Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Techniky měření a interpretace NMR spekter. Bohumil Dolenský VŠCHT Praha místnost A28 linka 4110"

Transkript

1 Techniky měření a interpretace NMR spekter Bohumil Dolenský VŠCT Praha místnost A28 linka 4110

2 NMR je nejsilnějším analytickým nástrojem k řešení struktury organický látek královna strukturních metod. Nedestruktivní metoda vyžadující jen několik mg látky. (často postačí i µg)

3 Studijní materiály na internetu Techniky měření a interpretace NMR spekter Výuka NMR na VŠCT Praha Řešené úlohy ze spektroskopie nukleární magnetické resonance J. P. ornak: The Basics of NMR J. Urbauer: Introductory NMR W. Reusch: Spectroscopy NMR Course, Queen's univesrity, Canada Spectral Database of Organic Compounds SDBS C. A. Merlic et all: WebSpectra - Problems in NMR and IR spectra NMR Quide (Brucker Biospin NMR Wiki Philosophy to Chemistry to Elucidation ans J. Reich: Structure Determination Using NMR

4 Doporučená literatura Friebolin: Basic One- and Two-Dimensional NMR Spectroscopy, Wiley-VC, 2005 Sanders, unter: Modern NMR Spectroscopy a guide for chemist, Oxford University Press, 1994 olík: Čtyři lekce z NMR, Univerzita J. E. Purkyně, 1987 Pretsch, Bühlmann, Badertscher: Structure Determination of Organic Compounds: Tables of Spectral Data, Springer, 4 th ed., 2009 Claridge: igh-resolution NMR Techniques in Organic Chemistry, Volume 27, Second Edition (Tetrahedron Organic Chemistry), Elsevier Science, 2 nd ed., Richards, ollerton: Essential Practical NMR for Organic Chemistry, Kindle Edition, Breitmaier, Voelter: Carbon C13 NMR Spectroscopy, 3 rd ed., VC, 1990.

5 Měřitelná jádra ( isotopy ) Je-li hmotnostní i protonové číslo jádra sudé je jaderný spin nulový. Je-li hmotnostní číslo liché je Jaderný spin poločíselný. 1 1 Je-li hmotnostní číslo sudé a protonové číslo liché je spin celočíselný. 12 6C C 16 8O 14 7 N 19 9F S 15 7N 31 15P

6 Nukleární Magnetická Rezonance Všechny isotopy prvků, které mají nenulový jaderný spin (I > 0) lze v rámci NMR studovat PŘÍKLAD PRO I = ½ E pro I = ½ je m = -½ E β = -m γћb o β 2I + 1 E = hν = E β - E α = γћb o [J] 0.2 cal.mol -1 pro I = ½ je m = +½ E α = -m γћb o ν = γ B o / 2π [z] α B o 0 B o

7 Informace z NMR spektra C 3 O OC 3 Počet signálů Chemický posun Intenzita Multiplicita Tvar (pološířka)...

8 Počet signálů Počet signálů v NMR spektru čisté látky odpovídá počtu chemicky neekvivalentních jader. F F F F F F Br Cl F F F O omotopní neboli chemicky ekvivalentní jádra jsou taková, která jsou v důsledku symetrie nerozlišitelná. F Záměnou libovolného F získáme stejnou látku jako záměnou jiného. F F!!! Počet signálů odráží symetrii látky!!!

9 Počet signálů Za chemicky ekvivalentní lze považovat i jádra, která jsou ekvivalentní v důsledku rychlé rotace skupiny nebo jiné rychlé chemické výměny. O O 3 C O C 2 C 3 3 C C 3 3 C C 3 Cl F Br Vodíky methylu jsou vždy ekvivalentní.

10 Počet signálů - Chemická výměna Buď se jedná o skutečný chemický proces (reakci) nebo se jedná změnu konformace, například v důsledku rotace kolem vazby. O N O N Chemická výměna je na časové škále NMR a) Rychlá = pozorujeme průměrnou hodnotu Me N O Me Me N O Me b) Střední = pozorujeme velmi široký signál Me Me c) Pomalá = pozorujeme signály krajních stavů

11 T Tvar signálů

12 T Tvar signálů

13 T Tvar signálů

14 T Tvar signálů

15 T Tvar signálů

16 T Tvar signálů

17 T Tvar signálů

18 T Tvar signálů

19 T Tvar signálů

20 Počet signálů - Vliv teploty Me N O Me k 1 Me N O Me Me k -1 Me Lze stanovit rychlost chemické výměny ( aktivační energii )

21 Inverze kruhu

22 Počet signálů - Vliv teploty J. Am. Chem. Soc. 2004, 126 (42),

23 Chemická výměna pomalá - střední - rychlá Koalescence: k c = c π ** ν ν // 2 2 = ** ν ν

24 Počet signálů Enantiotopní jádra Záměnou jednoho nebo druhého vzniknou enantiomery. Br F F Br jsou v NMR nerozlišitelná Diastereotopní jádra Záměnou jednoho nebo druhého vzniknou diastereomery. Cl F F Br jsou v NMR rozlišitelné.!!! NMR není chiroptickou metodou!!! Ale použitím chirálního prostředí (solventu, gelu) či chirálních posunových činidel lze studovat i jevy spojené s chiralitou látek.

25 Počet signálů O 3 C O C 3 3 C C3 3 C O C 3 C 3 O C3 C 3 C 3 O C 3 3 C O 3 C 3 4 2

26 Počet signálů O O O O O Zkusme nahradit jeden z C 2 vodíků například flurem Me Me O Me Me O Me Me

27 Informace z NMR spektra C 3 O OC 3 Počet signálů Chemický posun Intenzita Multiplicita Tvar (pološířka)...

28 Chemický posun signálů odnota chemického posunu odráží chemické okolí atomů. chemický posun δ [ ppm ] Nezávisí na síle magnetického pole (pracovní frekvenci přístroje) stínící konstanta σ [1] Z rozsáhlých tabulek těchto hodnot lze usuzovat na možné strukturní fragmenty neznámé látky, nebo predikovat chemické posuny pro známou strukturu.

29 Chemický posun signálů v 1 NMR spektrech

30 Magnetická anizotropie Axiální vodíky více stíněny (chem. posun o cca 0,5 ppm nižší než ekvatoriální) O O O O O 5,18 O C 3 O O O C 3 O O O 4,69 7,27 7,97 9,07 O O + vyšší chem. posun - nižší chem. posun

31 Magnetická anizotropie - kruhový proud N N N N δ (N) ~ - 3 ppm δ (Ar-) ~ 9 ppm

32 19 F NMR

33 31 P NMR

34 15 N NMR

35 Informace z NMR spektra C 3 O OC 3 Počet signálů Chemický posun Intenzita Multiplicita Tvar (pološířka)...

36 Intenzita signálu Intenzita signálu je přímo úměrná počtu chemicky ekvivalentních atomů, které reprezentuje; intenzita signálů je úměrná molárnímu zastoupení atomů. Známe-li počet vodíků v molekule (sumární vzorec), můžeme rozdělit vodíky do skupin. Je-li měřena směs látek A a B, pak poměr intenzit signálů I A / I B je roven molárnímu poměru látek násobenému poměrem počtu atomů reprezentovaným daným signálem p A.n A / p B.n B Tohoto lze využít ke stanovení molární hmotnosti či čistoty. ( Toto neplatí například v případě, že doba akvizice je výrazně kratší než relaxačníčas atomůči dochází k NOE efektu. Typickým případem je 13 C NMR měřené standardním způsobem. )

37 Intenzita signálů - příklady O 3 C O C 3 3 C C3 3 C O 2 3 : : 2 : 2 : : 2 : 2 : 2 : 1 C 3 C 3 O C3 C 3 C 3 O C 3 3 C O 3 C 3 6 : 1 : : 1 : 2 : : 1

38 Informace z NMR spektra C 3 O OC 3 Počet signálů Chemický posun Intenzita Multiplicita Tvar (pološířka)...

39 Multiplicita signálu Multiplicita signálu je důsledkem spin-spinové interakce přes vazby. Je charakterizována počtem linií a interakčními konstantami J. Tříspinový systém ABM A X Y 3 J AB = 3 J BA = 8,7 z 4 J BM = 4 J MB = 3,0 z B M z A B M

40 Multiplicita signálu Počet linií Počet linií způsobený stejným druhem atomů je roven 2 I n + 1, kde I je spinovéčíslo daného jádra a n je jejich počet. 3 J (2 ½ 3 + 1) = 4 ( kvartet q ) Interakce je vzájemná C 3 C 2 O C 3 3 J (2 ½ 2 + 1) = 3 ( triplet t ) Velikost je stejná 3 J = 3 J Multiplicita se může lišit. Pro I = ½ je multiplicita = n + 1 neboli n = multiplicita 1. Ve spektrech lze dobře pozorovat interakce jader se spinem ½ ( 1, 13 C, 15 N, 19 F, 31 P, ). Interakce jader s vyššími spinovými čísly jsou občas pozorovány jako částečné rozšíření signálu, často pozorované jsou však interakce s deuteriem ( 2 má I = 1).

41 Multiplicita signálu Počet linií pro I = ½ AX AX 2 AX Singlet (s) Dublet (d) 2 n x I x Triplet (t) Kvartet (q) pro I x = ½ Kvintet (kv) Sextet (sex) n x Septet (sep) Oktet (oct) Nonet (non)

42 MULTIPLICITA (počet linií) pro I x = 1 2, 14 N, CDCl 3 2 n x I x + 1 pro I x = 1 2 n x + 1 m = -1 B 0 m = 0 m = +1

43 MULTIPLICITA (počet linií) pro I x = 1 2, 14 N, CD 2 COCD 3 13 CD 3 COCD n x I x Singlet (s) pro I x = 1 2 n x Triplet (t) Kvintet (kv) Septet (sep)

44 Multiplicita signálu Počet linií Interaguje-li jeden druh atomů s více než jedním druhem atomů, pak výsledný počet linií je roven násobku počtu linií způsobených každým druhem atomů zvlášť, tj. (2 I a n a + 1) (2 I b n b + 1). Jinými slovy každá linie způsobená interakcí s jedním druhem atomů je rozštěpena na počet linií odpovídající počtu atomů druhého druhu. q d C 3 C 2 CBr 2 t t Počet linií může být však snížen v důsledku jejich překryvu. Ať už v důsledku náhodné shody velikosti interakčních konstant nebo důsledkem nedostatečného rozlišení. Multiplicita signálu spolu s velikostí interakční konstanty odráží množství a kvalitu jader vázaných v nejbližším okolí (jedna až tři vazby, často i více). Velikost interakční konstanty je značně závislá i na geometrii interagujících jader.

45 Počet signálů / integrální poměr signálů / multiplicita O 3 C O C 3 3 C C3 3 C O 2 3 : 2 t q 4 3 : 2 : 2 : 3 t q-t t s 5 3 : 2 : 2 : 2 : 1 t q-t t-t t-d t C 3 C 3 O C3 C 3 C 3 O C 3 3 C O 3 C 3 6 : 1 : 3 d hep s 4 6 : 1 : 2 : 1 d t-hep d-d t 2 9 : 1 s s

46 Multiplicita signálu Interakční konstanta n J AB [ z ] odnota může být kladná i záporná ( běžné měření absolutní hodnota ) n... počet vazeb mezi interagujícími jádry A, B... interagující jádra (homonukleární, heteronukleární) Velikost interakční konstanty závisí zejména na: * druhu interagujících jader * počtu vazeb mezi nimi * jádrech, která je oddělují * prostorovém uspořádání.

47

48

49 Multiplicita signálu Interakční konstanta 2 J Geminální interakce 2 J závislost na vazebném úhlu - X Y 109 J = C 120 J = +3 až -3 -

50 Multiplicita signálu Interakční konstanta 3 J Interakční konstanty 3 J v závislosti na dihedrálním úhlu φ mají velikost 0-18 z Karplusova rovnice J φ Konformační analýzy

51 Multiplicita signálu Interakční konstanta 3 J 3 J φ C.A.G. aasnoot, F.A.A.M. DeLeeuw and C. Altona Tetrahedron 36 (1980) online applet: K.G.R. Pachler J. Chem. Soc., Perkin Trans (1972) online applet:

52 1 NMR ddd ddddq Me d dddd ddd dddd s br s (d?) 1. Počet signálů? 2. Multiplicita signálů? O ddd (d?) dddd d Me dqq Me dddd d dddd Uvažujte pouze 3 J interakce.

53 Informace z NMR spektra C 3 O OC 3 Počet signálů Chemický posun Intenzita Multiplicita Tvar (pološířka)...

54 Tvar signálu O, N, S,... Obvykle: * Široké signály * Posun silně závislý na koncentraci a teplotě * Vyměnitelné s D 2 O

55 Tvar signálu O, N, S,...

56 Tvar signálu střechový efekt ( roof effect )

57 Vliv pracovní frekvence na vzhled spektra viz applet na

58 Tvar signálu velmi malé interakce

59 eteronukleární interakce I = ½ 19 F, 31 P, 13 C, 15 N,... (2 I n + 1)

60 Spektrum 1 NMR d C 3 O 3 OC 3 O 13 C 1 3 q Pozorujeme štěpení s 13 C?

61 Jaderný spin I 12 6C C ½ 1 1 ½ Výskyt [%] 98,9 1,1 ~ 100 ~ 0 NMR NE ANO ANO ANO C 1-13 C 13 C- 13 C % ,01

62 C 1-13 C 13 C- 13 C % ,01 C 3 3 C 3 C C 3 C 3 C 3 C 3 3 C 3 C 3 C C 3 C 3 C 3 3 C 3 C 3 C C 3 C 3 C 3 3 C 3 C 3 C

63 Spektrum 1 NMR 0,479 ppm * B 0 = 143,7 z d C 3 O 3 OC 3 O 13 C 1 3 q Pozorujeme!!!

64 13 C NMR C versus 1-12 C... izotopový efekt 1 J = 126 z 1-13 C 12 C 3 integrální vlna 13 C dekapling zvýšená intenzita spektra 13 C satelity 13 C 3 spektrum integrální intenzita izotopový efekt Chemický posun vodíků na 13 C a 12 C je stejný. chemický posun

65 Spektrum 1 NMR - Satelitní signály versus rotační signály

66 13 C NMR... Desymetrizace molekuly A B A 3 C C 3 B A = B = C = D C 3A = C 3 B C D ttq A B A = C = B = D C 3A = C 3 B A 3 C 13 C C 3 B A a C ( B a D ) chemicky ekvivalentní magneticky neekvivalentní C D spektra vyšších řádů dddq A 3 C A 13 C B C 3 B A = C = B = D C 3A = C 3 B C D

67 1 J C = z C(sp 3 ) C(sp 2 ) C(sp) z z z hybridizace sp N hybridizace sp O 200 N 180 N N 205 hybridizace sp 3 vliv velikosti cyklu 125 O 145 O O 150 O 145 O 140 N 140 O O 170

68 13 C NMR Me O Me Me

69 13 C NMR... Počet signálů O C 3 3 C C 3 Kolik signálů bude mít látka v 13 C NMR spektru? Deset. Stejné principy jako u 1 NMR. Methyly i-pr skupiny jsou diastereotopní. Budou všechny signály od jedné látky? Ne. Přirozený výskyt 13 C je 1,07 % C 3 C 3 C 3 C 3 C 3 O O O O O 3 C C 3 3 C C 3 3 C C 3 3 C C 3 3 C C 3 Izotopomery C 3 C 3 C 3 C 3 C 3 O O O O O 3 C C 3 3 C C 3 3 C C 3 3 C C 3 3 C C 3

70 13 C NMR... Integrální intenzita signálů Stejná jako v 1 NMR spektru, tj. odpovídá počtu ekvivalentních jader. Ale značně závislá na způsobu měření neboť 13 C jádra mají velmi rozdílné relaxační časy... Obvykle tedy v 13 C neintegrujeme... Ale! Mají-li uhlíky blízké relaxační časy, pak je lze integrovat: např. fenyl skupina, směsi rotačních či konfiguračních izomerů, atp. Počet vodíků, respektive množství spin-spin interakcí zrychluje relaxaci 13 C.

71 13 C NMR... Multiplicita 13 C signálů Jaké nepřímé spin-spinové interakce lze očekávat? Pouze s jádry mající významné přirozené zastoupení izotopů mající jaderný magnetický spin I = ½. Pozor na izotopově obohacené látky. Způsobí multiplicitu signálů 13 C jader? ANO NE ( DEUTEROVANÁ ROZPOUŠTĚDLA ANO ) NE ( NEPATRNÝ VÝSKYT ) NE ( NULOVÝ JADERNÝ MAGNETICKÝ SPIN ) NE ( NÍZKÝ VÝSKYT ) NE ( KVADRUPÓLOVÝ MOMENT ) NE ( NÍZKÝ VÝSKYT ) NE ( NULOVÝ JADERNÝ MAGNETICKÝ SPIN ) ANO ANO

72 1 J C >>> 3 J C > 2 J C ~ 4 J C z z z < 3 z multiplicita jemná struktura multipletu C 3 kvartet C 2 triplet (dublet dubletů) C dublet C singlet

73 13 C NMR... Spektrum CDCl 3 C 3 O 3 C C 3

74 13 C NMR... Šumový (širokopásmový) dekapling Standardně se 13 C NMR spektra měří s dekaplingem 1 ( 19 F, 15 N,... ) C 3 Spektrum prvního řádu O 13 C NMR 3 C C 3 nedekaplované Nárůst intensity signálů oproti Spektrum nultého řádu CDCl 3 13 C{ 1 } NMR 1 dekaplované

75 13 C NMR... Multiplicita signálů C 3 O 3 C C 3

76 13 C NMR... Dekapling 1

77 13 C NMR dekapling OFF or ON, and APT C 3 O 3 C C 3 C and C 2 C and C 3

78 13 C NMR... Princip FT NMT, relaxace, relaxačníčasy C 3 O 3 C C 3 APT

79 eteronuclear 13 C- 1 J-resolved 2D NMR APT C 3 O 3 C C 3 ~ 140 z ~ 124 z

80 eteronuclear 13 C- 1 J-resolved 2D NMR

81 eteronuclear 13 C- 1 J-resolved 2D NMR

82 13 C NMR... J-resolved, APT, 13 C, 13 C{ 1 } NMR spektra APT C 3 O 3 C C 3

83 13 C NMR... Nevýhody nedekaplovaných spekter Nízká citlivost C 3 Často jen obtížně interpretovatelné informace ( složité multiplety, desymetrizace molekuly, spektra vyšších řádů ) O 3 C C 3 124,3 z 124,4 z

84 13 C NMR... Chemické posuny C 3 O 3 C C 3

85 13 C NMR... Predikce chemických posunů experimentální spektrum predikované spektrum

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 6 Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova)

LEKCE 2a. Interpretace 13 C NMR spekter. NMR a chiralita, posunová činidla. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) LEKCE 2a NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) Symetrie v NMR spektrech - homotopické, enantiotopické, diastereotopické

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 4110 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Struktura

Více

Spektrální metody NMR I. opakování

Spektrální metody NMR I. opakování Spektrální metody NMR I opakování Využití NMR určování chemické struktury přírodní látky, organická syntéza konstituce, konformace, konfigurace ověření čistoty studium dynamických procesů reakční kinetika

Více

NUKLEÁRNÍ MAGNETICKÁ REZONANCE

NUKLEÁRNÍ MAGNETICKÁ REZONANCE NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

Nukleární magnetická rezonanční spektrometrie

Nukleární magnetická rezonanční spektrometrie Nukleární magnetická rezonanční spektrometrie bsah kapitoly Teoretický úvod Pracovní technika NMR 1 -NMR organických sloučenin 13 -NMR 31 P-NMR Aplikace NMR v analýze potravin Nukleární (jaderná) magnetická

Více

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B. \\PYR\SCRATCH\

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B.  \\PYR\SCRATCH\ Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Seminář z Analytické chemie B Tento materiál vznikl za podpory projektu CHEMnote PPA CZ..7/../48 Inovace bakalářského studijního programu

Více

Chemický posun v uhlíkových NMR spektrech

Chemický posun v uhlíkových NMR spektrech 13 -NMR spektrometrie rezonance jader 13 nastává ve srovnání s 1 při cca čtvrtinové frekvenci, tj. pracovní frekvenci 100 Mz (v 1 ) odpovídá 25,15 Mz ( 13 ) a frekvenci 600 Mz (v 1 ) odpovídá 150,9 Mz

Více

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Seminář NMR Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Osnova Úvod, základní princip Instrumentace magnety, měřící sondy, elektronika

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Symetrie molekul a stereochemie

Symetrie molekul a stereochemie Symetrie molekul a stereochemie Symetrie molekul a stereochemie l Symetrie molekul Operace symetrie Bodové grupy symetrie l Optická aktivita l Stereochemie izomerie Symetrie l výchozí bod rovnovážná konfigurace

Více

Středoškolská odborná činnost 2005/2006

Středoškolská odborná činnost 2005/2006 Středoškolská odborná činnost 2005/2006 Obor 3 - chemie Autor: Martin Hejda MSŠCH, Křemencova 12 116 28 Praha 1, 3. ročník Zadavatel a vedoucí práce: Mgr. Miroslav Kašpar CSc. Fyzikální ústav AVČR Na Slovance

Více

Přírodovědecká fakulta Organická chemie

Přírodovědecká fakulta Organická chemie Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Organická chemie Doc. Čermák 2014 Spektroskopie Spektroskopie nukleární magnetické rezonance a její použití k určení struktury

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

Symetrie molekul a stereochemie

Symetrie molekul a stereochemie Symetrie molekul a stereochemie Symetrie molekul a stereochemie Symetrie molekul Operace symetrie Bodové grupy symetrie Optická aktivita Stereochemie izomerie Symetrie Prvky a operace symetrie výchozí

Více

NMR SPEKTROSKOPIE PRO CHEMIKY

NMR SPEKTROSKOPIE PRO CHEMIKY NMR SPEKTROSKOPIE PRO CHEMIKY 1. Úvod 1.1 Historický úvod 1.2 Jazykové okénko 2. Principy NMR spektroskopie 2.1 Jaderný spin 2.2 Chemický posun 2.3 Snímání NMR signálu 2.4 Fourierova transformace 2.5 Magnetické

Více

projekce spinu magnetické kvantové číslo jaderného spinu - M I

projekce spinu magnetické kvantové číslo jaderného spinu - M I Spektroskopie NMR - Teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - Instrumentace - vývoj technik pulsní metody, pulsní sekvence

Více

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech

NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi spinový hamiltonián, typy interakcí, projevy ve spektrech Spinový hamiltonián Hamiltonián soustavy jader a elektronů v magnetickém poli lze zapsat

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

Izomerie a stereochemie

Izomerie a stereochemie Izomerie a stereochemie 1 2 Izomery mají stejný sumární vzorec, ale liší se uspořádáním atomů v prostoru. Konstituční izomery jednotlivé atomy v molekule jsou spojeny různým způsobem Stereoizomery jednotlivé

Více

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm)

Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm) Gyromagnetická částice, jev magnetické rezonance Pojmy s kterýma se můžete setkat: u elektronů lze Bohrův magneton Zkoumat NMR lze jen ty jádra, které mají nenulový jaderný spin: Několik systematických

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Překryv orbitalů Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Podmínky překryvu: Vhodná symetrie, znaménko vlnové funkce Vhodná energie, srovnatelná,

Více

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805,

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každé pondělí od 8.30 do 11.30 Místo: posluchárna

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

3. Konformační analýza alkanů a cykloalkanů

3. Konformační analýza alkanů a cykloalkanů Konformační analýza alkanů a cykloalkanů 45 3. Konformační analýza alkanů a cykloalkanů Konformace je prostorové uspořádání molekuly vzniklé rotací kolem jednoduché vazby. Konformer je konformace v lokálním

Více

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

MIKROVLNNÁ SPEKTROSKOPIE RADIKÁLU FCO 2. Lucie Kolesniková

MIKROVLNNÁ SPEKTROSKOPIE RADIKÁLU FCO 2. Lucie Kolesniková MIKROVLÁ SPEKTROSKOPIE RADIKÁLU FCO 2 Lucie Kolesniková Ústav analytické chemie, Fakulta chemicko-inženýrská, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 E-mail: lucie.kolesnikova@vscht.cz

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf

Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf Letní semestr 2017 Motivace Studium jaderné struktury: - široká škála systémů

Více

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Pracovní postup. Kvalitativní analytická chemie

Pracovní postup. Kvalitativní analytická chemie Pracovní postup v kvalitativní analytické chemii 1. mikrozkumavky 2. stojánek na mikrozkumavky 3. kapátka 4. skleněné tyčinky 5. kapkovací destička 6. hodinová sklíčka 7. špachtlička 8. centrifuga 1. roztoky

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

Pokročilé biofyzikální metody v experimentální biologii

Pokročilé biofyzikální metody v experimentální biologii Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1/1 Proč biofyzikální metody? Biofyzikální metody využívají fyzikální principy ke studiu biologických systémů Poskytují kvantitativní

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Heteronukleární korelační experimenty

Heteronukleární korelační experimenty () jiri brus eteronukleární korelační eperimenty = ±lg ±lg +lg -lg +lg -lg +lg +lg -lg +lg -lg +lg -lg kz AM 9 ±±±y LGPI ±±±y ±±±y : - - - - - - - - - - t t C: ±±± ±±± t f t f - - - r ττ ττ r rotor period

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více

magnetické rezonance

magnetické rezonance 14 Zpravodaj vojenské farmacie. 1/2005 P i azení struktur reaktivátor organofosfáty-inhibované acetylcholinesterázy na základ spekter nukleární magnetické rezonance Ji í PALE EK 52. úst ední vojenský zdravotní

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

Orbitaly, VSEPR 1 / 18

Orbitaly, VSEPR 1 / 18 rbitaly, VSEPR Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment 1 / 18 Formální náboj Rozdíl mezi

Více

Symetrie Platonovská tělesa

Symetrie Platonovská tělesa Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

Otázka: Základní chemické pojmy. Předmět: Chemie. Přidal(a): berushka. Základní chemické pojmy

Otázka: Základní chemické pojmy. Předmět: Chemie. Přidal(a): berushka. Základní chemické pojmy Otázka: Základní chemické pojmy Předmět: Chemie Přidal(a): berushka Základní chemické pojmy ATOM nejmenší částice běžné hmoty částice, kterou nemůžeme chemickými prostředky dále dělit (fyzickými ale ano

Více

Teorie Molekulových Orbitalů (MO)

Teorie Molekulových Orbitalů (MO) Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Na konci 80 a začátkem 90-tých let se v NMR

Více

Periodická tabulka prvků

Periodická tabulka prvků Periodická tabulka prvků 17. století s objevem dalších a dalších prvků nutnost systematizace J. W. Döberreiner (1829) teorie o triádách prvků triáda kovů (lithium, sodík, draslík reagují podobným způsobem)

Více

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO.

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO. OBECNÁ CHEMIE Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO burda@karlov.mff.cuni.cz HMOTA, JEJÍ VLASTNOSTI A FORMY Definice: Každý hmotný objekt je charakterizován dvěmi vlastnostmi

Více

Born-Oppenheimerova aproximace

Born-Oppenheimerova aproximace Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra

Více

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC) 3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje

Více

Vysoká škola chemicko-technologická v Praze. Ústav organické technologie. Václav Matoušek

Vysoká škola chemicko-technologická v Praze. Ústav organické technologie. Václav Matoušek Vysoká škola chemicko-technologická v Praze Ústav organické technologie VŠCHT PRAHA SVOČ 2005 Václav Matoušek Školitel : Ing. Petr Kačer, PhD. Prof. Ing. Libor Červený, DrSc. Proč asymetrická hydrogenace?

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

VÝPO C TY. Tomáš Kuc era & Karel Kotaška

VÝPO C TY. Tomáš Kuc era & Karel Kotaška ZÁKLADNÍ CHEMICKÉ VÝPO C TY I Tomáš Kuc era & Karel Kotaška tomas.kucera@lfmotol.cuni.cz Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice

Více

Hmotnostní spektrometrie Mass spectrometry - MS

Hmotnostní spektrometrie Mass spectrometry - MS Hmotnostní spektrometrie Mass spectrometry - MS Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Hmotnostní spektrometrie Mass spectrometry - MS hmotnostní spektroskopie versus hmotnostní

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

Univerzita Karlova v Praze. Farmaceutická fakulta v Hradci Králové

Univerzita Karlova v Praze. Farmaceutická fakulta v Hradci Králové Univerzita Karlova v Praze Farmaceutická fakulta v radci Králové VYUŽITÍ NMR SPEKTRSKPIE PŘI STRUKTURNÍ ANALÝZE SEKUNDÁRNÍC METABLITŮ IZLVANÝC Z BERBERIS VULGARIS L. (diplomová práce) radec Králové, 2014

Více

Vznik NMR signálu a jeho další osud.

Vznik NMR signálu a jeho další osud. Vznik NMR signálu a jeho další osud. NMR ecitace Zdrojem energie pro ecitaci jader je oscilující elektromagnetické záření s frekvencí w o generované střídavým proudem : B = C * cos (w o t) z z b b M o

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

molekul organických sloučenin

molekul organických sloučenin Řešení úloh k tématu: Prostorové uspořádání molekul organických sloučenin Jaromír Literák Cvičení v převádění různých reprezentací prostorového uspořádání molekul 1. Řešení (každá struktura 0,5 b.). O

Více

Barevné principy absorpce a fluorescence

Barevné principy absorpce a fluorescence Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické

Více

NMR spektroskopie biologicky aktivních molekul

NMR spektroskopie biologicky aktivních molekul NMR spektroskopie biologicky aktivních molekul Jak vidí současné a budoucí uplatnění NMR spektroskopie profesor Richard Ernst. Medicine Biochemistry Nobel prize in chemistry 1991 Chemistry Physics J.W.

Více

JADERNÁ MAGNETICKÁ REZONANCE

JADERNÁ MAGNETICKÁ REZONANCE JADERNÁ MAGNETICKÁ REZONANCE ÚVOD Jaderná magnetická reonance, nukleární magnetická reonance, NMR - tři nejpoužívanější výra pro spektrální metodu vužívající magnetických vlastností atomových jader některých

Více

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz I v roztoku probíhá řada experimentů tak že,

Více

Anizotropie fluorescence

Anizotropie fluorescence Anizotropie fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 6 1 Jev anizotropie Jestliže dochází k excitaci světlem kmitajícím v jedné rovině, emise fluorescence se často

Více

Modulace a šum signálu

Modulace a šum signálu Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Struktura atomu. Proč je to důležité? Konečný výklad všech chemických jevů Musí být založen na struktuře atomů. Cotton A., Wilkinson G.

Struktura atomu. Proč je to důležité? Konečný výklad všech chemických jevů Musí být založen na struktuře atomů. Cotton A., Wilkinson G. Struktura atomu Proč je to důležité? Konečný výklad všech chemických jevů Musí být založen na struktuře atomů. Cotton A., Wilkinson G. Atomisté Demokritos 460 před n.l. Atomy nedělitelné částečky hmoty,

Více

Organická chemie I. Miroslav Zabadal. Kapitola 5

Organická chemie I. Miroslav Zabadal. Kapitola 5 Organická chemie I Miroslav Zabadal Kapitola 5 Organická strukturní analýza Organická strukturní analýza infračerven ervená spektroskopie (IR) nukleárn rní magnetická rezonance (NMR) hmotnostní spektrometrie

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

Metody analýzy povrchu

Metody analýzy povrchu Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení

Více

stechiometrický vzorec, platné číslice 1 / 10

stechiometrický vzorec, platné číslice  1 / 10 Základní chemické zákony Chemické zákony, látkové množství, atomová a molekulová hmotnost, stechiometrický vzorec, platné číslice http://z-moravec.net 1 / 10 Zákony zachování Zákon zachování hmoty Lavoisier,

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách 1/4/011 Molekuly 1 Molekula definice IUPC elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí odpovídat snížení na ploše potenciální

Více

Izomerie Reakce organických sloučenin Názvosloví organické chemie. Tomáš Hauer 2.LF UK

Izomerie Reakce organických sloučenin Názvosloví organické chemie. Tomáš Hauer 2.LF UK Izomerie Reakce organických sloučenin Názvosloví organické chemie Tomáš Hauer 2.LF UK Izomerie Izomerie izomerní sloučeniny stejný sumární vzorec, různá struktura prostorové uspořádání = izomery různé

Více

Techniky prvkové povrchové analýzy elemental analysis

Techniky prvkové povrchové analýzy elemental analysis Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded

Více

Výpočet stechiometrického a sumárního vzorce

Výpočet stechiometrického a sumárního vzorce Výpočet stechiometrického a sumárního vzorce Stechiometrický (empirický) vzorec vyjadřuje základní složení sloučeniny udává, z kterých prvků se sloučenina skládá a v jakém poměru jsou atomy těchto prvků

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie. Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v

Více