A 9. Počítejte v radiánech, ne ve stupních!

Rozměr: px
Začít zobrazení ze stránky:

Download "A 9. Počítejte v radiánech, ne ve stupních!"

Transkript

1 A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = 2. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2, vidíme, že kořen leží v intervalu 2,. 2 Půlení intervalů: a b s f(a) f(b) f(s) 2 2, ,5 2,75 + 2,5 2,75 + Kořen je v intervalu 2,5; 2,75. Newtonova metoda: k+ = k sin k k + 2 cos k Zvolíme-li např. 0 = 2,5: y 2 = 2,555 2 = 2,554 = 2,554 Kořen je přibližně 2,554. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 0 + 2y z = y 4z = y 8z = 5 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > 2 +, 20 > + 4, 8 > 2 +. Budeme dosazovat do iteračních vztahů k+ = (25 2y 0 k + z k ) y k+ = ( 0 20 k+ + 4z k ) z k+ = ( k+ y k+ ) Vyjde: k k y k z k ,5-0,875-2, ,44 -,840-2,655

2 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i -2 8 =,6 4 = 0,8 0 = 0, = 0,8 = 0, =,6 =, = 2,7 0 Interpolační polynom: P () =,6 + 0,8( + 2) + 0,02( + 2)( 2)

3 B 9 Př.. Je dána rovnice 2e + 4 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = ( + 4)/2, vidíme, že kořen leží v intervalu 0,. y Př. 2. Jacobiho metodou řešte soustavu rovnic Půlení intervalů: a b s f(a) f(b) f(s) 0 0,5 + 0,5 0, ,5 0,75 + Kořen je v intervalu 0,5; 0,75. Newtonova metoda: k+ = k 2e k + k 4 2e k + Zvolíme-li např. 0 = 0,5: = 0,547 2 = 0,546 = 0,546 Kořen je přibližně 0, y + 2z = y z = 6 5 2y 20z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; 2; ) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > + 2, 8 > 2 +, 20 > Budeme dosazovat do iteračních vztahů k+ = (5 + y 0 k 2z k ) y k+ = ( k + z k ) z k+ = 20 (0 5 k + 2y k ) Vyjde: k k y k z k , -,625-0,8 2,725 -,25-0,5625

4 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 0. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i - 9 f i. = 0,. = 0, = 0, 4. = 0, = 0,. =, Interpolační polynom: P () = ( + ) ( + )( ) = 0,

5 C 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = + 2. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = + 2, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 + +,5,25 + +,25 + Kořen je v intervalu ;,25. Newtonova metoda: k+ = k sin k + k 2 cos k + Zvolíme-li např. 0 = : =,0 2 =,06 =,06 Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 20 2y + z = y = 25 2y + 5z = 20 Kořen je přibližně,06. Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 20 > 2 +, 0 > 4 + 0, 5 > + 2. Budeme dosazovat do iteračních vztahů k+ = (40 + 2y 20 k z k ) y k+ = 0 k+) z k+ = ( 20 5 k+ + 2y k+ ) Vyjde: k k y k z k ,7-5,08 2 2,084 -,6664-5,087

6 Př.. Jsou uzly 0 =, = 0, 2 =, = 4 ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0,2 = 0,2 0 = 0, = 0,2 = 0,2 5 5 = 0, =,2 5 Interpolační polynom: P () = 0,2 + 0,2( + ) + 0,04( + )( )

7 D 9 Př.. Je dána rovnice e 2 4 = 0. Najděte interval délky, v němž leží záporný kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = 2 + 4, vidíme, že záporný kořen leží v intervalu 2,. 5 4 Půlení intervalů: a b s f(a) f(b) f(s) , ,5 -, ,75 + Kořen je v intervalu 2;,75. Newtonova metoda: y 2 k+ = k e k 2k 4 e k 2 Zvolíme-li např. 0 = 0,5: =,927 2 =,927 Kořen je přibližně -, Př. 2. Jacobiho metodou řešte soustavu rovnic 5 + y 2z = 5 20y + 4z = 40 2 y + 0z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = ( ; 2; ) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 5 > + 2, 20 > + 4, 0 > 2 +. Budeme dosazovat do iteračních vztahů k+ = 5 ( 5 y k + 2z k ) y k+ = 20 k 4z k ) z k+ = (0 2 0 k + y k ) Vyjde: k k y k z k ,4 -,85,4 2 -,27 -,5,095

8 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i -2 2 = 0, = 0, = 0, = 0, 0 0 Interpolační polynom: P () = 0,4 + 0,2( + 2) 0,02( + 2)( 2)

9 A 0 Př.. Je dána rovnice e = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = 2 + 6, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 + +,5,25 +,25,5 + Kořen je v intervalu, 25;,5. Newtonova metoda: k+ = k e k + 2k 6 e k + 2 Zvolíme-li např. 0 =,25: =,252 2 =,252 Kořen je přibližně, Př. 2. Jacobiho metodou řešte soustavu rovnic 20 2y + z = y = 25 2y + 5z = 20 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; 2; 4) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 20 > 2 +, 0 > 4 + 0, 5 > + 2. Budeme dosazovat do iteračních vztahů k+ = (40 + 2y 20 k z k ) y k+ = 0 k) z k+ = ( 20 5 k + 2y k ) Vyjde: k k y k z k ,7-5,2 2 2,09 -,7-5,08

10 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0, = 0, = 0,2 5 2 = 0, 0 0 Interpolační polynom: P () = 0,5 + 0,5( + ) 0,05( + )( )

11 B 0 Př.. Je dána rovnice sin = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = 2 4. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2 4, vidíme, že kořen leží v intervalu 2, Půlení intervalů: a b s f(a) f(b) f(s) 2 2, ,5 2, ,25 2,5 + Kořen je v intervalu 2, 25; 2,5. Newtonova metoda: k+ = k sin k 2 k + 4 cos k 2 Zvolíme-li např. 0 = 2,25: y 2 4 = 2,56 2 = 2,54 = 2,54 Kořen je přibližně 2,54. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 5 + y 2z = 5 20y + 4z = 40 2 y + 0z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 5 > + 2, 20 > + 4, 0 > 2 +. Budeme dosazovat do iteračních vztahů k+ = 5 ( 5 y k + 2z k ) y k+ = 20 k+ 4z k ) z k+ = (0 2 0 k+ + y k+ ) Vyjde: k k y k z k ,45,55 2 -,68 -,5042,082

12 Př.. Jsou uzly 0 =, = 0, 2 =, = 4 ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0, = 0, = 0, Interpolační polynom: P () = 0,2 + 0,2( + ) 0,0( + )( )

13 C 0 Př.. Je dána rovnice 2e 4 = 0. Najděte interval délky, v němž leží kladný kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = ( + 4)/2, vidíme, že kořen leží v intervalu 0, (nebo 0,5;,5 ). 4 Půlení intervalů: a b s f(a) f(b) f(s) 0 0,5 + 0,5 0,75 + 0,75 + Kořen je v intervalu 0, 75;. Newtonova metoda: k+ = k 2e k k 4 2e k 2 y Zvolíme-li např. 0 = : = 0,902 2 = 0,895 = 0,895 Kořen je přibližně 0,895. Př. 2. Jacobiho metodou řešte soustavu rovnic 0 + 2y z = y 4z = y 8z = 5 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; ; 2) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > 2 +, 20 > + 4, 8 > 2 +. Budeme dosazovat do iteračních vztahů k+ = (25 2y 0 k + z k ) y k+ = ( 0 20 k + 4z k ) z k+ = ( k y k ) Vyjde: k k y k z k ,5 -,2-2,5 2 2,49 -,75-2,65

14 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 0. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i -2 f i. = 0, = 0, 8 = 2,6667. = 0, = 0, = 0,8 6 Interpolační polynom: P () = ( + 2) ( + 2)( 2) 6 6. = 0,667

15 D 0 Př.. Je dána rovnice sin = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2 + 4, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 +,5 2,75 + +,5,75 + Kořen je v intervalu, 5;,75. Newtonova metoda: k+ = k sin k + 2 k 4 cos k + 2 Zvolíme-li např. 0 =,5: =,50 2 =,50 Kořen je přibližně,50. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 0 y + 2z = y z = 6 5 2y 20z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > + 2, 8 > 2 +, 20 > Budeme dosazovat do iteračních vztahů k+ = (5 + y 0 k 2z k ) y k+ = ( k+ + z k ) z k+ = 20 (0 5 k+ + 2y k+ ) Vyjde: k k y k z k ,5 -,25-0,525 2,265 -,2478-0,5590

16 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0,5 = 0,5 0 = 0, = 0,5 = 0,2 2 5 = 0,5 =, = 2,7 0 Interpolační polynom: P () = 0,5 + 0,5( + ) + 0,05( + )( )

Matematika 3. Sbírka příkladů z numerických metod. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY

Matematika 3. Sbírka příkladů z numerických metod. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 3 Sbírka příkladů z numerických metod RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 3 1 Obsah 1 Soustavy lineárních rovnic 5 1.1 Jacobiho a Gauss-Seidelova metoda......................

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

Moderní numerické metody

Moderní numerické metody Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární

Více

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Numerické řešení rovnice f(x) = 0

Numerické řešení rovnice f(x) = 0 Numerické řešení rovnice f(x) = 0 Přemysl Vihan 9.10.2003 Katedra fyziky, Pedagogická fakulta Univerzity J.E. Purkyně v Ústí n.l. 2. ročník, PMVT-mag. Abstrakt Seminární práce se zabývá numerickým řešením

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Cvičící: KOLAR KOSTKOVA KOZAK NOVAK STRACHOTA Zápočtová písemná práce č. 1 z předmětu 01MAB4 varianta A pondělí 13. dubna 2015, 11:20 13:20 ➊ (1 bod) Do tabulky výše vyplňte své příjmení a jméno a zakroužkujte

Více

1 Diference a diferenční rovnice

1 Diference a diferenční rovnice 1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou

Více

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc.

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc. FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Numerické metody Garant předmětu: doc. RNDr. Libor Čermák, CSc. Autoři textu: Mgr. Irena Růžičková RNDr. Rudolf Hlavička, CSc. Ústav matematiky

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

4.3.1 Goniometrické rovnice

4.3.1 Goniometrické rovnice .. Goniometrické rovnice Předpoklady: 6, 7 Názvosloví: Goniometrické rovnice: rovnice, ve kterých se neznámá objevuje uvnitř goniometrických funkcí. g x = a, kde Základní goniometrická rovnice: každá rovnice

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

MATEMATIKA rozšířená úroveň

MATEMATIKA rozšířená úroveň Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Řešení diferenciálních rovnic

Řešení diferenciálních rovnic Projekt M3 Řešení diferenciálních rovnic 1. Zadání A. Stanovte řešení dané diferenciální rovnice popřípadě soustavy rovnic. i) Pro úlohy M3.1 až M3.12: uveďte matematický popis použité metody sestavte

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

BAKALÁŘSKÁ PRÁCE. Metody pro výpočet kořenů polynomů

BAKALÁŘSKÁ PRÁCE. Metody pro výpočet kořenů polynomů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody pro výpočet kořenů polynomů Vedoucí diplomové práce: RNDr. Horymír Netuka,

Více

APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací

APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací APROXIMACE FUNKCÍ Jedním ze základních úkolů numerických metod matematické analýz je studium aproimací funkcí. Při numerickém řešení úloh matematické analýz totiž často nahrazujeme danou funkci f, vstupující

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Matematické algoritmy (K611MAG) pondělí 25. listopadu verze: :47

Matematické algoritmy (K611MAG) pondělí 25. listopadu verze: :47 Kořeny nelineárních funkcí Matematické algoritmy (K611MAG) Jan Přikryl 9. přednáška 11MAG pondělí 25. listopadu 2013 verze:2013-11-25 16:47 Obsah 1 Nelineární rovnice 1 1.1 Formulace úlohy....................................

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ doc RNDr Josef Dalík, CSc MATEMATIKA IV NUMERICKÁ ANALÝZA STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε c Josef

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR POČÁTEČNÍ ÚLOHY Numerické metody 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme

Více

Matematika 1 sbírka příkladů

Matematika 1 sbírka příkladů Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Zadání semestrálních prací 2NU, 2015/16 doc. Martišek

Zadání semestrálních prací 2NU, 2015/16 doc. Martišek Zadání semestrálních prací NU, 0/6 doc. Martišek Každý(á) student(ka) najde u svého jména čísla dvou úloh, které vypracuje. Seznam zadání a vzor vypracování následuje. Výuka Ca - Út :00 (sudý i lichý)

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce.

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce. Hledání kořenů Úloha: Pro danou funkci f(x) máme najít číslo r tak, aby f(r) = 0. Pozor, počítač totiž kořen nepozná! Má jistou přesnost výpočtu δ > 0 a prohlásí f(r) = 0 pokaždé, když f(x) < δ. Není ovšem

Více

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2. A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Test A. 1) Určete hodnoty výrazu. 2) Pro přípustné a upravte výraz. (a) a 5 2

Test A. 1) Určete hodnoty výrazu. 2) Pro přípustné a upravte výraz. (a) a 5 2 Test A V nadpisu v přiložené mřížce vyplňte označení testu (A), vaše jméno, příjmení a obor pro který skládáte příjmací zkoušku. Vaše odpovědi v mřížce zaškrtněte (např. a ). V případě omylu zakroužkujte

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

8.1. Separovatelné rovnice

8.1. Separovatelné rovnice 8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

12. Trigonometrická interpolace, rychlá Fourierova transformace, diskrétní Fourierova transformace

12. Trigonometrická interpolace, rychlá Fourierova transformace, diskrétní Fourierova transformace 1. Trigonometrická interpolace, rychlá Fourierova transformace, diskrétní Fourierova transformace Úloha trigonometrické interpolace je podobná jako u polynomiální interpolace. Budeme hledat trigonometrický

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více