Cyklickékódy. MI-AAK(Aritmetika a kódy)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Cyklickékódy. MI-AAK(Aritmetika a kódy)"

Transkript

1 MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha& EU: Investujeme do vaší budoucnosti

2 K3. Cyklickékódy mnohočleny, reprezentace slov, chyby a shluky chyb kódy generované mnohočlenem 1. typ násobení mnohočlenů syndrom chyb dělení mnohočlenů dělitelnost a stupeň mnohočlenů a jejich kongruence detekce shluků chyb kódy generované mnohočlenem a lineární kódy kódy generované mnohočlenem 2. typ cyklické kódy konečná tělesa kořeny mnohočlenu minimální mnohočleny Hammingovy kódy mnohočleny x i 1 MI-AAK c A. Pluháček 2011

3 mnohočleny mnohočleny nad tělesem GF(2): Příklad: C(x)=c n 1 x n 1 + +c 1 x+c 0 c i GF(2) x? xjeneznámá (doslova!) mnohočleny stupně < n: vektorový/lineární prostor (ale bez skalárního součinu) izomorfní s prostorem uspořádaných ntic: c n 1 x n 1 + +c 0 (c n 1,..., c 0 ) př.: n=7 x 5 +x 3 +x izomorfie jen: součet & násobení skalárem mnohočleny: násobení a dělení mnohočlenů obv. postup analogie s okruhem celých čísel dělitelnost MI-AAK K3 1 c A. Pluháček 2011

4 reprezentace slov a=(a k 1,...,a 0 ) A(x)=a k 1 x k 1 + +a 0 b=(b n 1,...,b 0 ) B(x)=b n 1 x n 1 + +b 0... a A(x) k bitů původní informace b B(x) nbitů vyslanádata kódovéslovo e E(x) nbitů chyby(chybovéslovo) c C(x) nbitů čtenádata slovo příklad: n=7 b= B(x)=x 5 +x 3 +x 2 = =0 x 6 +1 x 5 +0 x 4 +1 x 3 +1 x 2 +0 x 1 +0 x 0 blzetedypovažovatzajinouformuzápisu B(x) uvědomíme si: uspořádaná n-tice mnohočlen stupně n 1 < n MI-AAK K3 2 c A. Pluháček 2011

5 chyby a shluky chyb b+e=c B(x)+E(x)=C(x) shluk chyb E(x) E(x)=E (x) x j & x E (x) E (x) e = E (x) x j e j,kde joznačujeposuvojmístvlevo E (x) e tvarshlukuchyb j poziceshlukuchyb deg E (x)+1 délkashlukuchyb deg E (x)označujestupeňmnohočlenu E (x) příklad: E(x) shlukchybdélky4 E (x) 1011 j=2 deg E (x)=3 MI-AAK K3 3 c A. Pluháček 2011

6 kódy generované mnohočlenem 1. typ B(x)=A(x) G(x) G(x)=g r x r + +g 0 generovacímnohočlen x G(x) g 0 0 Proč? n=maxdeg B(x)+1 k =maxdeg A(x)+1 n=k+r r =deg G(x) deg G(x)... redundance(nadbytečnost) příklad: G(x)=x 3 +x+1 a=1010 A(x)=x 3 +x B(x)=A(x) G(x)=x 6 +x 3 +x 2 +x b= MI-AAK K3 4 c A. Pluháček 2011

7 násobení mnohočlenů příklad: B(x)=G(x) A(x)=(x 3 +x+1) (x 3 +x) 1 x 6 +0 x 5 +1 x 4 +1 x 3 G(x) x 3 0 x 5 +0 x 4 +0 x 3 +0 x 2 G(x) 0 1 x 4 +0 x 3 +1 x 2 +1 x 1 G(x) x 0 x 3 +0 x 2 +0 x 1 +0 x 0 G(x) 0 1 x 6 +0 x 5 +0 x 4 +1 x 3 +1 x 2 +1 x 1 +0 x 0 = B(x) zkrácenýzápis : (zde neoznačujeskalárnísoučin!!!) b=g a MI-AAK K3 5 c A. Pluháček 2011

8 B(x)=G(x) A(x) násobení mnohočlenů ii G(x)=g 3 x 3 + +g 0 = x 3 +x+1 předchozí příklad: b klopný obvod typud MI-AAK K3 6 c A. Pluháček 2011

9 B(x)=G(x) A(x) násobení mnohočlenů iii G(x)=g 3 x 3 + +g 0 = x 3 +x+1 předchozí příklad: b MI-AAK K3 7 c A. Pluháček 2011

10 syndrom chyb kód generovaný mnohočlenem: B(x) = A(x) G(x) G(x) B(x) B(x)%G(x)=0 (% označuje zbytek po dělení) B(x)+E(x)=C(x) E(x)=0 C(x)%G(x)=0 S(x)=C(x)%G(x) syndromchyb! S(x)=0 C(x) kódovéslovo S(x)=C(x)%G(x)=[B(x)+E(x)]%G(x)= = B(x)%G(x)+E(x)%G(x)= =0+E(x)%G(x)= = E(x)%G(x) syndrom závisí pouze na chybách MI-AAK K3 8 c A. Pluháček 2011

11 dělení mnohočlenů příklad: C(x)=x 6 +x 2 +x dělenec G(x)=x 3 +x+1 dělitel 1 x x 5 +0 x 4 +0 x 3 +1 x 2 +1 x 1 +0 x 0 = 1 x 3 1 x x 5 +1 x 4 +1 x 3 0 x x 4 +1 x 3 +1 x 2 = 0 x 2 0 x x 4 +0 x 3 +0 x 2 1 x x 3 +1 x 2 +1 x 1 = 1 x 1 1 x x 3 +1 x 2 +1 x 1 1 x x 2 +0 x 1 +0 x 0 = 1 x 0 1 x x 2 +1 x 1 +1 x 0 0 x x 1 +1 x 0 zbytek C(x)%G(x) = x+1 podíl C(x) G(x) = x 3 +x+1 MI-AAK K3 9 c A. Pluháček 2011

12 dělení mnohočlenů ii zkrácenýzápis : :1011= C(x) G(x) 1011 C(x) G(x) 1011 C(x)%G(x) 011 výstup: nejprve C(x) G(x) potom C(x)%G(x) MI-AAK K3 10 c A. Pluháček 2011

13 dělitelnost a stupeň mnohočlenů označení: P(x) Q(x) podíl P(x)%Q(x) zbytek P(x)%Q(x)=0 Q(x) P(x) Q(x) P(x) deg P(x) stupeňmnohočlenu P(x) deg0= (???deg0= 1???) deg(p(x)+q(x)) max(deg P(x),deg Q(x)) deg(p(x) Q(x)) = deg P(x)+deg Q(x) deg(p(x)%q(x)) < deg Q(x) Q(x) 0 deg(p(x) Q(x)) = deg P(x) deg Q(x) Q(x) 0 Q(x) P(x) X(x) P(x)=Q(x) X(x) Q(x)jedělitelem P(x) MI-AAK K3 11 c A. Pluháček 2011

14 dělitelnost a stupeň mnohočlenů ii nerozložitelný(ireducibilní) mnohočlen(polynom) P(x): nemájinédělitelenež1ap(x)ajejichskalárnínásobky obdoba prvočísel polynom Q(x) lze rozložit na prvočinitele prvočinitel = nerozložitelný mnohočlen rozklad na prvočinitele je jednoznačný (až na skalární násobky) příklad: x 7 +1=(x 3 +x 2 +1) (x 3 +x+1) (x+1) MI-AAK K3 12 c A. Pluháček 2011

15 kongruence mnohočlenů ( K(x)) P(x)=Q(x)+M(x) K(x) P(x) Q(x) mod M(x) Mnohočleny P(x)aQ(x)jsou kongruentní modulo M(x). P(x) Q(x)mod M(x) P(x)%M(x)=Q(x)%M(x) Kongruence je relace reflexivní, symetrická a tranzitivní. P(x) Q(x)&U(x) V(x) P(x)+U(x) Q(x)+V(x) P(x) U(x) Q(x) V(x) P(x)+X(x) Q(x)+X(x) P(x) X(x) Q(x) X(x) mod M(x) MI-AAK K3 13 c A. Pluháček 2011

16 detekce shluků chyb shlukchyb E(x): E(x)=E (x) x j & x E (x) E (x) tvarshlukuchyb L=deg E (x)+1 délkashlukuchyb detekcechyb: S(x)=E(x)%G(x) 0? x G(x) = x j nemávliv E (x)%g(x)=0? E (x) 0 deg E (x) <deg G(x) } = E (x)%g(x) 0 Lze tedy zjistit všechny shluky chyb délky L r=deg G(x). příklad: G(x)=x = L 16 MI-AAK K3 14 c A. Pluháček 2011

17 kódy generované mnohočlenem a lineární kódy A(x)=a k 1 x k 1 + +a 0 B(x)=A(x) G(x)= = a k 1 G(x) x k a 0 G(x) G(x) x k 1,..., G(x) lineárněnezávislé deg A(x) < k báze lineárního prostoru A(x) G(x) všechny lineární kombinace Kód generovaný mnohočlenem je lineární.? Existuje generovací matice G?? Existuje-li, jaký má tvar? MI-AAK K3 15 c A. Pluháček 2011

18 kódy generované mnohočlenem a lineární kódy ii G(x)=g r x r + +g 0 g=(g r,..., g 0 ) G(x) x j g j a j x j G(x) a j (g j) G generovacímatice a=(a k 1,...,a 0 ), a j =1aa i =0,je-li i j a G=g j,kdeg j je j-týřádekmaticeg G= g (k 1) g (k 2). = g g r g r g r g 0 MI-AAK K3 16 c A. Pluháček 2011

19 kódy generované mnohočlenem 2. typ kód generovaný mnohočlenem(1. typ) B(x)=A(x) G(x) nebývásystematický příklad: G(x)=x 3 +x+1 G=? Jak vytvořit systematický klon? B(x)=A(x) x r + A(x) x r % G(x), kde r=deg G(x) kód generovaný mnohočlenem 2. typ příklad: G(x)=x 3 +x+1 A(x) 0101 A(x) x A(x) x 3 % G(x) 100 B(x) MI-AAK K3 17 c A. Pluháček 2011

20 kódy generované mnohočlenem 2. typ ii příklad: G(x)=x 3 +x+1 b a 1.typ 2.typ totéž osmičkově MI-AAK K3 18 c A. Pluháček 2011

21 cyklické kódy cyklický kód: lineární kód cyklický posuv kódového slova kódové slovo příklad: b a K 1 K 2 K α β γ δ K 1 jecyklickýkód K 2 nenícyklickýkód nenílineární K 3 nenícyklickýkód např. β 1 K 3 MI-AAK K3 19 c A. Pluháček 2011

22 cyklické kódy a kódy generované mnohočlenem předpoklad: G(x) (x n 1), tzn.: H(x) G(x) H(x)=x n 1 B(x)=b n 1 x n 1 + +b 0 = G(x) A(x) cyklický posuv vlevo: B (x)=b(x) x b n 1 x n + b n 1 = = B(x) x b n 1 (x n 1)= = A(x) G(x) x b n 1 G(x) H(x)= =[A(x) x+b n 1 H(x)] G(x) G(x) B (x) = kód(n, k)generovaný mnohočlenem G(x) je cyklický Platí pro 1. typ kódů generovaných mnohočlenem, ale i pro 2. typ kódů generovaných mnohočlenem a pro všechny jejich klony. MI-AAK K3 20 c A. Pluháček 2011

23 cyklické kódy a kódy generované mnohočlenem ii předpoklad: K cyklický kód (tzn.:lineárníkód+posuvkódovéhoslova...) kódováslova: b 0,b 1,... B 0 (x), B 1 (x),... b 0 =0 B 0 (x)=0 ( i >1)deg B 1 (x) deg B i (x) = ( i >1)deg B 1 (x) deg B i (x) (existuje jediný mnohočlen tohoto stupně) (jinak by existoval nenulový mnohočlen nižšího stupně) označme G(x)=B 1 (x) r=deg G(x)=deg B 1 (x) G(x), G(x) x,..., G(x) x n r 1 lineárněnezávislé a tvoří bázi kódu generovaného mnohočlenem G(x) = Každý cyklický kód nebo nějaký jeho klon je kód generovaný nějakým mnohočlenem G(x). Mnohočlenem G(x) je mnohočlen nejnižšího stupně příslušející nenulovému kódovému slovu. MI-AAK K3 21 c A. Pluháček 2011

24 dva jednoduché cyklické kódy G(x)=x+1 Æsystematickýkód (kód2.typu) B(x)=G(x) A(x) x=1 = G(x)=G(1)=0 = B(x)=0 = B(x)=b n 1 + +b 0 =0 = parita(sudá) cyklický kód pro každé n G(x)=x r +1 Æsystematickýkód (kód2.typu) x r 1 mod G(x) B(x)=b n 1 x n 1 + +b 0 B(x)=B j (x) (x r ) j + +B 0 (x) (x r ) 0 B(x) B j (x)+ +B 0 (x)mod G(x) = podélná parita rticbitů(sudá) r n cyklickýkód MI-AAK K3 22 c A. Pluháček 2011

25 konečná tělesa konečné těleso Galoisovo těleso GF(q) q=p,kde pjeprvočíslo prvky: uav nezápornáceláčíslamenšínež p u+v (u+v)%p u v (u v)%p q=p m,kde pjeprvočísloam >1přirozenéčíslo P(z) nerozložitelný mnohočlen nad tělesem GF(p), deg P(z)=m prvky: U(z)aV(z) mnohočlenystupně < m U(z)+V(z) sčítáníkoeficientůmod p U(z) V(z) [ U(z) V(z)]%P(z) Neexistuje konečné těleso s jiným počtem prvků! } P(z) GF(q) Všechna konečná tělesa se stejným počtem prvků jsou vzájemněizomorfní! (méněpřesně: jsouvšechnastejná ) MI-AAK K3 23 c A. Pluháček 2011

26 př.: GF(7) konečná tělesa ii 3+6=2 (protože3+6%9=7%7=2) 3 6=4 (protože3 6%7=18%7=4) atp =4, 2 3 =4 2=1, 2 4 =1 2=2, 2 5 =1 2=4, =1,3 1 =3,3 2 =2,3 3 =6,3 4 =4,3 5 =5,3 6 =1 5 0 =1,5 1 =5,5 2 =4,5 3 =6,5 4 =2,5 5 =3,5 6 =1 MI-AAK K3 24 c A. Pluháček 2011

27 konečná tělesa iii př.: GF(4)=GF(2 2 ) P(z)=z 2 + z+1 prvkygf(8): 0, 1, z, z+1 (z+1)+z=1 (z+1)+1=z atp. nerozložitelný mnohočlen 2. stupně nad tělesem GF(2) z z= z+1 [protože z z% P(z)=z 2 % P(z)=z+1] (z+1) z=1 [protože(z+1) z% P(z)= =(z 2 +z) % P(z)=1] atp. z 0 =1, z 1 = z, z 2 = z+1, z 3 = z 2 z=1 atd. MI-AAK K3 25 c A. Pluháček 2011

28 konečná tělesa iv ϑ GF(q), ϑ 0 (např.číslo unebomnohočlen U(z)) způsob zápisu prvku ϑ není podstatný ( i) ϑ i =1 nejmenšítakové isenazývářádprvku ϑ V každém konečném tělese existuje aspoň jeden prvek α řádu q 1; takovýprveksenazýváprimitivníprvek. = Každýprvek ϑ 0jenějakoumocninouprvku α. P(z) GF(p m ) Je-li z primitivním prvkem tělesa, P(z) se nazývá primitivní mnohočlen. řádmnohočlenu P(z): j=ord P(z) P(z) (z j 1) & ( i < j) P(z) (z i 1) ord P(z)=p deg P(z) 1 P(z)jeprimitivní MI-AAK K3 26 c A. Pluháček 2011

29 konečná tělesa v příklad: p=2 P(z)=(z 2 + z+1) (z 3 +1) & P(z) (z 1 +1) & P(z) (z 2 +1) ord P(z)=3=p 2 1Æřád P(z) deg P(z)=2Æstupeň P(z) P(z) je primitivní mnohočlen: GF(2 2 )=GF(4): prvky ϑ {0,1, z, z+1} primitivníprvek α=z 0+ϑ=ϑ ϑ+ϑ=0 z+1=(z+1) (z+1)+1=z (z+1)+z=1 0 ϑ=0 1 ϑ=ϑ z z=z 2 % P(z)=z+1 z (z+1)=(z 2 +z)%p(z)=1 (z+1) (z+1)=(z 2 +1)%P(z)=z MI-AAK K3 27 c A. Pluháček 2011

30 konečná tělesa vi příklad: GF(4) z 2 +z+1 různé způsoby označování prvků: z 10 2 z mocniny primitivního prvku α: příklad použití: 3 3=α 2 α 2 =α 4 =α 3 α 1 = =2 neboli 11 11=10 anebo(z+1) (z+1)=z i α i = z i z z MI-AAK K3 28 c A. Pluháček 2011

31 kořeny mnohočlenu charakteristika tělesa χ nejmenší takové číslo, že χ i=1 1=0 GF(p m ),kde pjeprvočíslo = χ=p F(x) mnohočlennadtělesemgf(p),tzn. koeficienty mnohočlenu GF(p) ξ GF(q)=GF(p m ) & F(ξ)=0 ξjekořennebolinulamnohočlenu F(x) Y(x) F(x)=(x ξ) Y(x) (x ξ) F(x) F(ξ)=0 = F(ξ χ )=0 příklad: z 3 + z+1 GF(8) F(x)=x 3 + x 2 +1 F(z 3 )=0 F(z 6 )=0 F(z 12 )=F(z 5 )=0 MI-AAK K3 29 c A. Pluháček 2011

32 P(z) GF(q)=GF(p m ) β GF(q) M β (β)=0 minimální mnohočleny F(β)=0 deg F(x) deg M β (x) M β (x)je minimální mnohočlen prvku β minimální mnohočlen jeprodanýprvekjediný (ažnasvojenaskalárnínásobky) F(β)=0 M β (x) F(x) M α (x)=p(x) αjeprimitivníprvek minimálnímnohočlen M β (x)prvku β=α i,budeoznačován též M #i (x) MI-AAK K3 30 c A. Pluháček 2011

33 minimální mnohočleny ii Jak nalézt minimální mnohočlen? β GF(p m ) M β (x)=? ( M β (x)=(x β) x βp ) (p j 1)... x β, kde j >1jetakovénejmenšíčíslo,že β (pj ) = β γ= β p = M γ (x)=m β (x) př.: GF(4)=GF(2 2 ) ϑ=3=z+1 ϑ 2 =2=z ϑ 4 =3=z+1 M ϑ (x)=(x 2)(x 3)=x 2 + x+1 κ=2=z M κ (x)=m ϑ (x)=x 2 + x+1 λ=1 M λ (x)=x+1 µ=0 M µ (x)=x MI-AAK K3 31 c A. Pluháček 2011

34 Hammingovy kódy kontrolní matice H Hammingova kódu K všechny možné vzájemně různé nenulové sloupce, např. H= α n 1 α n 2... α 1, kde n=2 m 1a αjeprimitivníprvektělesagf(2 m ) syndrom: s=c H T =e H T c=(c n-1,...,c 0 ) C(x)=c n-1 x n-1 + +c 0 s=c n-1 α n c 1 α+c 0 = C(α) s=0 αjekořenem C(x) M α (x) C(x) M α (x)jegenerovacímmnohočlenem K(nebojehoklonu) MI-AAK K3 32 c A. Pluháček 2011

35 Hammingovy kódy ii G(x) nerozložitelný mnohočlen, deg G(x) 2 Hammingůvkódsdélkouslova n=ord G(x) příklad: G(x)=(x 8 +x 4 +x 3 +x 2 +1) (x ) r=deg G(x)=8 n=ord G(x)=255 k=n r=255 8=247 G(x) generuje cyklický Hammingův kód(255, 247) Platíinaopak: Je-li KHammingůvkód(n, k), existuje mnohočlen G(x), který generuje cyklický kód ekvivalentní kódu K nebo jeho klon. MI-AAK K3 33 c A. Pluháček 2011

36 mnohočleny x i 1 (x i 1) (x j 1) i j důkaz: 1. j= q i & y= x i x j = y q 1jekořenem y q 1 y q 1=(y 1) (něco) 2. předp.: j= q i+z,kde z= j% q x j 1=x q i x z 1=x q i x z x z + x z 1= =(x q i 1) x z + x z 1 (x i 1) (x q i 1) x z 1=0 z=0 dva cyklické kódy: G(x)=x+1 provšechna n 1 G(x)=x r +1 pro r n (kde njedélkakódovéhoslova) MI-AAK K3 34 c A. Pluháček 2011

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. TEORIE ČÍSEL MNOHOČLENŮ A MNOHOČLENY V TEORII ČÍSEL Jakub Opršal Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

Matematické základy kryptografických algoritmů Eliška Ochodková

Matematické základy kryptografických algoritmů Eliška Ochodková Matematické základy kryptografických algoritmů Eliška Ochodková Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte Úvod Právě se díváte na moje řešení příkladů z X01AVT z roku 2007/2008. Zajisté obsahují spousty chyb a nedokáže je pochopit nikdo včetně autora, ale aspoň můžou posloužit jako menší návod k tomu, jak

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

Kódování cyklické kódy Coding cyclic code. Jakub Kettner

Kódování cyklické kódy Coding cyclic code. Jakub Kettner Kódování cyklické kódy Coding cyclic code Jakub Kettner Bakalářská práce 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

BI-JPO (Jednotky počítače) Cvičení

BI-JPO (Jednotky počítače) Cvičení BI-JPO (Jednotky počítače) Cvičení Ing. Pavel Kubalík, Ph.D., 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

MONTÁŽNÍ KATALYZÁTORY

MONTÁŽNÍ KATALYZÁTORY MONTÁŽNÍ KATALYZÁTORY Katalyzátory ŠKODA - pøehled náhled obj. èíslo OE aplikace K001M K001MK 6U0 131 701HX 6U0 131 701HX Škoda Felicia 1.3 do r.v. 11/98 (keramika) Škoda Felicia 1.3 do r.v. 11/98 (kov)

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Úvod do logiky: PL Kategorický sylogismus

Úvod do logiky: PL Kategorický sylogismus Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky: PL Kategorický sylogismus doc. PhDr. Jiří Raclavský,

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

MASARYKOVA UNIVERZITA. Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ

MASARYKOVA UNIVERZITA. Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ MASARYKOVA UNIVERZITA Přírodovědecká fakulta Moduly nad okruhy hlavních ideálů JANA MEDKOVÁ Bakalářská práce Vedoucí práce: prof. RNDr. Radan Kučera, DSc. Studijní program: matematika Studijní obor: obecná

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

TEORIE ČÍSEL sbírka příkladů. Diplomová práce

TEORIE ČÍSEL sbírka příkladů. Diplomová práce Masarykova univerzita Přírodovědecká fakulta TEORIE ČÍSEL sbírka příkladů Diplomová práce Brno 2006 Jiří Růžička Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a použil přitom pouze uvedené

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz Seminář z MATLABU Jiří Krejsa A2/710 krejsa@fme.vutbr.cz Obsah kurzu Posluchači se seznámí se základy systému Matlab, vědeckotechnickými výpočty, programováním v Matlabu včetně pokročilých technik, vizualizací

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Metody řešení diofantických rovnic STUDIJNÍ TEXT Vypracoval: Jan Steinsdörfer Ústí nad Labem 2015 Obsah Úvod 2 1 Vznik diofantických

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 6. ročník J.Coufalová : Matematika pro 6.ročník ZŠ (Fortuna) O.Odvárko,J.Kadleček : Sbírka úloh z matematiky pro 6.ročník ZŠ (Prometheus)

Více

Informatika Ochrana dat

Informatika Ochrana dat Informatika Ochrana dat Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Kryptografické systémy s veřejným klíčem, výměna tajných klíčů veřejným kanálem, systémy s veřejným

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více