Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně

Rozměr: px
Začít zobrazení ze stránky:

Download "Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně"

Transkript

1 Kódy pro detekci a opravu chyb INP 2008 FIT VUT v Brně 1

2 Princip kódování vstupní data kodér Tady potřebujeme informaci zabezpečit, utajit apod. Zakódovaná data: Může dojít k poruše, např.: dekodér chceme získat původní data Předpokládejme kódovací předpis např.: 0 000, Uvedené kódování může být použito buď pro přenos dat mezi jednotkami nebo pro celý systém (například počítač). Zabezpečení informace je založeno na vhodném využití 2 redundance.

3 Základní kódy pro detekci a opravu chyb Parita Ztrojení Hammingův kód (7,4) Rozšířený Hammingův kód 3

4 Parita a Hammingova vzdálenost Nejjednodušší kód detekující jednu chybu (SED) dostaneme doplněním paritního bitu, např. na sudou paritu (nebo lichou důvody, proč zvolit sudou, nebo lichou paritu jsou podmíněny použitou obvodovou technologií) Popsané uspořádání se nazývá paritní kód. Kombinace se zvolenou sudou, tedy správnou paritou se označují jako kódov dové, kombinace s chybnou (lichou) paritou jako nekódov dové. Kontrola správnosti dat se zjišťuje kontrolou parity. Hammingova vzdálenost kódových složek je definovaná jako nejmenší počet bitů, v nichž se dvojice kódových kombinací liší, zjištěný pro všechny dvojice. U tohoto kódu je Hammingova vzdálenost rovna 2. Příklad sudého paritního kódu: x 2 x 1 x 0 p Minimální vzdálenost, zjištěná u každé dvojice kódových slov je Hammingova vzdálenost kódu d H. U paritního kódu je to d H = 2. 4

5 Ztrojení (kód typu SEC - Single-Error Correction ) Ztrojením jednoho bitu dostaneme dvě kódové kombinace, a to 000, 111, a 6 nekódových kombinací. kódov dové kombinace nekódov dové kombinace Za předpokladu jediné chyby (jednobitové) je možno určit, ze které kódové kombinace daná nekódová kombinace vznikla. Dostali jsme tak kód opravující jednoduché chyby (Single-Error Correction - SEC). Jeho Hammingova vzdálenost je 3. 5

6 Hammingova vzdálenost: demonstrace Richard Wesley Hamming, +Jan. 6, 1998 Pro opravu l násobn sobné chyby musí být Hammingova vzdálenost d 2l +1. Obrázek: Kroužky nakreslené plnou čarou představují kódové kombinace, tečkované kroužky znamenají nekódové kombinace. Mezi sousedními kroužky v jednom řádku je Hammingova vzdálenost rovna jedné. Je zřejmé, že pro kód s Hammingovou vzdáleností d = 2 nemůžeme rozhodnout, ze které kódové kombinace vzniklo vlivem jednobitové chyby nekódové slovo, a nedokážeme tedy chybu opravit. Opravu jednobitové chyby můžeme provést až u kódu se vzdáleností d = 3. d = 1 SED SEC SEC - DED DEC

7 Hammingův kód (n, k) n délka kódového slova (v bitech) k počet informačních bitů m počet kontrolních bitů n = 2 m 1 n = m + k Př. HK(7, 4), HK(15, 11), Nejznámější SEC je HK(7, 4) 7

8 Hammingův kód (7,4) Podle hodnoty zavedeného indexu i se rozhodne o funkci příslušného bitu: je-li i mocnina dvojky, je bit kontrolní (C), v ostatních případech je bit informační (I). Rozmístění symbolů x v generující matici je popsáno generujícími rovnicemi. Je tak definován způsob doplňování hodnot kontrolních bitů, tedy jistým způsobem vypočítávaných paritních bitů. 8

9 Hammingův kód (7,4) Přičteme-li operací XOR k oběma stranám generujících rovnic pořadě C 1, C 2, C 4, dostaneme tzv. kontrolní rovnice C 1 I 3 I 5 I 7 = 0 = S 1 C 2 I 3 I 6 I 7 = 0 = S 2 C 4 I 5 I 6 I 7 = 0 = S 4 Výpočtem kontrolních rovnic pro kódová (správná) slova dostaneme nuly. Pro nekódová slova, která vzniknou jednobitovou chybou z kódových slov vyjdou výpočtem kontrolních rovnic nenulové hodnoty S 4, S 2, S 1, zvané syndrom chyby. Syndrom jednoduché chyby udává binárně hodnotu indexu i bitu s chybou. Chybu pak můžeme opravit změnou hodnoty takto zjištěného bitu na hodnotu opačnou. Pro dvojnásobnou chybu však mechanizmus selhává a syndrom chyby udává nesprávnou polohu chyby. Je to způsobeno tím, že takto definovaný kód je SEC, nikoli však DED. Proto je nutno doplnit definici kódu tak, aby kód získal vlastnost DED, získáme rozšířený Hammingův kód. 9

10 Rozšířený Hammingův kód Do kódu se doplní kontrolní bit C 0 (normální paritní bit), popsaný generující rovnicí C 0 = C 1 C 2 I 3 C 4 I 5 I 6 I 7 a kontrolní rovnicí S 0 = C 0 C 1 C 2 I 3 C 4 I 5 I 6 I 7 10

11 Příklad: Rozšířený Hammingův kód d = 4 na čtyřech informačních bitech, jsou přidány čtyři kontrolní bity. Linearita kódu: součet modulo 2 dvou kódových slov vytvoří opět platné kódové slovo. I 7 I 6 I 5 C 4 I 3 C 2 C 1 C 0 X X X X X X X X X X X X X X X X X X X X

12 Rozšířený Hammingův kód - syndrom Dále definujeme syndrom chyby S = S 1 + S 2 + S 4 Pomocí hodnot S, S 0 dostaneme klasifikaci chyb: Základní typ jednoduché chyby se projeví nenulovým syndromem a chybou parity. V takovém případě se provede oprava. Stejně se však projeví i trojnásobná chyba a další chyby s lichou násobností. Dvojitá chyba (a další chyby se sudou násobností) se projeví nenulovým syndromem a správnou paritou. Oprava není možná. Zvláštním případem je hlášení s nulovým syndromem a chybnou paritou. Jde buďto o případ vícenásobné chyby, nebo o poruchu hlídače parity. V obou případech se oprava chyby nedá provést. 12

13 Generování a kontrola parity x0 x1 x2 x3 x4 x5 x6 x7 p x0 x1 x2 x3 x4 x5 x6 x7 p 1 = error 0 = OK p = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 zde je + operátor XOR errror = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + p 13

14 Oprava chyb pomocí syndromu Hammingova kódu S 0 S S1 S2 S4 & DC bin na 1 z 8 Enable C1 1 C2 2 I3 3 C4 4 C1 C2 I3 C4 I5 5 I5 I6 6 I6 I7 7 I7 Dekodér syndromu Korektor 14

15 Zobecněný Hammingův kód Uvážíme-li obvodovou realizaci generujících a kontrolních rovnic, zjistíme, že obvod podle nejdelší rovnice pro C 0 resp. S 0 má největší zpoždění, tedy že zdržuje. Je tedy žádoucí optimalizovat rovnice tak, aby všechny obvody měly shodné zpoždění. Soustavu rovnic lze upravovat přičítáním rovnic jedné k druhé resp. náhradou jedné rovnice lineární kombinací dalších rovnic. Dospějeme tak k definici zobecněného Hammingova kódu du, který je definován generující maticí stejných rozměrů jako rozšířený Hammingův kód, pro jehož sloupce platí: - všechny sloupce jsou nenulové - žádné dva sloupce nejsou shodné Je zřejmé, že jedinou nevýhodou, která z použití zobecněného Hammingova kódu vyplývá je to, že syndrom chyby nedává index chybného bitu přímo, ale až po překódování, které se realizuje pomocí překódovací tabulky. 15

16 Redundance kódu a CNC Redundance kódu R je procentuální vyjádření počtu přidaných (kontrolních) bitů C k původnímu počtu informačních (datových) bitů I R = C / I Redundance 8-bitového kódu s přidaným paritním bitem je R parity8 = 1/8 = 0,125 = 12,5% Redundance ztrojeného kódu je 200%. Dále se můžeme setkat s parametrem, označeným zkratkou CNC Code to Noncode ratio. Je to poměr počtu kódových a nekódových slov, tedy kódových a nekódových binárních kombinací z celkového množství binárních kombinací dané délky. Pro paritní kód je poměr CNC 1:1, tedy 1, pro ztrojený kód je poměr CNC 2:6, tedy 0,33. Otázka zka: Jaká je hodnota redundance a CNC pro jednoduchý a rozšířený Hammingův kód s délkou n informačních bitů? 16

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Teorie informace a kódování (KMI/TIK)

Teorie informace a kódování (KMI/TIK) Teorie informace a kódování (KMI/TIK) Bezpečnostní kódy Lukáš Havrlant Univerzita Palackého 13. listopadu 2012 Konzultace V pracovně 5.076. Každý čtvrtek 9.00 11.00. Emaily: lukas@havrlant.cz lukas.havrlant@upol.cz

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance INFORMACE = fakt nebo poznatek, který snižuje neurčitost našeho poznání (entropii) DATA (jednotné číslo ÚDAJ) = kódovaná zpráva INFORAMCE = DATA + jejich INTERPRETACE (jak

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Kódováni dat. Kódy používané pro strojové operace

Kódováni dat. Kódy používané pro strojové operace Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Hammingův kód. Vladislav Kosejk. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín

Hammingův kód. Vladislav Kosejk. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín Hammingův kód Vladislav Kosejk České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín Obsah prezentace Hammingův kód 1 Algoritmus Hammingova kódu 2 Generující

Více

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův

Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův Kódy a kódování dat Kódování je proces, při kterém se každému znaku nebo postupnosti znaků daného souboru znaků jednoznačně přiřadí znak nebo postupnost znaků z jiného souboru znaků. Kódování je tedy transformace

Více

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace

Více

( ) ( ) 2.8.2 Lineární rovnice s parametrem II. Předpoklady: 2801

( ) ( ) 2.8.2 Lineární rovnice s parametrem II. Předpoklady: 2801 .8. Lineární rovnice s parametrem II Předpoklady: 80 Pedagogická poznámka: Zvládnutí zápisu a obecného postupu (dělení podle hodnot parametru) při řešení parametrických rovnic v této hodině je zásadní

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Základní myšlenka: snaha o zpracování dat paralelně. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem. Řešení: data

Více

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:

Více

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30 Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy a) kody, 18, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Samoopravné kódy, k čemu to je

Samoopravné kódy, k čemu to je Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy [1] Samoopravné kódy, k čemu to je BI-LIN, kody, 18, P. Olšák [2] Data jsou uložena (nebo posílána

Více

BCH kódy. Alena Gollová, TIK BCH kódy 1/27

BCH kódy. Alena Gollová, TIK BCH kódy 1/27 7. přednáška z algebraického kódování Alena Gollová, TIK 1/27 Obsah 1 Binární Alena Gollová, TIK 2/27 Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

k d K: a!b Hammingova vzd lenost: v ha slova po et jedni ek

k d K: a!b Hammingova vzd lenost: v ha slova po et jedni ek ezpe nostn k dy ezpe nostn k dy 2 EZPE NOSTN K DY chyby? pam, - cesta, - a jednotka, d = KN L? d 6= a d = a modely kan l (charakter chyb): kan l symetrick : pravd(!)=pravd(!) nesymetrick : 6= s v mazem

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

1 Co jsou lineární kódy

1 Co jsou lineární kódy 1 Žádný záznam informace a žádný přenos dat není absolutně odolný vůči chybám. Někdy je riziko poškození zanedbatelné, v mnoha případech je však zaznamenaná a přenášená informace jištěna přidáním dat,

Více

http://bruxy.regnet.cz/fel/ Hammingův kód Binární kód se nazývá Hammingův, jestliže má kontrolní matici, jejíž sloupce jsou všechna nenulová slova dané délky n k = r a žádné z nich se neopakuje. Jedná

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

Aritmetika s velkými čísly na čipové kartě

Aritmetika s velkými čísly na čipové kartě Aritmetika s velkými čísly na čipové kartě Ivo Rosol ředitel divize vývoje OKsystem s.r.o. Praha, 23.5.2013 Spojujeme software, technologie a služby Čísla v kryptografii V kryptografii se zásadně pracuje

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..7/.5./4.82 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť

Více

Y36SAP - aritmetika. Osnova

Y36SAP - aritmetika. Osnova Y36SAP - aritmetika Čísla se znaménkem a aritmetické operace pevná a pohyblivá řádová čárka Kubátová 2007 Y36SAP-aritmetika 1 Osnova Zobrazení záporných čísel Přímý, aditivní a doplňkový kód a operace

Více

Zabezpečení datových přenosů pomocí CRC

Zabezpečení datových přenosů pomocí CRC Zabezpečení datových přenosů pomocí CRC Cílem úlohy je seznámit se s funkčními principy využití CRC (Cyclic Redundancy Check), tedy s jeho: - matematickým základem - vlastnostmi a detekčními schopnostmi

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.

Více

Matematika IV 10. týden Kódování

Matematika IV 10. týden Kódování Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

PSK2-5. Kanálové kódování. Chyby

PSK2-5. Kanálové kódování. Chyby PSK2-5 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Paměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš

Paměťové prvky. ITP Technika personálních počítačů. Zdeněk Kotásek Marcela Šimková Pavel Bartoš Paměťové prvky ITP Technika personálních počítačů Zdeněk Kotásek Marcela Šimková Pavel Bartoš Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Osnova Typy

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Detekce chyb

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Detekce chyb Podlady předmětu pro aademicý ro /4 Radim Farana Obsa Detece cyb, Hamminoa dálenost Kontrolní a samooprané ódy Lineární ódy Hamminoy ódy Opaoací ódy Cylicé ódy Detece cyb Množinu šec slo rodělíme na sloa

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra. Perfektní lineární kódy Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B01LAG 18.5.2016: Perfektní lineární kódy 1/18 Minulé přednášky 1 Detekce

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty

Více

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

Návod k instalaci a seřízení SNÍMAČ ROSNÉHO BODU A TEPLOTY MODEL EE35

Návod k instalaci a seřízení SNÍMAČ ROSNÉHO BODU A TEPLOTY MODEL EE35 Návod k instalaci a seřízení SNÍMAČ ROSNÉHO BODU A TEPLOTY MODEL EE35 Návod na montáž a obsluhu EE35 Obsah: 1 Úvod...3 1.1 Základní bezpečnostní informace...3 1.2 Bezpečnostní informace pro alarmový modul

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit:

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit: 3 ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_17_Číslicový obvod Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická oblast

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic 1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11

Více

Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody.

Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody. Y36SAP Číselné soustavy a kódy, převody, aritmetické operace Tomáš Brabec, Miroslav Skrbek - X36SKD-cvičení. Úpravy pro SAP Hana Kubátová Osnova Poziční číselné soustavy a převody Dvojková soust., převod

Více

Číselné soustavy. Jedná se o způsob reprezentace čísel.

Číselné soustavy. Jedná se o způsob reprezentace čísel. Číselné soustavy Číselné soustavy Jedná se o způsob reprezentace čísel. Dvě hlavní skupiny: Nepoziční (hodnota číslice není dána jejím umístěním v dané sekvenci číslic) Poziční (hodnota každé číslice dána

Více

Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace

Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace Slovní úlohy řešené lineární rovnicí pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka

Více

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Zobrazení dat Cíl kapitoly:

Zobrazení dat Cíl kapitoly: Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české

Více

Struktura a architektura počítačů (BI-SAP) 5

Struktura a architektura počítačů (BI-SAP) 5 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 5 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

CQ485. Opakovač a převodník linek RS485 a RS422. S aktivní i pasivní obnovou dat

CQ485. Opakovač a převodník linek RS485 a RS422. S aktivní i pasivní obnovou dat Opakovač a převodník linek RS485 a RS422 S aktivní i pasivní obnovou dat. CQ485 Katalogový list Vytvořen: 8.12.2004 Poslední aktualizace: 19.1.2011 13:54 Počet stran: 20 2011 Strana 2 CQ485 OBSAH Popis...

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

Svislé dopravní značení Část 1: Proměnné dopravní značky

Svislé dopravní značení Část 1: Proměnné dopravní značky Strana 1 CEN/TC 226 EN 12966-1:25/prA1:29 CEN/TC 226 Sekretariát: AFNOR Svislé dopravní značení Část 1: Proměnné dopravní značky Signaux de signalisation routière verticale Partie 1: Panneaux à messages

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více