Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
|
|
- Emil Tábor
- před 8 lety
- Počet zobrazení:
Transkript
1 Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace elektronů a děr Elektronické prvky AB34ELP
2 Neprimitivní jednotkové buňky Primitivní buňka (P) Stranově centrovaná (A, B or C) Prostorově centrovaná (I) Plošně centrovaná (F) V kombinaci se 7 primitivními buňkami vznikne 14 Bravaisových mřížek P A I F
3 14 Bravaisových krystalových mřížek 7 krysalových soustav
4 Krystalová struktura Si, Ge, GaAs FCC mřížky yposunuté o ¼ tělesové úhlopříčky 8 atomů na jednotkovou buňku každý atom má 4 nejbližší sousedy (ve vrcholech pravidelného 4 stěnu) diamantová mřížka -tvořena identickými atomy - (např. Si, Ge) mezi atomy pouze kovalentní vazby sfaleritová mřížka - (např. GaAs) - posunutá FCC tvořena jinými atomy mezi atomy kovalentní i iontové vazby Plošně centrovaná kubická mřížka Face Centred Cubic (FCC) a
5 Diamantová a sfaleritová mřížka
6 Millerovy indexy Millerovy indexy krystalových rovin 1. průsečíky roviny s osami: x, y, z. převrácené hodnoty x, y, z 3. převést na celá čísla se stejným poměrem výsledek: (hkl) ekvivalentní roviny (stejná symetrie) : {hkl} Millerovy indexy směru složky vektoru v daném směru převést na nejmenší celá čísla v daném poměru [hkl] krystalografický směr <hkl> - evivalentní sada směrů
7 PŘÍKLAD 1 Určete Millerovy indexy roviny: z převrácené hodnoty průsečíků: 1/, 1/4, 1/ 4 y nejmenší celá čísla:,1, Millerovy indexy: (1). x
8 Millerovy indexy rovina rovnoběžná se souřadnou osou má pro tuto osu Millerův index =0 průsečík s osou v záporné části Millerův index : ī vzdálenost mezi rovinami v kubickém krystalu: úhel mezi rovinami: cos θ = 1 k1 d = 1 1 h h h + k k + l a + k l 1 k + l ( )( ) h + + l h + + l 1
9 Millerovy indexy
10 Millerovy indexy (applet) Bravaisova mřížka Millerovy indexy příklady krystalů
11 PŘÍKLAD Vypočtěte objemovou koncentraci n Si atomů Si v krystalu křemíku. mřížková konstanta křemíku: a 0 = 5,43 A = 0,543 nm FCC buňka: 8 vrcholových bodů 6 bodů ve středech stěn Si (diamantová mřížka) : atomy připadají na 1 mřížový bod Počet atomů na 1 buňku : ( 8 x 1/8 + 6 x ½ ) * = 8 (vrchloly sousedí 8 buněk, stěnami sousedí buňky) = 5 10 m = n Si = cm (5 5,43 10 )
12 PŘÍKLAD 3 Vypočtěte č ě plošnou koncentraci n (100) atomů Si v rovině (100). mřížková konstanta křemíku: a 0 = 5,43 A = 0,543 nm Rovina (100): 4 rohové body 1 bod ve středu stěny Počet č atomů ů na 1b buňku : 4 x 1/4 + 1 = (rohy sousedí 4 buňky) n ( 100) = = m = cm 10 (5,43 10 )
13 Ideální krystalová mřížka b c periodické opakování základní buňky a periodický průběh potenciálu
14 Kvantová mechanika Dualismus vlna-částice De Broglieho vlnová délka: λ = h/p p hybnost částice h Planckova konstanta -34 h = 6.66 x10 Js, h = h / ππ Energie fotonu: E = hf f... frekvence záření
15 Kvantová mechanika Jevy v mikrosvětě operátorové rovnice Fyzikální veličina operátor Měřitelná hodnota veličiny vlastní číslo operátoru Stav částice vlastní funkce operátoru Schrödingerova rovnice v 1D Ĥ ψ = Eψ ˆ h d H = + U ( x) mm dx Ĥ : Hamiltonův operátor - operátor energie vlastní číslo E : energie částice (elektronu) ve stavu popsaném vlnovou funkcí ψ
16 Řešení Schrödingerovy rovnice Vlnová funkce pro volný elektron (ve vakuu) 1 i ψ ( x, t) = ( Et px) πh exp h spojité spektrum energií E Elektron v kvantové jámě, Elektron v centrálním poli atomového jádra diskrétní energetické stavy E 1, E
17 Nekonečně hluboká pravouhlá kvantová jáma Hledáme řešení Schrödingerovy rovnice h d ϕ ( x ) m dx = Eϕ ( x ) V pro potenciálový profil V = 0 pro 0 < x < d V = jinde 0 0 d x
18 Hledáme řešení ve tvaru ϕ ( x) = Asin ( αx) + Bcos( αx) Kde m je hmotnost, E je celková energie. α = Okrajové podmínky me h ϕ Tedy B=0 a: ( 0 ) = 0 a ϕ ( d ) = 0 ( ) ϕ = Asin αx α d nπ n =
19 Vlastní stavy energie Dosadením za α dostaneme vlastní energie E n = h π n md a vlastní funkcie ϕ ϕ n πn d ( x) = Asin x 0 < x d n < ( x) = 0 pro
20 Normovací podmínka určí koeficient A: d ϕ( x ) dx = 1 0 vlastní vlnové funkce: ϕ n d πn d ( x ) = sin x pre n = 1,,3,...
21 Tvar vlnových funkcí ϕ (x) φ 1 (x) E E 1 0 d x
22 zobrazení Řešení Schrödingerovy rovnice (applet) Tvar potenciálu hmotnost částice Šířka jámy Hloubka jámy
23 Elektrony v krystalu Shödi Schrödingerova rovnice pro 1 elektron lkt v krystalu: - h Δ +U( r) k (r) = E ψ k (r) m ψ periodický ýpotenciál: a n... vektor krystalické mříže řešení: Blochova funkce U(r + a n ) = U(r) ψ k (r) = e i kr u k (r) spektrum dovolených a zakázaných energií E(k)
24 Elektrony v krystalu (applet) zobrazen ní st podobno Vlno ová funkc e (pravdě výsk kytu elekt tronu) Tvar potenciálu počet jam Šířka jámy Hloubka jámy k d l ý h spektrum dovolených a zakázaných energií E(k)
25 E IZOLANT KOV POLOVODIČ KOV POLOKOV E E E F 0 π a k 0 π a k 0 π a k E F prázdný pás zakázaný pás obsazený pás částečně t č obsazený pás zakázaný pás částečně obsazený pás částečně obsazený pás obsazený pás
26 Izolant polovodič kov šířka zakázaného pásu E g = E c E v E c E v
27 Pásový diagram Si a GaAs Vodivostní pás Vodivostní pás Energie (ev V) E c E c E v E v Valenční pás Valenční pás vlnový vektor k Nepřímý polovodič přímý polovodič
28 PŘÍKLAD 4 Vypočtěte maximální vlnovou délku světla, které bude absorbováno v GaAs díky mezipásové generaci párů elektron-díra. Určete hybnost fotonu s touto vlnovou délkou. Rychlost světla c = m/s, h= 6, Js, E ggaas = 1,4 ev. Bylo by toto záření absorbováno v Si bez přítomnosti dalšího mechanismu? Vlnová délka: λ c hc hc 6610 c. 6, T = = = = 870nm υ E e. E[ ev ] 1, ,4 = Hybnost fotonu: 19. [ ev ] 1, ,4 8 1 = 7,6.10 kg. m. 8 E e E p = = s c c 3.10 V Si je minimum vodivostního pásu u hrany Brillouinovy zóny, tj. hybnost elektronu se (dle předchozího grafu) musí změnit alespoň o polovinu hodnoty p= ћ k = h/a = 6, / 0, = 1, kg.m.s -1 kde a je mřížková konstanta Si. Tato změna musí být zajištěna přídavným mechanismem - interkakcí elektronu s kmity mřížky (fonony), protože hybnost fotonu je mnohem menší.
29 Nosiče náboje v polovodiči hustota energetických stavů ve vodivostním pásu 1 mk 1 m 1/ g(e) = = ( E Ec ) π h π h Fermiho Diracova a Maxwellova Boltzmannova statistika (pravděpodobnost obsazení energetických stavů) f FD ( E ) 1 = E E exp kt F + 1 3/ pro E F -E > 4kT: koncentrace volných nositelů náboje. f MB ( E) EF = exp kt E n 0 E E V = gc (E) f FD (E) de p = 0 g C v (E) [1 f FD (E)] de
30 Nedegenerovaný polovodič použití Maxwellovy-Boltzmannovy rozdělovací funkce: f ( E ) MB = exp E F kt E n 0 = E C g c 4π ( m 3 h ) 3/ E - E kt n F ( E) f ( E) de = E - exp( ) de E c E c substitucí η = (E - Ec)/(kT) : 3/ 4π ( mn kt) E F - Ec 1/ n 0 = exp( ) η exp(- η ) d η 3 h kt 0
31 Nedegenerovaný polovodič integrál má tvar gama funkce: 0 η 1/ exp(-η ) dη = 1 π pro elektrony: 3/ π mn kt n0 = exp h n 0 = N C pro díry: p 0 = N V ( E exp F ( E exp E kt V C E kt F ) ) E F - E kt c N N c = v π m n h ππ m = p h kt 3/ kt 3/
32 Nedegenerovaný polovodič součin koncentrací elektronů a děr nezávisí na E F : E F - Ec Ev - ) ( E F n0 p0 = N c N v exp( exp ) = kt kt 1/ E g ni =( N c N v ) exp(- ) kt n i n. p = ni E F - Ec ( Ei - Ec )+( E F - Ei ) n0 = N c exp( )= N c exp kt kt 0 0 pro elektrony: pro díry: n0 = ni exp( E F - E kt i ) p0 = ni exp( E i - E kt F )
33 Intrinsický polovodič p = n = o o n i T = 300 K n = 6 /cm 3 i 10 v GaAs 1, / cm 3 vsi / cm 3 vge
34 PŘÍKLAD 5 Vypočtěte vzdálenost E F E i v Si při n 0 = cm -3 v rovnováze při teplotě 300 K, určete p 0. n EF Ei = kt ln 0 = ln 0, 407eV 10 n 1,5 10 = i i n p = = 10 cm 0 n , =, Ověřte pomocí následujícího appletu
35 Nosiče náboje v polovodiči (applet) Teplota Hustota stavů Fermiho f. Diracova Obsazení stavů
Elektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
VíceFYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
VíceÚloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
VíceÚvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)
Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý
VíceR10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
VíceFyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Více41 ELEKTRICKÉ VLASTNOSTI
508 41 ELEKTRICKÉ VLASTNOSTI Elektrické vlastnosti plynů Elektrická vodivost elektrolytů - Faradayovy zákony Pásová teorie pevných látek Rozdělení pevných látek, koncentrace volných nosičů náboje Elektrická
VícePolymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury.
Struktura kovů Kovová vazba Krystalová mříž: v uzlových bodech kationy (pro atom H: m jádro :m obal = 2000:1), Mezi kationy: delokalizovaný elektronový plyn, vyplňuje celé kovu těleso. Hmotu udržuje elektrostatická
VíceIng. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav
VíceŘešené úlohy ze statistické fyziky a termodynamiky
Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první
VíceProjekty do předmětu MF
Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní
Více1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.
2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:
Víceλ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
VíceL A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
Více3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
VíceLasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
VíceCVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
VíceLEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
VíceGeodetické polohové a výškové vytyčovací práce
Geodézie přednáška 3 Geodetické polohové a výškové vytyčovací práce Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické vytyčovací práce řeší úlohu
Víceelektrony v pevné látce verze 1. prosince 2016
F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1
VíceK přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014
K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav
VícePSK1-10. Komunikace pomocí optických vláken I. Úvodem... SiO 2. Název školy:
Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: PSK1-10 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Ukázka fyzikálních principů, na kterých
Více1. Millerovy indexy, reciproká mřížka
Obsah 1. Millerovy indexy, reciproká mřížka 2. Krystalografické soustavy, Bravaisovy mřížky 3. Poruchy v pevných látkách 4. Difrakční metody určování struktury pevných látek 5. Mechanické vlastnosti pevných
VíceDigitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT
VíceOpakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Více4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
VíceZáklady fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
VíceSvětlo v multimódových optických vláknech
Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý
VícePŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT)
PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT) Martin Julínek Ústav fyzikální a spotřební chemie, Fakulta chemická VUT v Brně Purkyňova 118, 612 00 Brno, e-mail: julinek@fch.vutbr.cz
Víceλ hc Optoelektronické součástky Fotorezistor, Laserová dioda
Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová
Více1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Vícenano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Optické vlastnosti
VíceOPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
VíceAPLIKOVANÁ OPTIKA A ELEKTRONIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VícePozitron teoretická předpověď
Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul
Více+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
VíceOtázky z kapitoly Stereometrie
Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14
Více4.3. Kvantové vlastnosti elektromagnetického záření
4.3. Kvantové vlastnosti elektromagnetického záření 4.3.1. Fotony, fotoelektrický a Comptonův jev 1. Klasifikovat obor kvantová optika.. Popsat foton a jeho vlastnosti jako kvantum energie elektromagnetického
VíceKvantová mechanika - model téměř volných elektronů. model těsné vazby
Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme
VíceŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit
VíceOPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
VíceTeoretické úlohy celostátního kola 53. ročníku FO
rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
VíceHranolový spektrometr
Hranolový spektrometr a vodíkové spektrum Ú k o l y 1. Okalibrujte hranolový spektro.. Určente vlnové délky spektrálních čar vodíkové výbojky. 3. Určente kvantové elektronové přechody v atomu vodíku. 4.
VíceElektrický náboj, Elektrické pole Elektrický potenciál a elektrické napětí Kapacita vodiče
Elektrické pole Elektrický náboj, Elektrické pole Elektrický potenciál a elektrické napětí Kapacita vodiče Elektrický náboj Elektrování těles: a) třením b) přímým dotykem jevy = elektrické příčinou - elektrický
VíceRelativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
VíceATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.
ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME
VíceMěřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry
MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický
VíceProgram: Analýza kinematiky a dynamiky klikového mechanismu čtyřdobého spalovacího motoru
Program: Analýza kinematiky a dynamiky klikového mechanismu čtyřdobého spalovacího motoru Zadání: Pro předložený čtyřdobý jednoválcový zážehový motor proveďte výpočet silového zatížení klikového mechanismu
Více1 Tepelné kapacity krystalů
Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud
VíceÚvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny.
Polovodičové lasery Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Energetické hladiny tvoří pásy Nejvyšší zaplněný pás je valenční, nejbližší vyšší energetický pás dovolených
VíceVlastnosti pevných látek
lastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí
Více6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
VíceObr Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge Fermiho hladina Výpočet polohy Fermiho hladiny
Obr. 2-12 Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge 2.7. Fermiho hladina 2.7.1. Výpočet polohy Fermiho hladiny Z Obr. 2-11. a ze vztahů ( 2-9) nebo ( 2-14) je zřejmá
VícePRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 5 Název: Charakteristiky optoelektronických součástek Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 3.3.2014
VíceMěření Planckovy konstanty
Měření Planckovy konstanty Online: http://www.sclpx.eu/lab3r.php?exp=2 Pro stanovení přibližné hodnoty Planckovy konstanty jsme vyšli myšlenkově z experimentu s LED diodami, viz např. [8], [81], nicméně
VíceKovy - model volných elektronů
Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.
VíceELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
VíceE g IZOLANT POLOVODIČ KOV. Zakázaný pás energií
Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás
VíceDomácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
VíceFyzika pro chemiky II
Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná
VíceElektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
VíceFyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
VíceELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
VíceFAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
VíceDEGRADACE SOLÁRNÍCH ČLÁNKŮ SVĚTLEM LIGHT INDUCED DEGRADATION OF SOLAR CELLS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
VíceI Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12
VíceNěkolik poznámek na téma lineární algebry pro studenty fyzikální chemie
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
VíceCharakteristiky optoelektronických součástek
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel
VíceMěření výstupní práce elektronu při fotoelektrickém jevu
Měření výstupní práce elektronu při fotoelektrickém jevu Problém A. Změřit voltampérovou charakteristiku ozářené vakuové fotonky v závěrném směru. B. Změřit výstupní práci fotoelektronů na fotokatodě vakuové
VícePohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu
Úloha 1 Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu 1.1 Úkol měření 1.Změřtezávislostanodovéhoproudu I a naindukcimagnetickéhopoleprodvěhodnotyanodovéhonapětí
VíceJméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25. 3. 2013 8.4.2013 Příprava Opravy Učitel
VíceEuklidovský prostor Stručnější verze
[1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)
Více. Opakovací kurs středoškolské matematiky podzim 2015
. Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
VíceVlastnosti pevných látek
Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí
Vícelaboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa
Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální
VíceJazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
VíceSTUDIUM FOTOEFEKTU A STANOVENÍ PLANCKOVY KONSTANTY. 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h.
Úkol měření: 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h. 2) Určete mezní kmitočet a výstupní práci materiálu fotokatody použité fotonky. Porovnejte tuto hodnotu s
VíceElektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu
Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotoefekt Fotoelektrický jev je jev, který v roce 1887 poprvé popsal Heinrich Hertz. Po nějakou dobu se efekt nazýval Hertzův efekt, ale
VíceSpontánní sestupná frekvenční konverze v nelineárních vrstevnatých strukturách
Univerzita Palackého v Olomouci Přírodovědecká fakulta Spontánní sestupná frekvenční konverze v nelineárních vrstevnatých strukturách Jan Peřina ml. Olomouc 212 Oponenti: RNDr. Antonín Lukš, CSc. Mgr.
VíceVY_32_INOVACE_06_III./2._Vodivost polovodičů
VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž
VíceModely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,
VíceÚvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
VícePříklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx
1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f
VíceMěření logaritmického dekrementu kmitů v U-trubici
Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový
Vícef(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =
Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží
VíceVedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua
Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice
Více3.2. Elektrický proud v kovových vodičích
3.. Elektrický proud v kovových vodičích Kapitola 3.. byla bez výhrad věnována popisu elektrických nábojů v klidu, nyní se budeme zabývat pohybujícími se nabitými částicemi. 3... Základní pojmy Elektrický
VíceElektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
VíceZeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov
Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se
VíceNetlumené kmitání tělesa zavěšeného na pružině
Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento
VíceZápadočeská univerzita v Plzni. Fakulta aplikovaných věd
Závislost odporu vodičů na teplotě František Skuhravý Západočeská univerzita v Plzni Fakulta aplikovaných věd datum měření: 4.4.2003 Úvod do problematiky Důležitou charakteristikou pevných látek je konduktivita
VíceZápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
VíceDualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
VíceMěření ohniskových vzdáleností čoček, optické soustavy
Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného
VíceŘešení úloh celostátního kola 55. ročníku fyzikální olympiády.
Řešení úlo celostátnío kola 55 ročníku fyzikální olympiády AutořiJTomas(134)aMJarešová() 1a) Pro určení poloy těžiště umístíme jelan do poloy podle obr R1 Obsa příčnéo řezu jelanem ve vzdálenosti od vrcolu
Více