A 9. Počítejte v radiánech, ne ve stupních!

Rozměr: px
Začít zobrazení ze stránky:

Download "A 9. Počítejte v radiánech, ne ve stupních!"

Transkript

1 A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = 2. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2, vidíme, že kořen leží v intervalu 2,. 2 Půlení intervalů: a b s f(a) f(b) f(s) 2 2, ,5 2,75 + 2,5 2,75 + Kořen je v intervalu 2,5; 2,75. Newtonova metoda: k+ = k sin k k + 2 cos k Zvolíme-li např. 0 = 2,5: y 2 = 2,555 2 = 2,554 = 2,554 Kořen je přibližně 2,554. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 0 + 2y z = y 4z = y 8z = 5 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > 2 +, 20 > + 4, 8 > 2 +. Budeme dosazovat do iteračních vztahů k+ = (25 2y 0 k + z k ) y k+ = ( 0 20 k+ + 4z k ) z k+ = ( k+ y k+ ) Vyjde: k k y k z k ,5-0,875-2, ,44 -,840-2,655

2 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i -2 8 =,6 4 = 0,8 0 = 0, = 0,8 = 0, =,6 =, = 2,7 0 Interpolační polynom: P () =,6 + 0,8( + 2) + 0,02( + 2)( 2)

3 B 9 Př.. Je dána rovnice 2e + 4 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = ( + 4)/2, vidíme, že kořen leží v intervalu 0,. y Př. 2. Jacobiho metodou řešte soustavu rovnic Půlení intervalů: a b s f(a) f(b) f(s) 0 0,5 + 0,5 0, ,5 0,75 + Kořen je v intervalu 0,5; 0,75. Newtonova metoda: k+ = k 2e k + k 4 2e k + Zvolíme-li např. 0 = 0,5: = 0,547 2 = 0,546 = 0,546 Kořen je přibližně 0, y + 2z = y z = 6 5 2y 20z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; 2; ) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > + 2, 8 > 2 +, 20 > Budeme dosazovat do iteračních vztahů k+ = (5 + y 0 k 2z k ) y k+ = ( k + z k ) z k+ = 20 (0 5 k + 2y k ) Vyjde: k k y k z k , -,625-0,8 2,725 -,25-0,5625

4 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 0. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i - 9 f i. = 0,. = 0, = 0, 4. = 0, = 0,. =, Interpolační polynom: P () = ( + ) ( + )( ) = 0,

5 C 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = + 2. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = + 2, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 + +,5,25 + +,25 + Kořen je v intervalu ;,25. Newtonova metoda: k+ = k sin k + k 2 cos k + Zvolíme-li např. 0 = : =,0 2 =,06 =,06 Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 20 2y + z = y = 25 2y + 5z = 20 Kořen je přibližně,06. Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 20 > 2 +, 0 > 4 + 0, 5 > + 2. Budeme dosazovat do iteračních vztahů k+ = (40 + 2y 20 k z k ) y k+ = 0 k+) z k+ = ( 20 5 k+ + 2y k+ ) Vyjde: k k y k z k ,7-5,08 2 2,084 -,6664-5,087

6 Př.. Jsou uzly 0 =, = 0, 2 =, = 4 ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0,2 = 0,2 0 = 0, = 0,2 = 0,2 5 5 = 0, =,2 5 Interpolační polynom: P () = 0,2 + 0,2( + ) + 0,04( + )( )

7 D 9 Př.. Je dána rovnice e 2 4 = 0. Najděte interval délky, v němž leží záporný kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = 2 + 4, vidíme, že záporný kořen leží v intervalu 2,. 5 4 Půlení intervalů: a b s f(a) f(b) f(s) , ,5 -, ,75 + Kořen je v intervalu 2;,75. Newtonova metoda: y 2 k+ = k e k 2k 4 e k 2 Zvolíme-li např. 0 = 0,5: =,927 2 =,927 Kořen je přibližně -, Př. 2. Jacobiho metodou řešte soustavu rovnic 5 + y 2z = 5 20y + 4z = 40 2 y + 0z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = ( ; 2; ) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 5 > + 2, 20 > + 4, 0 > 2 +. Budeme dosazovat do iteračních vztahů k+ = 5 ( 5 y k + 2z k ) y k+ = 20 k 4z k ) z k+ = (0 2 0 k + y k ) Vyjde: k k y k z k ,4 -,85,4 2 -,27 -,5,095

8 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i -2 2 = 0, = 0, = 0, = 0, 0 0 Interpolační polynom: P () = 0,4 + 0,2( + 2) 0,02( + 2)( 2)

9 A 0 Př.. Je dána rovnice e = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = 2 + 6, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 + +,5,25 +,25,5 + Kořen je v intervalu, 25;,5. Newtonova metoda: k+ = k e k + 2k 6 e k + 2 Zvolíme-li např. 0 =,25: =,252 2 =,252 Kořen je přibližně, Př. 2. Jacobiho metodou řešte soustavu rovnic 20 2y + z = y = 25 2y + 5z = 20 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; 2; 4) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 20 > 2 +, 0 > 4 + 0, 5 > + 2. Budeme dosazovat do iteračních vztahů k+ = (40 + 2y 20 k z k ) y k+ = 0 k) z k+ = ( 20 5 k + 2y k ) Vyjde: k k y k z k ,7-5,2 2 2,09 -,7-5,08

10 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0, = 0, = 0,2 5 2 = 0, 0 0 Interpolační polynom: P () = 0,5 + 0,5( + ) 0,05( + )( )

11 B 0 Př.. Je dána rovnice sin = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = 2 4. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2 4, vidíme, že kořen leží v intervalu 2, Půlení intervalů: a b s f(a) f(b) f(s) 2 2, ,5 2, ,25 2,5 + Kořen je v intervalu 2, 25; 2,5. Newtonova metoda: k+ = k sin k 2 k + 4 cos k 2 Zvolíme-li např. 0 = 2,25: y 2 4 = 2,56 2 = 2,54 = 2,54 Kořen je přibližně 2,54. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 5 + y 2z = 5 20y + 4z = 40 2 y + 0z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 5 > + 2, 20 > + 4, 0 > 2 +. Budeme dosazovat do iteračních vztahů k+ = 5 ( 5 y k + 2z k ) y k+ = 20 k+ 4z k ) z k+ = (0 2 0 k+ + y k+ ) Vyjde: k k y k z k ,45,55 2 -,68 -,5042,082

12 Př.. Jsou uzly 0 =, = 0, 2 =, = 4 ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0, = 0, = 0, Interpolační polynom: P () = 0,2 + 0,2( + ) 0,0( + )( )

13 C 0 Př.. Je dána rovnice 2e 4 = 0. Najděte interval délky, v němž leží kladný kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = ( + 4)/2, vidíme, že kořen leží v intervalu 0, (nebo 0,5;,5 ). 4 Půlení intervalů: a b s f(a) f(b) f(s) 0 0,5 + 0,5 0,75 + 0,75 + Kořen je v intervalu 0, 75;. Newtonova metoda: k+ = k 2e k k 4 2e k 2 y Zvolíme-li např. 0 = : = 0,902 2 = 0,895 = 0,895 Kořen je přibližně 0,895. Př. 2. Jacobiho metodou řešte soustavu rovnic 0 + 2y z = y 4z = y 8z = 5 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; ; 2) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > 2 +, 20 > + 4, 8 > 2 +. Budeme dosazovat do iteračních vztahů k+ = (25 2y 0 k + z k ) y k+ = ( 0 20 k + 4z k ) z k+ = ( k y k ) Vyjde: k k y k z k ,5 -,2-2,5 2 2,49 -,75-2,65

14 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 0. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i -2 f i. = 0, = 0, 8 = 2,6667. = 0, = 0, = 0,8 6 Interpolační polynom: P () = ( + 2) ( + 2)( 2) 6 6. = 0,667

15 D 0 Př.. Je dána rovnice sin = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2 + 4, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 +,5 2,75 + +,5,75 + Kořen je v intervalu, 5;,75. Newtonova metoda: k+ = k sin k + 2 k 4 cos k + 2 Zvolíme-li např. 0 =,5: =,50 2 =,50 Kořen je přibližně,50. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 0 y + 2z = y z = 6 5 2y 20z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > + 2, 8 > 2 +, 20 > Budeme dosazovat do iteračních vztahů k+ = (5 + y 0 k 2z k ) y k+ = ( k+ + z k ) z k+ = 20 (0 5 k+ + 2y k+ ) Vyjde: k k y k z k ,5 -,25-0,525 2,265 -,2478-0,5590

16 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0,5 = 0,5 0 = 0, = 0,5 = 0,2 2 5 = 0,5 =, = 2,7 0 Interpolační polynom: P () = 0,5 + 0,5( + ) + 0,05( + )( )

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Numerické řešení rovnice f(x) = 0

Numerické řešení rovnice f(x) = 0 Numerické řešení rovnice f(x) = 0 Přemysl Vihan 9.10.2003 Katedra fyziky, Pedagogická fakulta Univerzity J.E. Purkyně v Ústí n.l. 2. ročník, PMVT-mag. Abstrakt Seminární práce se zabývá numerickým řešením

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc.

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc. FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Numerické metody Garant předmětu: doc. RNDr. Libor Čermák, CSc. Autoři textu: Mgr. Irena Růžičková RNDr. Rudolf Hlavička, CSc. Ústav matematiky

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

MATEMATIKA rozšířená úroveň

MATEMATIKA rozšířená úroveň Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR POČÁTEČNÍ ÚLOHY Numerické metody 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme

Více

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ doc RNDr Josef Dalík, CSc MATEMATIKA IV NUMERICKÁ ANALÝZA STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε c Josef

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2. A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:

Více

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce.

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce. Hledání kořenů Úloha: Pro danou funkci f(x) máme najít číslo r tak, aby f(r) = 0. Pozor, počítač totiž kořen nepozná! Má jistou přesnost výpočtu δ > 0 a prohlásí f(r) = 0 pokaždé, když f(x) < δ. Není ovšem

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

MASARYKOVA UNIVERZITA V BRNĚ NELINEÁRNÍCH ROVNIC

MASARYKOVA UNIVERZITA V BRNĚ NELINEÁRNÍCH ROVNIC MASARYKOVA UNIVERZITA V BRNĚ PŘÍRODOVĚDECKÁ FAKULTA NUMERICKÉ ŘEŠENÍ NELINEÁRNÍCH ROVNIC RIGORÓZNÍ PRÁCE Mgr. Michal Šmerek Brno 2005 ii Prohlášení: Prohlašuji, že předložená práce je mým původním autorským

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Obr. 1 Schéma rozměrového obvodu pro zadání A - L

Obr. 1 Schéma rozměrového obvodu pro zadání A - L Zadání programů z předmětu 347-32/3 - Základy strojnictví ( ZS ), kombinovaná forma studia, FS Str. 1 PROGRAM č. 3 - VÝPOČET ROZMĚROVÉHO OBVODU Podle individuálního zadání z tabulek proveďte výpočet rozměrového

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

NUMERICKÉ RECEPTY. http://geo.mff.cuni.cz/~lh/nofy056

NUMERICKÉ RECEPTY. http://geo.mff.cuni.cz/~lh/nofy056 NUMERICKÉ RECEPTY Numerické modelování (scientific computing, computational science) Témata otevřena v dávnověku (Newton 1643, Euler 1707, Lagrange 1736, Fourier 1768, Gauss 1777 aj.) lineární algebra,

Více

Operace v FP a iterační algoritmy. INP 2008 FIT VUT v Brně

Operace v FP a iterační algoritmy. INP 2008 FIT VUT v Brně Operace v FP a iterační algoritmy INP 2008 FIT VUT v Brně 1 Operace FP Číslo X s pohyblivou řádovou čárkou X = M X.B Ex zapíšeme jako dvojici (M X, E X ), kde mantisa M X je ve dvojkovém doplňkovém kódu,

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

ŠROUBOVÉ SPOJE VÝKLAD

ŠROUBOVÉ SPOJE VÝKLAD ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k

Více

Vzdělávací obor fyzika

Vzdělávací obor fyzika 7.ročník Kompetence sociální a personální 1. LÁTKY A Žák umí měřit některé fyzikální veličiny Měření veličin Člověk a měření síly 5. TĚLESA (F-9-1-01) délka, objem, hmotnost, teplota, síla, čas technika

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální

Více

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Test Matematika Var: 101

Test Matematika Var: 101 Test Matematika Var: 101 Pokyny: Vyplňte příslušné kolečko odpovídající správné odpovědi u každé otázky ve zvláštním odpovědním formuláři, který Vám byl rozdán spolu se zadáním testu. 1. Přímky p: y =

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Příklady z matematiky(pro ITS)

Příklady z matematiky(pro ITS) Příklady z matematikypro ITS) František Mošna Definiční obor: Zjistěte maimální definiční obor funkce:. f)=ln 2 8 9 ) + +2 Df= 2, ) 9, ).2 f)=ln 2 4 5 ) 36 2 Df= 6, ) 5,6.3 f)=ln 2 7 8 ) 00 2 Df= 0, 9)

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

VÝPOČET TOLEROVANÝCH ROZMĚRŮ

VÝPOČET TOLEROVANÝCH ROZMĚRŮ VÝPOČET TOLEROVANÝCH ROZMĚRŮ OBSAH ZADÁNÍ ÚLOHY... 2 ŘEŠENÍ ÚLOHY... 2 Uložení s vůlí.... 2 Výpočet:...4 Uložení s přesahem.... 5 Výpočet:...5 Uložení přechodné... 6 Výpočet:...7 ŘEŠENÍ ÚLOHY... 8 LITERATURA...

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

1.1.3 Práce s kalkulátorem

1.1.3 Práce s kalkulátorem .. Práce s kalkulátorem Výrazy zadáváme do kalkulačky pokud možno vcelku, pozor na závorky a čísla ve jmenovateli u zlomků. Př. : Spočti na kalkulačce s maximální možnou přesností a bez zapisování mezivýsledků:

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

1.5 Operační zesilovače I.

1.5 Operační zesilovače I. .5 Operační zesilovače I..5. Úkol:. Změřte napěťové zesílení operačního zesilovače v neinvertujícím zapojení 2. Změřte napěťové zesílení operačního zesilovače v invertujícím zapojení 3. Ověřte vlastnosti

Více

Vlny v trubici VUT FSI v Brně

Vlny v trubici VUT FSI v Brně Vlny v trubici VUT FSI v Brně Měření provedeno: Vedoucí práce: Měření provedli: Zpracoval: Úkol: Měřením rezonančních frekvencí podélného vlnění v trubici určit rychlost šíření zvuku ve vzduchu. Teoretická

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Repetitorium matematiky (soubor testů) KMA/P113

Repetitorium matematiky (soubor testů) KMA/P113 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (soubor testů) KMA/P Lenka Součková Ústí nad Labem 0 Obor: Klíčová slova: Anotace: Fyzika (dvouoborové studium),

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Opravná zkouška 2SD 2012-2013 (celý rok)

Opravná zkouška 2SD 2012-2013 (celý rok) Opravná zkouška SD 01-01 (celý rok) 1) Přímá železniční trať má stoupání 5 a délku,5 km. Vypočítej její celkové převýšení. b) ) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Vypočítej obsah vybarveného

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více