Elektrické vlastnosti pevných látek

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektrické vlastnosti pevných látek"

Transkript

1 Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost σ = eμ n n + eμ p p [ 1 m 1 ] Kovy (vodiče) = m 1 pásová struktura krystalu Na: 1s 2 2s 2 2p 6 3s 1 Mg: 1s 2 2s 2 2p 6 3s 2 valenční elektrony se mohou v krystalu volně pohybovat, již slabé vnější elektrické pole usměrní přenos náboje

2 Polovodiče Izolanty (nevodiče) = m 1 valenční pás zcela zaplněný, od vodivostního pásu oddělen úzkým pásem zakázaných energií (E g < 3 ev) vodivostní pás E g = m 1 valenční pás zcela zaplněný, od vodivostního pásu oddělen širokým pásem zakázaných energií (E g > 3 ev) vodivostní pás E g tepelná excitace přechod elektronů do vodivostního pásu nositelé náboje elektrony a díry, u příměsových polovodičů určitý typ vodivosti převažuje valenční pás k překonání zakázaného pásu nutné vysoké (průrazné) napětí porušení struktury valenční pás Supravodiče = m 1 některé prvky a sloučeniny, náhlý pokles elektrického odporu za velmi nízkých teplot (T < T c ), odlišný mechanismus vedení proudu (Cooperovy páry elektronů) Iontové vodiče některé iontové krystaly, pevné elektrolyty; výrazná vodivost při běžných teplotách superiontové vodiče ( = m 1 )

3 Elektrické vlastnosti kovů kovová vazba sdílení valenčních elektronů více atomy, nemá směrový charakter valenční elektrony se mohou volně pohybovat krystalem (elektronový plyn) překážky volného pohybu: oscilující atomy v mřížce mřížkové poruchy (vakance, příměsi, nečistoty, dislokace, hranice zrn) vzájemné kolize elektronů rovnovážná koncentrace poruch a intenzita vibrací se zvyšují s rostoucí teplotou elektrická vodivost kovů roste s klesající teplotou vysvětlení vlastností kovů je založeno na kvantových principech (Sommerfeldův model volných elektronů v kovech)

4 Ohmův zákon absence vnějšího elektrického pole pohyb elektronů všemi směry, celková rychlost nulová urychlení volných elektronů v kovu působením vnějšího elektrického pole (pohyb ve směru pole); náhodné srážky s jinými elektrony a ionizovanými atomy náhodné změny směru; unášení elektronu ve směru potenciálového spádu pohyb elektronů zahrnuje pouze srážky s oscilujícími atomy v mřížce, nečistotami a defekty, lze aplikovat zákonitosti klasické mechaniky (Drudeho model) E síla působící na elektron ve vnějším elektrickém poli F = ee = m e a zrychlení elektronu za čas mezi dvěma srážkami (rychlost v je maximální v čase τ) a = v τ, v = e E τ m e střední rychlost mezi dvěma srážkami v D = v 2 e E τ = = e U l τ 2m e 2m e (potenciálový rozdíl U na koncích vodiče o délce l: U = E l)

5 proud protékající vodičem o průřezu A při koncentraci elektronů n I = n A e v D = n A e2 E τ 2m e = n e2 τ 2m e A l U = 1 R U Ohmův zákon z teorie elektronového plynu 1 R = n e2 τ A 2m e l, I = 1 R U měrná elektrická vodivost (konduktivita) σ = n e2 τ 2m e Ω 1 m 1 pohyblivost volných nositelů náboje (elektronů) měrný odpor (rezistivita) μ n = e τ 2m e ρ = 1 n e μ n m 2 V 1 s 1 Ω m 1 ρ = σ = n e μ n

6 FermihoDiracova kvantová statistika soubor N nerozlišitelných částic s poločíselným spinem (elektronů) obsazujících jednotlivé energetické hladiny E j ; j = 1,, s každý energetický stav může být obsazen pouze jednou částicí degenerace energetických hladin svazky energeticky blízkých podhladin (energeticky mírně odlišné stavy) g j ; j = 1,, s (g j = degenerace jté hladiny, více možných energetických stavů ve srovnání s atomy) energetická hladina E s je degenerována na g s podhladin a obsazena n s elektrony každá podhladina je buď obsazena jedním elektronem nebo je prázdná (Pauliho princip) obsazeno n s podhladin, neobsazeno (g s n s ) podhladin, g s n s počet mikrostavů na energetické hladině E s (tj. počet možných rozdělení n s elektronů na hladině E s ) W s = g s! n s! g s n s!

7 Příklad: počet mikrostavů na hladině E s degenerované na 4 podhladiny, která je obsazena různým počtem elektronů stupeň degenerace hladiny (g s ) počet elektronů na hladině (n s ) počet mikrostavů na hladině (W s ) E s šest mikrostavů na hladině E s degenerované na čtyři podhladiny a obsazené dvěma elektrony (g s = 4, n s = 2, W s = 6)

8 počet mikrostavů, jimiž lze uskutečnit určité rozdělení v makrostavu zahrnujícím všechny možné energetické hladiny E j (uspořádání v jednotlivých hladinách jsou na sobě nezávislá) W = j g j! n j! g j n j! nejpravděpodobnější rozdělení dáno nejvyšším počtem mikrostavů realizujících makrostav nalezení maxima W při zachování celkové energie a celkového počtu částic, platí vazné podmínky U = n j E j N = n j (U a N jsou konstaty) j j FermihoDiracova rozdělovací funkce (f FD ) n j g j = 1 exp E j E f kt + 1 = f FD pravděpodobnost obsazení energetického stavu E j elektronem 0 f FD 1 E F Fermiho energie

9 Dualita částice a vlnění obecná vlnová funkce (v 1D): ψ x, t = A exp[i 2π λ ωt = A exp[i kx ωt ] částice vykazují vlnové vlastnosti, vlnění souvisí s hybností vektor) p = h λ = hk 2π = ħk, (k vlnový vlnová funkce elektronu ψ x, t = A exp[i kx ωt ] ψ x, t = A cos(kx ωt) + ia sin kx ωt k = 2π λ = 2πp h p hybnost elektronu (de Broglieho vztah) ω = ωħ ħ = E ħ E energie elektronu (Planckův vztah)

10 Základní aproximace v kvantové teorii pevných látek kvantová teorie pevných látek řešení Schrödingerovy rovnice pro stacionární stav (pevná látka soustava N atomů obsahující N jader a NZ elektronů (Z = atomové číslo), interakce mezi všemi částicemi v soustavě) vlnová funkce ψ(r 1,, r NZ ; R 1,, R N ), r k a R i polohové vektory elektronu a jádra Hψ = Eψ operátor celkové energie (Hamiltonián) H = T + U = ħ2 2m + U = 2 x y z 2 ħ = h 2π k ħ 2 2m e k i ħ 2 2 2m i + 1 e r + U c 2 r 2 r 1,, r NZ ; R 1,, R N kl k l + U 3 (R 1,, R N ) ψ = Eψ U 1 = 1 2 k l e r 2 r kl potenciální energie párové interakce elektronů, e r 2 = e2 4πε 0 U 2 potenciální energie interakce elektronů s jádry, U 3 potenciální energie jader

11 BornovaOppenheimerova adiabatická aproximace systém částic podsystém elektronů a podsystém jader m e m c, elektrony se pohybují v poli stacionárních jader, U 3 = 0 k ħ 2 2 2m k + 1 e r + U e 2 r 2 r 1,, r NZ ; R 0 0 1,, R N ψ e = E e ψ e kl k l HartreehoFockova jednoelektronová aproximace vzájemná interakce elektronů interakce elektronu se středním polem ostatních elektronů a všech jader potenciální energie elektronu v poli stacionárních jader U 2 = k U k ( R 1 0,, R N 0 ) = k U k (r k ) potenciální energie elektronu v poli všech ostatních elektronů 2 1 e r = 2 r kl k l k U (r k )

12 jeden elektron v potenciálovém poli všech stacionárních jader a ostatních elektronů U r k = U r k + U (r k ) ħ2 2m e Δ k + U(r k ) ψ k = E k ψ k KronigůvPenneyův model potenciálové pole U(r k ) je periodické s periodou mřížky, má tvar nekonečné řady pravoúhlých potenciálových jam U(r) teorie elektronového plynu KronigůvPenneyův model potenciální energie elektronů v pevné látce pásový model r

13 Teorie elektronového plynu Předpoklady: neomezený pohyb elektronů uvnitř kovu (konstantní potenciální energie) kvantovaná energie elektronů, obsazování energetických hladin podle Pauliho principu pravděpodobnost obsazení hladin při T > 0 K podle FermihoDiracovy statistiky U = krystal kovu U = Schrödingerova rovnice pro elektron v potenciálové jámě ħ2 2m e + U 0 ψ = Eψ vlnová funkce periodická podle x, y, z s periodou L (BornovyKármánovy okrajové podmínky) U = U 0 x = 0 x = L potenciálová jáma o hraně L ψ x, y, z = ψ x + L, y, z = ψ x, y + L, z = ψ(x, y, z + L) r ψ r = A exp ik r hledání vztahu mezi E a k k polohový vektor, vlnový vektor, k = 2π λ, A = konst

14 energie v jednotkách ħ2 1 2m e 2L kvantové číslo n 2 periodicita vlnové funkce: exp ik x x = exp ik x (x + L) = exp ik x L exp(ik x x) tedy exp ik x L = cos k x L + i sin k x L = 1 složka vlnového vektoru k x L = 2πn x k x = 2πn x /L, analogicky k y = 2πn y /L, k z = 2πn z /L n x, n y, n z kvantová čísla volného elektronu (0, 1, 2,...) hodnoty energie vztažené k referenční hladině U 0 E = ħ2 2m e k x 2 + k y 2 + k z 2 = ħ2 2m e 2π L 2 n x 2 + n y 2 + n z 2 λ = 2 3 L 9 3 λ = L 4 2 λ = 2L x L energetické hladiny a vlnové funkce volného elektronu; kvantové číslo udává počet půlvln vlnové funkce (převzato z Kittel C., Úvod do fyziky pevných látek, Academia Praha 1985)

15 k y jedna buňka v kprostoru = jedna hladina energie (uzel) pro dva elektrony s opačným spinem k elektrony obsazují energetické hladiny uvnitř koule o poloměru k 0 N elektronů obsadí N/2 buněk k z 2 /L k x 4 3 πk 0 3 8π 3 L 3 = L 3 k 0 3 6π 2 = N 2 k 0 = 3π2 N L kprostor vyplněný buňkami o objemu ( 2π L )3 Fermiho koule k 0 2 = k x 2 + k y 2 + k z 2 Fermiho hladina energie nejvyššího obsazeného stavu při teplotě T = 0 K E F = ħ2 2m e 3π 2 N L 3 2 3

16 hustota energetických stavů v závislosti na energii: při T > 0 K přerozdělení elektronů na energetických hladinách, některé elektrony vystoupí na hladiny E > E F (celkový počet elektronů se nemění) G(E) přerozdělení se řídí FermihoDiracovou statistikou T = 0 K T > 0 K f E = 1 exp E E F kt + 1 f(e) 1 ~ 2kT T = 0 K E F E 0,5 0 E F T > 0 KE platí do T ~ 10 4 K při T >> 0 K může být překročena kritická teplota T F = E F /k E E F >> kt tepelné excitace se zúčastní všechny elektrony pod Fermiho hladinou FermihoDiracovo rozdělení při různých teplotách (T F = E F /k = K; C. Kittel, Úvod do fyziky pevných látek, Academia Praha 1985)

17 Pohyb elektronu v periodickém potenciálovém poli teorie elektronového plynu konstantní průběh potenciálu v krystalové struktuře 3D periodicita krystalové struktury potenciálové pole se periodicky mění ħ2 2m e + U r ψ = Eψ periodická změna potenciální energie U r = U r + t, t = t 1 a 1 + t 2 a 2 + t 3 a 3 a 1, a 2, a 3 základní mřížkové vektory řešení Blochova funkce ψ r = u k r exp(ikr) postupující rovinná vlna modulovaná funkcí u k r = u k ( r + t) funkce u k ( r) závisí na vlnovém vektoru k a na průběhu U( r) energie elektronu E má periodický průběh periodický průběh potenciální energie podle KronigovaPenneyova modelu pásový model pevných látek

18 KronigůvPenneyův model jednorozměrný průběh periodického potenciálu, nekonečná řada obdélníkových jam konečné hloubky U(x) t = a = c + b U 0 0 < x < c U = 0 b < x < 0 U = U 0 b 0 c c+b a x úprava Schrödingerovy rovnice d 2 ψ dx 2 + 2m e ħ 2 Eψ = 0 0 < x < c, d 2 ψ dx 2 + 2m e ħ 2 E U 0 ψ = 0 b < x < 0

19 řešení vlnová funkce ψ v Schrödingerově rovnici je nahrazena Blochovou funkcí v jednorozměrném tvaru ψ x = u kx x exp(ik x x) (popis řešení rovnic po dosazení Blochovy funkce viz skripta) zjednodušený vztah P sin(γa) γa + cos γa = cos k x a γ 2 = 2m ee ħ 2 P = konst cos k x a může nabývat pouze hodnot od 1 do +1, vztah vyhovuje pouze pro určité hodnoty energií dovolené hodnoty energie E (energetické pásy) sin γa závislost [ γa + cos γa ] na k x a pro P = 3 /2

20 potenciální energie Energie elektronů a periodická mřížka pevná látka, L ~ 10 0 m volné elektrony E F hladiny (téměř) volných elektronů v pevné látce (teorie elektronového plynu) a ~ m hladiny elektronů vázaných k atomům (KronigůvPenneyův model) energie elektronů jako funkce vlnového vektoru k E = ħ2 k 2 2m e E E dovolené hladiny E 0 k 6π 6π 2π 2π 0 k 6π 6π 2π 2π 0 L L L L a a a a volné elektrony volné elektrony v pevné látce vázané elektrony nπ a nπ L k

21 reciproká mřížka informace o periodicitě mřížky v reciprokém prostoru periodicita v přímém prostoru (meziatomová vzdálenost) a 2 /a v reciprokém prostoru dovolené vlnové vektory k (dovolené energie elektronu) v reciprokém prostoru velikost v reciprokých jednotkách ( 2 / ) jednorozměrná mřížka v reciprokém prostoru (periodicita 2 /a) 4π a 2π a 0 2π a 4π a elektron prochází pevnou látkou jako postupná vlna difrakční jevy při jeho interakci s pravidelně uspořádanými atomy ( srovnatelná s periodicitou mřížky) Braggova rovina rovina v reciprokém prostoru kolmá k vlnovému vektoru k, protíná ho v polovině jeho délky první bod reciproké mřížky v kprostoru 2 /a první Braggova rovina kolmo protíná mřížkový vektor v /a 1. Braggova rovina 2. Braggova rovina 4π a 2π a 0 π a 2π a 4π a

22 když se konec vlnového vektoru dotkne Braggovy roviny, dojde k difrakci E k = 2π λ interakce elektronových vln s periodickou mřížkou difrakce při určitých hodnotách vlnového vektoru k pro k = ± nπ diskontinuity na Braggových a rovinách, funkce E k není spojitá 4π a 2π a 0 2π a Braggovy roviny v kprostoru 4π a Teorie elektronového plynu diskrétní hodnoty vlnových vektorů volných elektronů v pevné látce k = nπ/l o mnoho řádů menší ve srovnání s periodicitou mřížky velmi těsné uspořádání energetických hladin kontinuum

23 Brillouinovy zóny závislost energie E na vlnovém vektoru k není spojitá v bodech k = ± nπ a, n = 1, 2, pásy dovolených energií E g E g E g první dovolený energetický pás (n = 1) pro hodnoty k od /a do /a 1. Brillouinova zóna hodnoty k od /a do 2 /a a od /a do 2 /a 2. Brillouinova zóna pás zakázaných energií diskontinuita na hranicích zón

24 opakování průběhu funkce E k v mřížkových bodech reciproké mřížky s periodicitou 2 /a E průběh funkce reprezentuje energetický pás 4π a 3π a 2π a π a 0 π a 2π a 3π a 4π a redukované zónové schéma E zobrazuje průběh funkce E k v kprostoru mezi prvními Braggovými rovinami od počátku (od /a do /a 1. BZ) reprezentuje informaci o interakci vlnových vektorů s periodickou mřížkou π a 0 π a

25 Původ pásu zakázaných energií postupná vlna podél osy x ψ trav = exp(ikx) nebo ψ trav = exp( ikx) elektronová hustota u postupné vlny je konstantní ρ ~ ψ trav 2 = exp ikx exp ikx = 1 vlna s vlnovým vektorem k = ± π splněna Braggova podmínka, vlna šířící se libovolným a směrem je odražena a šíří se opačným směrem, každým dalším odrazem se směr šíření obrací vzniká stojatá vlna + ψ stand = exp i πx a ψ stand = exp i πx a + exp i πx a exp i πx a = 2 cos πx a = i 2 sin πx a rozdílná distribuce elektronové hustoty u stojatého vlnění + ρ ~ ψ 2 stand = 2cos 2 πx a, ρ ~ ψ 2 stand = 2sin 2 πx a rozdělení elektronové hustoty (ρ) + 2 ψ stand 2 ψ stand ψ trav 2 hromadění elektronů u ionizovaných atomů hromadění elektronů mezi ionizovanými atomy a x

26 interakce mezi ionizovanými atomy snížení potenciální energie elektronů + E 1 ψ stand < E 2 ψ stand E 2 E 1 = E g neexistuje jiné řešení pro k = ± π a, žádný elektron nemůže nabýt energii v intervalu mezi E 1 a E 2 E vlnový vektor k < /a volný pohyb elektronu krystalem E 2 E 1 zakázaný pás π a 0 π a k Brillouinovy zóny v reciproké 2D čtvercové mřížce deformace čar spojujících místa o stejné energií blízko hranice 1. BZ na hranici mezi zónami (k = /a) má energie elektronu dvě hodnoty (funkce E = f k není spojitá)

27 Polovodiče kovalentní vazba mezi atomy zcela zaplněný valenční pás, prázdný vodivostní pás, odděleny úzkým pásem zakázaných energií (E g < ~ 3 ev) elementární polovodiče (Si, Ge) kovalentní vazba, strukturní typ diamantu sloučeninové polovodiče polární vazba, strukturní typ sfaleritu A III B V (GaAs, AlAs, InP, ) A II B VI (CdS, ZnTe, ) Vlastní polovodiče T = 0 K T > 0 K excitace elektronů (e ) do vodivostního pásu elektrická vodivost v elektrickém poli neobsazené hladiny ve valenčním pásu díry (h + ); přeskoky elektronů ze sousedních vazeb do pozic děr děrová vodivost elektron + díra = exciton (kvazičástice) termodynamická rovnováha: generování párů elektrondíra odpovídá rekombinaci

28 vodivostní pás E g valenční pás pásová struktura polovodiče v přímém prostoru a disperzní relace v reciprokém prostoru uvnitř 1.BZ minimum (hrana) vodivostního pásu (E C ) vnější elektrické pole udělí elektronu s potenciální energií E > E C kinetickou energii maximum valenčního pásu (E V ) potenciální energie elektronu E < E V ; zvýšení potenciální energie díry = zvýšení potenciální energie některého elektronu ve valenčním pásu šířka zakázaného pásu E g = E c E V pravděpodobnost obsazení energetického stavu elektronem při T = 0 K: f E V = 1, f E C = 0 1 exp E C E F kt + 1 = 1 1 exp E V E F kt + 1 platí pouze pro E F = E c + E V 2 pro polovodiče platí f E F = 0,5

29 elektrický proud způsobený oběma nositeli teče ve směru elektrického pole měrná vodivost: σ = σ n + σ p = n e μ n + p e μ p vlastní polovodič: n i = p i polovodič E g [ev] [ 1 m 1 ] µ n [m 2 V 1 s 1 ] µ p [m 2 V 1 s 1 ] Si 1, ,14 0,05 Ge 0,67 2,2 0,38 0,18 GaP 2,25 0,05 0,002 GaAs 1, ,85 0,45 InSb 0, ,7 0,07 CdS 2,40 0,03 ZnTe 2,26 0,03 0,01

30 Přímá a nepřímá pásová struktura polovodičů minimum vodivostního pásu a maximum valenčního pásu odpovídají určité hybnosti krystalové struktury (charakteristické hodnoty vlnového vektoru uvnitř 1.BZ) přímá pásová struktura: minimum vodivostního pásu v kprostoru nad maximem valenčního pásu možný vertikální přechod elektronu v kprostoru (excitace elektronu beze změny vlnového vektoru) nepřímá pásová struktura: minimum vodivostního pásu vzdálené od maxima valenčního pásu, přechod elektronu mezi energetickými stavy beze změny vlnového vektoru není možný, na přechodu elektronu se podílí ještě další kvazičástice (fonon) absorpce fotonu v polovodiči s přímou a nepřímou pásovou strukturou (J. Soubusta, Fyzika pevných látek SLO/PL, Univerzita Palackého v Olomouci, 2012)

31 Příměsové polovodiče elektrická vodivost je ovlivněna poruchami krystalové struktury, substituční atomy s jiným počtem valenčních elektronů (donory nebo akceptory elektronů) v polovodiči současně donory i akceptory elektronů typ vodivosti určuje příměs o vyšší koncentraci polovodič typu n malá energie potřebná k ionizaci donorového atomu, donorová elektronová hladina uvnitř zakázaného pásu v blízkosti vodivostního pásu

32 polovodič typu p chybějící elektron se doplní elektronem z valenčního pásu krystalu, vznikne volná díra, akceptorová hladina leží uvnitř zakázaného pásu v blízkosti valenčního pásu dostatečné množství akceptorů v krystalové mřížce díry jako majoritní nositelé náboje příměsové polovodiče se jeví elektricky neutrální volné elektrony blízko ionizovaného donorového atomu, díry sdružené se sousedním negativně nabitým atomem akceptoru vysoká koncentrace příměsí chování podobné vodičům (degenerované polovodiče)

33 teplotní závislost elektrické vodivosti příměsového (Si dotovaný B) a vlastního polovodiče (Si) (W.D. Callister, Jr., Materials Science and Engineering, An Introduction. Fifth Edition, John Willey & Sons, Inc., 2000) po vyčerpání všech donorů nebo po nasycení všech akceptorů elektrony z valenčního pásu se koncentrace nositelů náboje s teplotou nemění, dokud se neprojeví vlastní polovodivost

34 Hallův jev galvanomagnetický jev vliv magnetického pole na volné nositele náboje určení převažujícího typu vodivosti v polovodičích vzorkem prochází proud v příčném magnetickém poli vychýlení elektronů z původního směru napětí vznikající na bocích kompenzuje vliv magnetického pole z B z x y + d I x U H U H = R HI x B z d R H Hallův koeficient, vyjadřuje reciprokou hodnotu hustoty volných nábojů R H = 1 n e (typ n) R H = 1 (typ p) p e

35 Přechod pn difúze majoritních nositelů náboje přes rozhraní mezi částí n a p difúzní proud (hnací silou je koncentrační gradient) ionizace donorů v části n a akceptorů v části p oblasti prostorového náboje, zvyšování intenzity vnitřního elektrického pole E pn u přechodu pn brání vyrovnávání koncentrací elektronů a děr v obou částech p I D p E n Fp E Vp E pn x b difúzní napětí V D n E Cp E Cp E Fp E Vp x b E Cn E Fn E Vn potenciálový val (ev D ) E Cn E Fn E Vn

36 Diodový jev elektrický odpor přechodu pn závisí na polaritě vnějšího zdroje napětí zapojení v propustném směru: nižší potenciálový val, vyšší hodnota difúzního proudu, přes rozhraní prochází velké množství nositelů náboje, má nízký odpor x b x b p n E Cp E Fp E Vp e (V D U) E Cn E Fn E Vn U zapojení v závěrném směru: vtahování nositelů náboje do polovodiče, difúzní proud se snižuje, rozhraní působí izolačně E Cp x b p + + x b n E Fp E Vp e (V D + U) E Cn E Fn + U E Vn

37 Voltampérová charakteristika přechodu pn I = I R exp eu kt 1 I R zbytkový proud, zapojení v propustném směru U > 0, zapojení v závěrném směru U < 0 při překročení kritického napětí v závěrném směru náhlá excitace elektronů do vodivostního pásu, prudké zvýšení proudu tekoucího přes přechod pn (průraz) Zenerova dioda: nedestruktivní průraz při poměrně nízkém napětí, velmi úzká oblast prostorového náboje u přechodu pn (vysoká koncentrace příměsí), tunelový efekt při přechodu elektronů mezi valenčním pásem části p a vodivostním pásem části n stabilizace napětí v elektrických obvodech voltampérová charakteristika přechodu pn usměrnění elektrického proudu ze zdroje střídavého napětí polovodičovou diodou

38 Interakce přechodu pn s elektromagnetickým zářením excitace elektronu do vodivostního pásu po interakci s fotony (h > E g ) Fotoelektrický jev ozáření fotodiody zapojené v závěrném směru vznik párů elektrondíra, zvýšení proudu protékajícího elektrickým obvodem aplikace: konverze optického záření na elektrický signál, detekce záření Fotovoltaický jev přechod pn zapojen v propustném směru, elektrony generované dopadem světelného záření procházejí obvodem a jsou přitahovány do volných děr osvětlený přechod pn dodává energii do vnějšího obvodu křemíkový fotovoltaický panel

39 Využití přechodu pn jako zdroje záření elektroluminiscence vznik fotonů při zářivé rekombinaci párů elektrondíra (hν ~ E g ) LED diody dioda zapojená v propustném směru fotony jsou produkovány rekombinací elektronů a děr v blízkosti přechodu pn palgaas aktivní vrstva AlGaAs nalgaas substrát ngaas konstrukce AlGaAs LED diody + polovodič vlnová délka (nm) účinnost (%) výkon (lm/w) GaAs 0.6 P ,2 0,15 GaAs 0.35 P 0.65 :N 630 0,7 1 GaAs 0.14 P 0.86 :N 585 0,2 1 GaP:N 565 0,4 2,5 GaP:ZnO ,40 AlGaAs AlInGaP AlInGaP AlInGaP SiC 470 0,02 0,04 GaN ,6

40 Kombinace přechodů pn: tranzistorový jev mezi částmi s jedním typem polovodivosti (emitorem a kolektorem) je vložena část s druhým typem polovodivosti (báze) o malé tloušťce: npn nebo pnp většina nositelů náboje z emitoru prochází bází do kolektoru, zvyšuje proud mezi bází a kolektorem (pn přechod zapojený v závěrném směru) zvýšení výstupního napětí MOSFET (metaloxidesemiconductor fieldeffecttransistor) v polovodiči jednoho typu jsou vytvořeny dvě malé části s polovodivostí druhého typu spojené úzkým kanálem; hradlo je připojeno do obvodu přes povrchovou izolační vrstvu oxidu aktivní je pouze jeden typ nositelů náboje, proud procházející hradlem je řízen elektrickým polem na ně vloženým (hradlo simuluje bázi) malá změna elektrického pole na hradle způsobí velké změny proudu, proud směřující do hradla je velmi malý a zdrojový signál lze výrazně zesílit

41 Dielektrika pásová struktura: valenční pás zcela zaplněný elektrony prázdný vodivostní pás, široký pás zakázaných energií vnější elektrické pole nevyvolá změnu rychlosti elektronů ani jejich přeskok na vyšší energetické hladiny nevedou elektrický proud změna distribuce nosičů vázaného náboje elektrická polarizace vodivostní pás E g > 3 ev valenční pás Izolační vlastnosti dielektrik reálný izolant obsahuje malé množství nositelů elektrického náboje vnější elektrické pole o slabé intenzitě platí Ohmův zákon, velmi silné elektrické pole (> 10 6 V cm 1 ) průraz dielektrika (skokové zvýšení proudu) (vytrhávání elektronů z atomů a následné kolize urychlených elektronů s dalšími atomy, vytváření vodivých drah, změna vlastností a trvalé poškození materiálu) elektrická pevnost dielektrika E pr = U pr /d tepelný průraz destrukce teplem vznikajícím při průchodu proudu elektrický průraz při dostatečném odvodu vznikajícího tepla (U pr průrazné napětí, d tloušťka vzorku) každý izolant je dielektrikem, ale ne každé dielektrikum je izolantem

42 Elektrická polarizace interakce dielektrik s vnějším elektrickým polem změna rozložení elektrického náboje uvnitř dielektrika elektricky nabité částice v atomech (protony, elektrony) v elektrickém poli posun těžiště kladných a záporných nábojů, vznik elektrického dipólu E = 0 E E E dipól = dipólový moment dvou nábojů p = qr 1 qr 2 = q r 1 r 2 = qr +q nepolární dielektrikum dielektrikum bez permanentních dipólů polární molekuly a skupiny: p 0 bez přítomnosti vnějšího elektrického pole, náhodná orientace r 1 R q H p O H molekula H 2 O dipólový moment p = 6, C m 0 r 2

43 Makroskopická polarizace dipóly se orientují podle směru působení vnějšího elektrického pole celkový dipólový moment objemové jednotky látky (polarizace): elektrická indukce D = εe = ε 0 E + P [C m 2 ] P = p i dv lineární dielektrika (izotropní, nepříliš vysoká intenzita E): P = ε 0 κe = ε 0 (ε r 1)E permitivita prostředí; 0 = 8, F m 1 permitivita vakua, elektrická susceptibilita relativní permitivita ε r = 1 + κ = ε/ε 0 > 1 uspořádání dipólů v dielektriku před polarizací nabíjení desek kondenzátoru ve vakuu zvýšení nábojové hustoty v důsledku polarizace dielektrika výsledné elektrické pole v dielektriku se zeslabuje, kapacita kondenzátoru roste (C = εa/l)

44 Mechanismy polarizace látka s identickými elementárními dipóly p indukovanými lokálním elektrickým polem E loc p = α E loc polarizovatelnost polarizace P = N p, N = počet dipólů v jednotce objemu Elektronová polarizace u všech atomů a iontů, posun center elektronového obalu vzhledem k jádrům atomů, velmi rychlá odezva na vnější elektrické pole Iontová polarizace u iontových krystalů, posun opačně nabitých iontů z rovnovážných poloh v krystalové mřížce, dipólový moment úměrný nábojům iontů a změně jejich vzájemné polohy Orientační polarizace u látek obsahujících polární molekuly nebo skupiny, změna orientace permanentních dipólů, uspořádání ve směru působícího vnějšího pole, v pevných látkách omezená změna orientace permanentních dipólů celková polarizace P = P e + P i + P o

45 Polarizace v časově proměnném elektrickém poli polarizace je závislá na intenzitě vnějšího pole: P = ε r 1 ε 0 E k zorientování dipólů v elektrickém poli je nutný určitý čas (liší se podle mechanismu polarizace) periodická změna směru vnějšího elektrického pole při frekvenci vyšší než relaxační frekvence určitého typu polarizace se její příspěvek neprojeví mikrovlnná oblast změna orientace dipólů při změně polarity vnějšího elektrického pole infračervená oblast ultrafialová oblast změna relativní permitivity v závislosti na frekvenci střídavého elektrického pole

46 Feroelektrika v určitém teplotním rozmezí vykazují spontánní polarizaci P s 0 při E = 0 doménová struktura malé oblasti v materiálu spontánně polarizované jako celek (ferolelektrické domény), každá doména má jinou orientaci vektoru P s ve vnějším elektrickém poli domény orientované ve směru pole rostou na úkor ostatních při určité intenzitě elektrického pole budou vektory P s všech domén rovnoběžné s E ke zrušení spontánní polarizace je nutné opačně orientované koercitivní pole o intenzitě E c P P S E c 0 E c E P S změna doménové struktury při polarizaci feroelektrika závislost celkové polarizace feroelektrika na intenzitě elektrického pole

47 Feroelektrické chování BaTiO 3 spontánní polarizace v důsledku vychýlení pozic atomů O a Ti oproti kubické struktuře perovskitu při T < 120 C (Curieova teplota T C ) při T > T C uspořádaná kubická struktura, ztráta feroelektrických vlastností, přechod do paraelektrického stavu (převzato z W.D. Callister, Jr., Materials Science and Engineering, An Introduction. 7th Edition, John Willey & Sons, Inc., 2007)

48 tři feroelektrické fáze BaTiO 3 a směry vektoru spontánní polarizace P s Monoclinic Monoclinic (převzato z D.R. Askeland, P.P. Phulé, The Science and Engineering of Materials (4th Edition). Thomson Brooks/Cole 2003) Poznámka: antiferoelektrika sousedící atomy vychýlené z pravidelných mřížkových poloh o stejnou vzdálenost v opačném směru, dipólové momenty v doménách uspořádány proti sobě, celková polarizace je nulová (např. PbZrO 3, NaNbO 3 )

49 Piezoelektrika polarizace polárně vázaného dielektrika při mechanické deformaci elektrický náboj opačné polarity na koncích krystalu vychýlení atomů z rovnovážných pozic vnějším elektrickým polem mechanická deformace (elektrostrikce) piezolektrické struktury nemají střed symetrie (20 bodových grup: 1, 2, m, 222, mm2, 4, 4, 422, 4mm, 42m, 3, 32, 3m, 6, 6, 622, 6mm, 62m, 23, 43m) + p 1 p 1 + p 1 ++ p 1 ++ p 2 p 2 p 2 p p 1 + p 2 = 0 p 1 + p 2 = p 1 + p 2 0 p 1 + p 2 0 příspěvek iontových dipólových momentů k celkové polarizaci při mechanické deformaci centrosymetrické a necentrosymetrické struktury

50 P = dτ d piezoelektrický koeficient (tenzor 3. řádu) Všechna feroelektrika vykazují piezoelektrický jev. Piezoelektrický jev mohou vykazovat i krystaly, které nejsou ve feroelektrickém stavu. struktura SiO 2 (bodová grupa 32) piezoelektrika: BaTiO 3, PbTiO 3, PbZrO 3, Pb(Zr 1x Ti x )O 3 (PZT), LiNbO 3, KH 2 PO 4 (KDP), SiO 2 (křemen), ZnO, Pyroelektrika posun kladných a záporných nábojů v krystalové mřížce při změně teploty změna polarizace a povrchového elektrického náboje všechna pyroelektrika mají piezoelektrické vlastnosti (10 polárních bodových grup: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm) P = π T pyroelektrický koeficient [C m 2 K 1 ] pyroelektrika: BaTiO 3, LiNbO 3, LiTaO 3

51 Iontové vodiče pevné elektrolyty sloučeniny s iontovou vazbou, pevné roztoky migrace iontů strukturou pevné látky (difúze) v elektrickém poli iontová vodivost celková vodivost zahrnuje elektronovou a iontovou vodivost některé materiály vykazují vysokou iontovou vodivost při běžných teplotách superiontové vodiče ( = m 1 ) vlastnosti: struktura umožňující pohyb iontů (deficitní kationtová nebo aniontová substruktura vakance, prázdné intersticiální pozice) nízké energetické bariéry pro přeskok mezi volnými pozicemi ve struktuře (~ 0,1 ev) souvislé vodivostní dráhy pro pohyb iontů Kationtové vodiče: Na + Na 2 O 11Al 2 O 3 ( alumina), Na 1+x Zr 2 Si x P 3x O 12 (0<x<3, NASICON) Ag + AgI, RbAg 4 I 5 Li + LiCoO 2, LiMnO 2, Li 10 GeP 2 S 12, Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3, Li 7 La 3 Zr 2 O 12 (cllzo) H + Zr(HPO 4 ) 2 nh 2 O Aniontové vodiče: F PbF 2, CaF 2 O 2 Y x Zr 1x O 2x/2 (YSZ), Ca x Zr 1x O 2x, defektní perovskity Ba 2 In 2 O 5, La 1x Ca x MnO 3y

Elektrické vlastnosti pevných látek

Elektrické vlastnosti pevných látek Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

Elektrické vlastnosti pevných látek. Dielektrika

Elektrické vlastnosti pevných látek. Dielektrika Elektrické vlastnosti pevných látek Dielektrika pásová struktura: valenční pás zcela zaplněný elektrony prázdný vodivostní pás, široký pás zakázaných energií vnější elektrické pole nevyvolá změnu rychlosti

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu.

V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu. POLOVODIČE Vlastní polovodiče Podle typu nosiče náboje dělíme polovodiče na vlastní (intrinsické) a příměsové. Příměsové polovodiče mohou být dopované typu N (majoritními nosiči volného náboje jsou elektrony)

Více

2.3 Elektrický proud v polovodičích

2.3 Elektrický proud v polovodičích 2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové senzory Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové materiály elementární polovodiče Elementární

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás

Více

7. Elektrický proud v polovodičích

7. Elektrický proud v polovodičích 7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

III. Stacionární elektrické pole, vedení el. proudu v látkách

III. Stacionární elektrické pole, vedení el. proudu v látkách III. Stacionární elektrické pole, vedení el. proudu v látkách Osnova: 1. Elektrický proud a jeho vlastnosti 2. Ohmův zákon 3. Kirhoffovy zákony 4. Vedení el. proudu ve vodičích 5. Vedení el. proudu v polovodičích

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Jiří Oswald. Fyzikální ústav AV ČR v.v.i. Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová

Více

7. Elektrický proud v polovodičích

7. Elektrický proud v polovodičích 7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů

Více

Struktura a vlastnosti kovů I.

Struktura a vlastnosti kovů I. Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektroniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektroniky 1 Model atomu průměr

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

5. Vedení elektrického proudu v polovodičích

5. Vedení elektrického proudu v polovodičích 5. Vedení elektrického proudu v polovodičích - zápis výkladu - 26. až 27. hodina - A) Stavba látky a nosiče náboje Atom: základní stavební částice; skládá se z atomového jádra (protony a neutrony) a atomového

Více

Elektřina a magnetizmus polovodiče

Elektřina a magnetizmus polovodiče DUM Základy přírodních věd DUM III/2-T3-11 Téma: polovodiče Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus polovodiče Obsah POLOVODIČ...

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

8. Úvod do fyziky pevných látek

8. Úvod do fyziky pevných látek 8. Úvod do fyziky pevných látek V předchozích kapitolách jsme se seznámili s kvantově mechanickým popisem jednotlivých atomů. V této kapitole si ukážeme, že kvantová teorie umí stejně dobře popsat i seskupení

Více

Elektrický proud v polovodičích

Elektrický proud v polovodičích Elektrický proud v polovodičích Polovodič Látka, jejíž měrný elektrický odpor je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů. Polovodič Látka, jejíž měrný elektrický

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním zkouškám DOKTORSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním zkouškám DOKTORSKÉ STUDIUM OKRUHY ke státním zkouškám DOKTORSKÉ STUDIUM Obor: Zaměření: Studijní program: Fyzikální inženýrství Inženýrství pevných látek Aplikace přírodních věd Předmět SDZk Aplikace přírodních věd doktorské studium

Více

Sada 1 - Elektrotechnika

Sada 1 - Elektrotechnika S třední škola stavební Jihlava Sada 1 - Elektrotechnika 8. Polovodiče - nevlastní vodivost, PN přechod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284

Více

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Tato otázka přepokládá znalost otázky č. - polovodiče. Doporučuji ujasnit

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Optické vlastnosti

Více

DIELEKTRIKA A IZOLANTY

DIELEKTRIKA A IZOLANTY DIELEKTRIKA DIELEKTRIKA A IZOLANTY Přítomnost elektrického pole v látkovém prostředí vyvolává pohyb jak volných tak vázaných nosičů elektrického náboje. Izolanty jsou podmnožinou dielektrik, každý izolant

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Čím se vyznačuje polovodičový materiál Polovodič je látka, jejíž elektrická vodivost lze měnit. Závisí na

Více

Metodický návod: 5. Zvyšování vnějšího napětí na 3 V. Dochází k dalšímu zakřivování hladin a rozšiřování hradlové vrstvy.

Metodický návod: 5. Zvyšování vnějšího napětí na 3 V. Dochází k dalšímu zakřivování hladin a rozšiřování hradlové vrstvy. Metodický návod: 1. Spuštění souborem a.4.3_p-n.exe. Zobrazeny jsou oddělené polovodiče P a N, majoritní nositelé náboje (elektrony červené, díry modré), ionty příměsí (čtverečky) a Fermiho energetické

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

Měření šířky zakázaného pásu polovodičů

Měření šířky zakázaného pásu polovodičů Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm

Více

Tepelná vodivost pevných látek

Tepelná vodivost pevných látek Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné

Více

Polovodiče, dioda. Richard Růžička

Polovodiče, dioda. Richard Růžička Polovodiče, dioda Richard Růžička Motivace... Chceme součástku, která propouští proud jen jedním směrem. I + - - + Takovou součástkou může být polovodičová dioda. Schematická značka polovodičové diody

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

3.5. Vedení proudu v polovodičích

3.5. Vedení proudu v polovodičích 3.5. Vedení proudu v polovodičích 1. Umět klasifikovat látky podle vodivosti. 2. Seznámit se s fyzikálními vlastnostmi polovodičů, jejíž poznání vedlo k bouřlivému pokroku v elektronickém průmyslu. 3.5.1.

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

17. Elektrický proud v polovodičích, užití polovodičových součástek

17. Elektrický proud v polovodičích, užití polovodičových součástek 17. Elektrický proud v polovodičích, užití polovodičových součástek Polovodiče se od kovů liší především tím, že mají větší rezistivitu (10-2 Ω m až 10 9 Ω m), (kovy 10-8 Ω m až 10-6 Ω m). Tato rezistivita

Více

Elektronová struktura

Elektronová struktura Elektronová struktura Přiblížení pohybu elektronů v periodickém potenciálu dokonalého krystalu. Blochůvteorémpak říká, že řešení Schrödingerovy rovnice pro elektron v periodickém potenciálu je ve tvaru

Více

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku

Více

Elektromagnetismus. - elektrizace třením (elektron = jantar) - Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu

Elektromagnetismus. - elektrizace třením (elektron = jantar) - Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu Elektromagnetismus Historie Staré Řecko: Čína: elektrizace třením (elektron = jantar) Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu Hans Christian Oersted objevil souvislost

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE. ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME

Více

1 Polovodiče základní pojmy, vlastnosti. Přechody, diody, jejich struktura, vlastnosti a aplikace.

1 Polovodiče základní pojmy, vlastnosti. Přechody, diody, jejich struktura, vlastnosti a aplikace. 1 Polovodiče základní pojmy, vlastnosti. Přechody, diody, jejich struktura, vlastnosti a aplikace. Vypracoval: Vojta Polovodiče: Rozdělení pevných látek na základě velikosti zakázaného pásu. Zakázaný pás

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Polovodičové zdroje fotonů Přehledový učební text Roman Doleček Liberec 2010 Materiál vznikl v rámci projektu ESF

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Vlastnosti pevných látek

Vlastnosti pevných látek Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí

Více

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

VY_32_INOVACE_06_III./2._Vodivost polovodičů

VY_32_INOVACE_06_III./2._Vodivost polovodičů VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž

Více

Úvod do elektrokinetiky

Úvod do elektrokinetiky Úvod do elektrokinetiky Hlavní body - elektrokinetika Elektrické proudy pohyb nábojů Ohmův zákon, mikroskopický pohled Měrná vodivost σ izolanty, vodiče, polovodiče Elektrické zdroje napětí (a proudu)

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

VODIVOST x REZISTIVITA

VODIVOST x REZISTIVITA VODIVOST x REZISTIVITA Ohmův v zákon: z U = I.R = ρ.l.i / S napětí je přímo úměrné proudu, který vodičem prochází drát délky l a průřezu S, mezi jehož konci je napětí U ρ převrácená hodnota měrné ele.

Více

Vlastnosti pevných látek

Vlastnosti pevných látek Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definuje vztah mezi nimi (fyzikální veličiny skaláry, vektory, tenzory) Příklad: elastická deformace izotropního

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes.

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. r. 1947 W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. 2.2. Polovodiče Lze je definovat jako látku, která má elektronovou bipolární vodivost, tj.

Více

Poruchy krystalové struktury

Poruchy krystalové struktury Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

Polovodiče. Co je polovodič? Polovodiče jsou látky, jejichž rezistivita leží při obvyklých teplotách v intervalu 10 Ω m až 8

Polovodiče. Co je polovodič? Polovodiče jsou látky, jejichž rezistivita leží při obvyklých teplotách v intervalu 10 Ω m až 8 Polovodiče Co je polovodič? 4 Polovodiče jsou látky, jejichž rezistivita leží při obvyklých teplotách v intervalu 10 Ω m až 8 10 Ω m. Je tedy mnohem větší než u kovů, u kterých dosahuje intervalu 6 10

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

6. STUDIUM SOLÁRNÍHO ČLÁNKU

6. STUDIUM SOLÁRNÍHO ČLÁNKU 6. STUDIUM SOLÁRNÍHO ČLÁNKU Měřicí potřeby 1) solární baterie 2) termoelektrická baterie 3) univerzální měřicí zesilovač 4) reostat 330 Ω, 1A 5) žárovka 220 V / 120 W s reflektorem 6) digitální multimetr

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Projekt Pospolu. Polovodičové součástky diody. Pro obor M/01 Informační technologie

Projekt Pospolu. Polovodičové součástky diody. Pro obor M/01 Informační technologie Projekt Pospolu Polovodičové součástky diody Pro obor 18-22-M/01 Informační technologie Autorem materiálu a všech jeho částí je Ing. Petr Voborník, Ph.D. Polovodičová součástka je elektronická součástka

Více

Laboratorní práce č. 2: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 2: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 2: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

6 Potenciály s δ funkcemi II

6 Potenciály s δ funkcemi II 6 Potenciály s δ funkcemi II 6.1 Periodická δ funkce (Diracův hřeben) Částice o hmotnosti M se pohybuje v jednorozměrné mřížce popsané periodickým potenciálem V(x) = c δ(x na), (6.1.1) n= kde a je vzdálenost

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5

Více

Fyzika pro chemiky II

Fyzika pro chemiky II Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná

Více

PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT)

PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT) PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT) Martin Julínek Ústav fyzikální a spotřební chemie, Fakulta chemická VUT v Brně Purkyňova 118, 612 00 Brno, e-mail: julinek@fch.vutbr.cz

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

F6121 Základy fyziky pevných látek příklady do cvičení

F6121 Základy fyziky pevných látek příklady do cvičení F6121 Základy fyziky pevných látek příklady do cvičení 1 Drudeho model volných elektronů 1 1.1 Poissonovo rozdělení............................................ 1 1.2 Jouleho teplo................................................

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Obr Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge Fermiho hladina Výpočet polohy Fermiho hladiny

Obr Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge Fermiho hladina Výpočet polohy Fermiho hladiny Obr. 2-12 Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge 2.7. Fermiho hladina 2.7.1. Výpočet polohy Fermiho hladiny Z Obr. 2-11. a ze vztahů ( 2-9) nebo ( 2-14) je zřejmá

Více

Elektrostatické pole. Vznik a zobrazení elektrostatického pole

Elektrostatické pole. Vznik a zobrazení elektrostatického pole Elektrostatické pole Vznik a zobrazení elektrostatického pole Elektrostatické pole vzniká kolem nepohyblivých těles, které mají elektrický náboj. Tento náboj mohl vzniknout například přivedením elektrického

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více