretace chemické é výměny a relaxací A. Chemická výměna 1. Dynamická NMR - teplotně závislá 1D spektra. Výměnná spektroskopie - EXY (EXchange pectroscopy) Měření rychlostních

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

CHEMIE - Úvod do organické chemie

CHEMIE - Úvod do organické chemie Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Vzdělávací okruh Druh učebního materiálu Cílová skupina Anotace SŠHS Kroměříž CZ.1.07/1.5.00/34.0911

Více

Chemická výměna. K ex K B

Chemická výměna. K ex K B Chemická výměna K ex K B Vliv chemické výměny na NMR spektrum Pomalá vs. rychlá chemická výměna Metody měření rychlosti chemické výměny a příklady: Dynamická NMR a příklad EXY a příklady Chemická výměna

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Na konci 80 a začátkem 90-tých let se v NMR

Více

Vznik NMR signálu a jeho další osud.

Vznik NMR signálu a jeho další osud. Vznik NMR signálu a jeho další osud. NMR ecitace ce Zdrojem energie pro ecitaci jader je oscilující elektromagnetické záření s frekvencí ω o generované střídavým proudem : B = C * cos (ω o t) z z β M o

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

Univerzita Karlova v Praze. Farmaceutická fakulta v Hradci Králové

Univerzita Karlova v Praze. Farmaceutická fakulta v Hradci Králové Univerzita Karlova v Praze Farmaceutická fakulta v radci Králové VYUŽITÍ MR SPEKTRSKPIE PŘI STRUKTURÍ AALÝZE LÁTEK IZLVAÝC Z BERBERIS VULGARIS L. A ARCISSUS PETICUS CV. PIK PARASL (rigorózní práce) radec

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Stereochemie 7. Přednáška 7

Stereochemie 7. Přednáška 7 Stereochemie 7 Přednáška 7 1 ptická čistota p = [ ]poz [ ]max x 100 = ee = [R] - [S] [R] + [S] x 100 p optická čistota [R], [S] molární frakce R a S enantiomerů ee + 100 %R = ee + %S = ee + 100 - %R =

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie II. Příprava předmětu byla podpořena projektem

Více

Bruker Data Analysis

Bruker Data Analysis Bruker Data Analysis Stáhněte si program Bruker Data Analysis Viewer ve verzi 4.1 SR1, vydavatelem je firma Bruker: https://www.bruker.com/service/support-upgrades/software-downloads/massspectrometry.html

Více

Typy vzorců v organické chemii

Typy vzorců v organické chemii Typy vzorců v organické chemii Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Březen 2010 Mgr. Alena Jirčáková Typy vzorců v organické chemii Zápis

Více

Vysoká škola chemicko-technologická v Praze. Ústav organické technologie. Václav Matoušek

Vysoká škola chemicko-technologická v Praze. Ústav organické technologie. Václav Matoušek Vysoká škola chemicko-technologická v Praze Ústav organické technologie VŠCHT PRAHA SVOČ 2005 Václav Matoušek Školitel : Ing. Petr Kačer, PhD. Prof. Ing. Libor Červený, DrSc. Proč asymetrická hydrogenace?

Více

NMR SPEKTROSKOPIE PRO CHEMIKY

NMR SPEKTROSKOPIE PRO CHEMIKY NMR SPEKTROSKOPIE PRO CHEMIKY 1. Úvod 1.1 Historický úvod 1.2 Jazykové okénko 2. Principy NMR spektroskopie 2.1 Jaderný spin 2.2 Chemický posun 2.3 Snímání NMR signálu 2.4 Fourierova transformace 2.5 Magnetické

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

NMR biomakromolekul RCSB PDB. Progr. NMR

NMR biomakromolekul RCSB PDB. Progr. NMR NMR biomakromolekul Typy biomakromolekul a možnosti studia pomocí NMR proteiny a peptidy rozmanité složení, omezení jen velikostí molekul nukleové kyseliny (RNA, DNA) a oligonukleotidy omezení malou rozmanitostí

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805,

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každé pondělí od 8.30 do 11.30 Místo: posluchárna

Více

magnetické rezonance

magnetické rezonance 14 Zpravodaj vojenské farmacie. 1/2005 P i azení struktur reaktivátor organofosfáty-inhibované acetylcholinesterázy na základ spekter nukleární magnetické rezonance Ji í PALE EK 52. úst ední vojenský zdravotní

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Na konci devadesátých let minulého století

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť

Více

NMR spektroskopie biologicky aktivních molekul

NMR spektroskopie biologicky aktivních molekul NMR spektroskopie biologicky aktivních molekul Jak vidí současné a budoucí uplatnění NMR spektroskopie profesor Richard Ernst. Medicine Biochemistry Nobel prize in chemistry 1991 Chemistry Physics J.W.

Více

No. 1 MW=106. No. 2 MW=156 [C 6 H 5 ] + [M-H] + M CHO [C 4 H 3 ] + 51 M+1

No. 1 MW=106. No. 2 MW=156 [C 6 H 5 ] + [M-H] + M CHO [C 4 H 3 ] + 51 M+1 No. 1 [C 6 H 5 ] + [M-H] + 77 105 106 MW=106 CHO [C 4 H 3 ] + 51 M+1 50 100 150 No. 2 M+1= 4.2 / 64.1*100 = 6.6% : 1.1 = 6*C M+2= 63.7 / 64.1*100 = 99.4% = Br 51 77 [C 6 H 5 ] + [C 4 H 3 ] + MW=156 Br

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více