A 9. Počítejte v radiánech, ne ve stupních!

Rozměr: px
Začít zobrazení ze stránky:

Download "A 9. Počítejte v radiánech, ne ve stupních!"

Transkript

1 A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = 2. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2, vidíme, že kořen leží v intervalu 2,. 2 Půlení intervalů: a b s f(a) f(b) f(s) 2 2, ,5 2,75 + 2,5 2,75 + Kořen je v intervalu 2,5; 2,75. Newtonova metoda: k+ = k sin k k + 2 cos k Zvolíme-li např. 0 = 2,5: y 2 = 2,555 2 = 2,554 = 2,554 Kořen je přibližně 2,554. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 0 + 2y z = y 4z = y 8z = 5 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > 2 +, 20 > + 4, 8 > 2 +. Budeme dosazovat do iteračních vztahů k+ = (25 2y 0 k + z k ) y k+ = ( 0 20 k+ + 4z k ) z k+ = ( k+ y k+ ) Vyjde: k k y k z k ,5-0,875-2, ,44 -,840-2,655

2 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i -2 8 =,6 4 = 0,8 0 = 0, = 0,8 = 0, =,6 =, = 2,7 0 Interpolační polynom: P () =,6 + 0,8( + 2) + 0,02( + 2)( 2)

3 B 9 Př.. Je dána rovnice 2e + 4 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = ( + 4)/2, vidíme, že kořen leží v intervalu 0,. y Př. 2. Jacobiho metodou řešte soustavu rovnic Půlení intervalů: a b s f(a) f(b) f(s) 0 0,5 + 0,5 0, ,5 0,75 + Kořen je v intervalu 0,5; 0,75. Newtonova metoda: k+ = k 2e k + k 4 2e k + Zvolíme-li např. 0 = 0,5: = 0,547 2 = 0,546 = 0,546 Kořen je přibližně 0, y + 2z = y z = 6 5 2y 20z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; 2; ) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > + 2, 8 > 2 +, 20 > Budeme dosazovat do iteračních vztahů k+ = (5 + y 0 k 2z k ) y k+ = ( k + z k ) z k+ = 20 (0 5 k + 2y k ) Vyjde: k k y k z k , -,625-0,8 2,725 -,25-0,5625

4 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 0. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i - 9 f i. = 0,. = 0, = 0, 4. = 0, = 0,. =, Interpolační polynom: P () = ( + ) ( + )( ) = 0,

5 C 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = + 2. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = + 2, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 + +,5,25 + +,25 + Kořen je v intervalu ;,25. Newtonova metoda: k+ = k sin k + k 2 cos k + Zvolíme-li např. 0 = : =,0 2 =,06 =,06 Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 20 2y + z = y = 25 2y + 5z = 20 Kořen je přibližně,06. Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 20 > 2 +, 0 > 4 + 0, 5 > + 2. Budeme dosazovat do iteračních vztahů k+ = (40 + 2y 20 k z k ) y k+ = 0 k+) z k+ = ( 20 5 k+ + 2y k+ ) Vyjde: k k y k z k ,7-5,08 2 2,084 -,6664-5,087

6 Př.. Jsou uzly 0 =, = 0, 2 =, = 4 ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0,2 = 0,2 0 = 0, = 0,2 = 0,2 5 5 = 0, =,2 5 Interpolační polynom: P () = 0,2 + 0,2( + ) + 0,04( + )( )

7 D 9 Př.. Je dána rovnice e 2 4 = 0. Najděte interval délky, v němž leží záporný kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = 2 + 4, vidíme, že záporný kořen leží v intervalu 2,. 5 4 Půlení intervalů: a b s f(a) f(b) f(s) , ,5 -, ,75 + Kořen je v intervalu 2;,75. Newtonova metoda: y 2 k+ = k e k 2k 4 e k 2 Zvolíme-li např. 0 = 0,5: =,927 2 =,927 Kořen je přibližně -, Př. 2. Jacobiho metodou řešte soustavu rovnic 5 + y 2z = 5 20y + 4z = 40 2 y + 0z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = ( ; 2; ) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 5 > + 2, 20 > + 4, 0 > 2 +. Budeme dosazovat do iteračních vztahů k+ = 5 ( 5 y k + 2z k ) y k+ = 20 k 4z k ) z k+ = (0 2 0 k + y k ) Vyjde: k k y k z k ,4 -,85,4 2 -,27 -,5,095

8 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i -2 2 = 0, = 0, = 0, = 0, 0 0 Interpolační polynom: P () = 0,4 + 0,2( + 2) 0,02( + 2)( 2)

9 A 0 Př.. Je dána rovnice e = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = 2 + 6, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 + +,5,25 +,25,5 + Kořen je v intervalu, 25;,5. Newtonova metoda: k+ = k e k + 2k 6 e k + 2 Zvolíme-li např. 0 =,25: =,252 2 =,252 Kořen je přibližně, Př. 2. Jacobiho metodou řešte soustavu rovnic 20 2y + z = y = 25 2y + 5z = 20 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; 2; 4) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 20 > 2 +, 0 > 4 + 0, 5 > + 2. Budeme dosazovat do iteračních vztahů k+ = (40 + 2y 20 k z k ) y k+ = 0 k) z k+ = ( 20 5 k + 2y k ) Vyjde: k k y k z k ,7-5,2 2 2,09 -,7-5,08

10 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0, = 0, = 0,2 5 2 = 0, 0 0 Interpolační polynom: P () = 0,5 + 0,5( + ) 0,05( + )( )

11 B 0 Př.. Je dána rovnice sin = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = 2 4. Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2 4, vidíme, že kořen leží v intervalu 2, Půlení intervalů: a b s f(a) f(b) f(s) 2 2, ,5 2, ,25 2,5 + Kořen je v intervalu 2, 25; 2,5. Newtonova metoda: k+ = k sin k 2 k + 4 cos k 2 Zvolíme-li např. 0 = 2,25: y 2 4 = 2,56 2 = 2,54 = 2,54 Kořen je přibližně 2,54. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 5 + y 2z = 5 20y + 4z = 40 2 y + 0z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 5 > + 2, 20 > + 4, 0 > 2 +. Budeme dosazovat do iteračních vztahů k+ = 5 ( 5 y k + 2z k ) y k+ = 20 k+ 4z k ) z k+ = (0 2 0 k+ + y k+ ) Vyjde: k k y k z k ,45,55 2 -,68 -,5042,082

12 Př.. Jsou uzly 0 =, = 0, 2 =, = 4 ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0, = 0, = 0, Interpolační polynom: P () = 0,2 + 0,2( + ) 0,0( + )( )

13 C 0 Př.. Je dána rovnice 2e 4 = 0. Najděte interval délky, v němž leží kladný kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Rovnici lze upravit na e = Nakreslíme-li do jednoho obrázku grafy funkcí y = e a y = ( + 4)/2, vidíme, že kořen leží v intervalu 0, (nebo 0,5;,5 ). 4 Půlení intervalů: a b s f(a) f(b) f(s) 0 0,5 + 0,5 0,75 + 0,75 + Kořen je v intervalu 0, 75;. Newtonova metoda: k+ = k 2e k k 4 2e k 2 y Zvolíme-li např. 0 = : = 0,902 2 = 0,895 = 0,895 Kořen je přibližně 0,895. Př. 2. Jacobiho metodou řešte soustavu rovnic 0 + 2y z = y 4z = y 8z = 5 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (2; ; 2) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > 2 +, 20 > + 4, 8 > 2 +. Budeme dosazovat do iteračních vztahů k+ = (25 2y 0 k + z k ) y k+ = ( 0 20 k + 4z k ) z k+ = ( k y k ) Vyjde: k k y k z k ,5 -,2-2,5 2 2,49 -,75-2,65

14 Př.. Jsou uzly 0 = 2, = 0, 2 = 2, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 0. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i -2 f i. = 0, = 0, 8 = 2,6667. = 0, = 0, = 0,8 6 Interpolační polynom: P () = ( + 2) ( + 2)( 2) 6 6. = 0,667

15 D 0 Př.. Je dána rovnice sin = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00 Newtonovou metodou (podmínky konvergence ověřovat nemusíte). Počítejte v radiánech, ne ve stupních! Rovnici lze upravit na sin = Nakreslíme-li do jednoho obrázku grafy funkcí y = sin a y = 2 + 4, vidíme, že kořen leží v intervalu, 2. y Půlení intervalů: a b s f(a) f(b) f(s) 2,5 +,5 2,75 + +,5,75 + Kořen je v intervalu, 5;,75. Newtonova metoda: k+ = k sin k + 2 k 4 cos k + 2 Zvolíme-li např. 0 =,5: =,50 2 =,50 Kořen je přibližně,50. Př. 2. Gauss-Seidelovou metodou řešte soustavu rovnic 0 y + 2z = y z = 6 5 2y 20z = 0 Ověřte, že je splněna podmínka konvergence metody rozepište! Vyjděte z bodu ( 0, y 0, z 0 ) = (0; 0; 0) a proveďte 2 kroky. Podmínka konvergence je splněna, protože matice soustavy je řádkově diagonálně dominantní: 0 > + 2, 8 > 2 +, 20 > Budeme dosazovat do iteračních vztahů k+ = (5 + y 0 k 2z k ) y k+ = ( k+ + z k ) z k+ = 20 (0 5 k+ + 2y k+ ) Vyjde: k k y k z k ,5 -,25-0,525 2,265 -,2478-0,5590

16 Př.. Jsou uzly 0 =, = 0, 2 =, = ekvidistantní? Najděte Newtonův interpolační polynom s těmito uzly, který aproimuje funkci f() = 2 +. Uzly nejsou ekvidistantní, rozestup mezi 2 a je jiný než např. mezi a 2. Musíme proto použít obecný tvar Newtonova interpolačního polynomu. Tabulka poměrných diferencí: i f i - = 0,5 = 0,5 0 = 0, = 0,5 = 0,2 2 5 = 0,5 =, = 2,7 0 Interpolační polynom: P () = 0,5 + 0,5( + ) + 0,05( + )( )

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Matematika 3. Sbírka příkladů z numerických metod. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY

Matematika 3. Sbírka příkladů z numerických metod. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 3 Sbírka příkladů z numerických metod RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 3 1 Obsah 1 Soustavy lineárních rovnic 5 1.1 Jacobiho a Gauss-Seidelova metoda......................

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

Moderní numerické metody

Moderní numerické metody Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární

Více

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá

Více

Řešení nelineárních rovnic

Řešení nelineárních rovnic Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Numerické řešení rovnice f(x) = 0

Numerické řešení rovnice f(x) = 0 Numerické řešení rovnice f(x) = 0 Přemysl Vihan 9.10.2003 Katedra fyziky, Pedagogická fakulta Univerzity J.E. Purkyně v Ústí n.l. 2. ročník, PMVT-mag. Abstrakt Seminární práce se zabývá numerickým řešením

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0. Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Cvičící: KOLAR KOSTKOVA KOZAK NOVAK STRACHOTA Zápočtová písemná práce č. 1 z předmětu 01MAB4 varianta A pondělí 13. dubna 2015, 11:20 13:20 ➊ (1 bod) Do tabulky výše vyplňte své příjmení a jméno a zakroužkujte

Více

1 Diference a diferenční rovnice

1 Diference a diferenční rovnice 1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc.

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc. FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Numerické metody Garant předmětu: doc. RNDr. Libor Čermák, CSc. Autoři textu: Mgr. Irena Růžičková RNDr. Rudolf Hlavička, CSc. Ústav matematiky

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

Zadání semestrálních prací 2NU, 2015/16 doc. Martišek

Zadání semestrálních prací 2NU, 2015/16 doc. Martišek Zadání semestrálních prací NU, 0/6 doc. Martišek Každý(á) student(ka) najde u svého jména čísla dvou úloh, které vypracuje. Seznam zadání a vzor vypracování následuje. Výuka Ca - Út :00 (sudý i lichý)

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

4.3.1 Goniometrické rovnice

4.3.1 Goniometrické rovnice .. Goniometrické rovnice Předpoklady: 6, 7 Názvosloví: Goniometrické rovnice: rovnice, ve kterých se neznámá objevuje uvnitř goniometrických funkcí. g x = a, kde Základní goniometrická rovnice: každá rovnice

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

MATEMATIKA rozšířená úroveň

MATEMATIKA rozšířená úroveň Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.

Více

Řešení diferenciálních rovnic

Řešení diferenciálních rovnic Projekt M3 Řešení diferenciálních rovnic 1. Zadání A. Stanovte řešení dané diferenciální rovnice popřípadě soustavy rovnic. i) Pro úlohy M3.1 až M3.12: uveďte matematický popis použité metody sestavte

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací

APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací APROXIMACE FUNKCÍ Jedním ze základních úkolů numerických metod matematické analýz je studium aproimací funkcí. Při numerickém řešení úloh matematické analýz totiž často nahrazujeme danou funkci f, vstupující

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

BAKALÁŘSKÁ PRÁCE. Metody pro výpočet kořenů polynomů

BAKALÁŘSKÁ PRÁCE. Metody pro výpočet kořenů polynomů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody pro výpočet kořenů polynomů Vedoucí diplomové práce: RNDr. Horymír Netuka,

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

Matematické algoritmy (K611MAG) pondělí 25. listopadu verze: :47

Matematické algoritmy (K611MAG) pondělí 25. listopadu verze: :47 Kořeny nelineárních funkcí Matematické algoritmy (K611MAG) Jan Přikryl 9. přednáška 11MAG pondělí 25. listopadu 2013 verze:2013-11-25 16:47 Obsah 1 Nelineární rovnice 1 1.1 Formulace úlohy....................................

Více

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ doc RNDr Josef Dalík, CSc MATEMATIKA IV NUMERICKÁ ANALÝZA STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε c Josef

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika 1 sbírka příkladů

Matematika 1 sbírka příkladů Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR POČÁTEČNÍ ÚLOHY Numerické metody 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2. A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce.

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce. Hledání kořenů Úloha: Pro danou funkci f(x) máme najít číslo r tak, aby f(r) = 0. Pozor, počítač totiž kořen nepozná! Má jistou přesnost výpočtu δ > 0 a prohlásí f(r) = 0 pokaždé, když f(x) < δ. Není ovšem

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1.

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1. Goniometrické funkce Velikost úhlu v míře stupňové a v míře obloukové Vjadřujeme-li úhl v míře stupňové, je jednotkou stupeň ( ), jestliže v míře obloukové, je jednotkou radián (rad). Ve stupňové míře

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Test A. 1) Určete hodnoty výrazu. 2) Pro přípustné a upravte výraz. (a) a 5 2

Test A. 1) Určete hodnoty výrazu. 2) Pro přípustné a upravte výraz. (a) a 5 2 Test A V nadpisu v přiložené mřížce vyplňte označení testu (A), vaše jméno, příjmení a obor pro který skládáte příjmací zkoušku. Vaše odpovědi v mřížce zaškrtněte (např. a ). V případě omylu zakroužkujte

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více