Rovnice s parametrem ( lekce)

Rozměr: px
Začít zobrazení ze stránky:

Download "Rovnice s parametrem (17. - 18. lekce)"

Transkript

1 Rovnice s parametrem ( lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011

2 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a 2 16.

3 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a Řešení: 1 a 4 = 0

4 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a Řešení: 1 a 4 = 0 a = 4

5 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a Řešení: 1 a 4 = 0 a = 4 x (4 4) =

6 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a Řešení: 1 a 4 = 0 a = 4 x (4 4) = x 0 = 16 16

7 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a Řešení: 1 a 4 = 0 a = 4 x (4 4) = x 0 = = 0

8 Lineární rovnice s parametrem Příklad 1 Příklad 1 Řešte rovnici s neznámou x R a parametrem a R x (a 4) = a Řešení: 1 a 4 = 0 a = 4 x (4 4) = x 0 = = 0 x R

9 Lineární rovnice s parametrem Příklad 1 2 a 4 0

10 Lineární rovnice s parametrem Příklad 1 2 a 4 0 a 4

11 Lineární rovnice s parametrem Příklad 1 2 a 4 0 a 4 x (a 4) = a 2 16

12 Lineární rovnice s parametrem Příklad 1 2 a 4 0 a 4 x (a 4) = a 2 16 x = a2 16 a 4

13 Lineární rovnice s parametrem Příklad 1 2 a 4 0 a 4 x (a 4) = a 2 16 x = a2 16 a 4 (a 4)(a + 4) x = a 4

14 Lineární rovnice s parametrem Příklad 1 2 a 4 0 a 4 x (a 4) = a 2 16 x = a2 16 a 4 (a 4)(a + 4) x = a 4 x = a + 4

15 Lineární rovnice s parametrem Příklad 1 2 a 4 0 a 4 x (a 4) = a 2 16 x = a2 16 a 4 (a 4)(a + 4) x = a 4 x = a + 4 Závěr: a a {4} x x R a R {4} x {a + 4}

16 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5.

17 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5. Řešení: 1 2a + 1 = 0

18 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5. Řešení: 1 2a + 1 = 0 a = 1 2

19 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5. Řešení: 1 2a + 1 = 0 a = 1 2 x (2 ( 1 2 ) + 1 ) = 5

20 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5. Řešení: 1 2a + 1 = 0 a = 1 2 x (2 ( 1 2 ) + 1 ) = 5 x 0 = 5

21 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5. Řešení: 1 2a + 1 = 0 a = 1 2 x (2 ( 1 2 ) + 1 ) = 5 x 0 = 5 0 5

22 Lineární rovnice s parametrem Příklad 2 Příklad 2 Řešte rovnici s neznámou x R a parametrem a R x (2a + 1) = 5. Řešení: 1 2a + 1 = 0 a = 1 2 x (2 ( 1 2 ) + 1 ) = 5 x 0 = x

23 Lineární rovnice s parametrem Příklad 2 2 2a + 1 0

24 Lineární rovnice s parametrem Příklad 2 2 2a a 1 2

25 Lineární rovnice s parametrem Příklad 2 2 2a a 1 2 x (2a + 1) = 5

26 Lineární rovnice s parametrem Příklad 2 2 2a a 1 2 x (2a + 1) = 5 x = 5 2a + 1

27 Lineární rovnice s parametrem Příklad 2 2 2a a 1 2 x (2a + 1) = 5 x = 5 2a + 1 Závěr: a a { 1 2 } a R { 1 2 } x x { } x 5 2a+1

28 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8.

29 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8. Řešení: 1 a + 4 = 0

30 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8. Řešení: 1 a + 4 = 0 a = 4

31 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8. Řešení: 1 a + 4 = 0 a = 4 (3x + 5) ( 4 + 4) = 2 ( 4) + 8

32 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8. Řešení: 1 a + 4 = 0 a = 4 (3x + 5) ( 4 + 4) = 2 ( 4) + 8 (3x + 5) 0 = 8 + 8

33 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8. Řešení: 1 a + 4 = 0 a = 4 (3x + 5) ( 4 + 4) = 2 ( 4) + 8 (3x + 5) 0 = = 0

34 Lineární rovnice s parametrem Příklad 3 Příklad 3 Řešte rovnici s neznámou x R a parametrem a R (3x + 5) (a + 4) = 2a + 8. Řešení: 1 a + 4 = 0 a = 4 (3x + 5) ( 4 + 4) = 2 ( 4) + 8 (3x + 5) 0 = = 0 x R

35 Lineární rovnice s parametrem Příklad 3 2 a + 4 0

36 Lineární rovnice s parametrem Příklad 3 2 a a 4

37 Lineární rovnice s parametrem Příklad 3 2 a a 4 (3x + 5) (a + 4) = 2a + 8

38 Lineární rovnice s parametrem Příklad 3 2 a a 4 (3x + 5) (a + 4) = 2a + 8 3x + 5 = 2a + 8 a + 4

39 Lineární rovnice s parametrem Příklad 3 2 a a 4 (3x + 5) (a + 4) = 2a + 8 3x + 5 = 2a + 8 a + 4 2(a + 4) 3x = a + 4 5

40 Lineární rovnice s parametrem Příklad 3 2 a a 4 (3x + 5) (a + 4) = 2a + 8 3x + 5 = 2a + 8 a + 4 2(a + 4) 3x = a x = 3 3

41 Lineární rovnice s parametrem Příklad 3 2 a a 4 (3x + 5) (a + 4) = 2a + 8 3x + 5 = 2a + 8 a + 4 2(a + 4) 3x = a x = 3 3 x = 1

42 Lineární rovnice s parametrem Příklad 3 2 a a 4 (3x + 5) (a + 4) = 2a + 8 3x + 5 = 2a + 8 a + 4 2(a + 4) 3x = a x = 3 3 x = 1 Závěr: a a { 4} a R { 4} x x R x { 1}

43 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2.

44 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2

45 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 2a x x = 2 4a

46 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 2a x x = 2 4a x (2a 1) = 2 4a

47 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 2a x x = 2 4a x (2a 1) = 2 4a 1 2a 1 = 0

48 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 2a x x = 2 4a x (2a 1) = 2 4a 1 2a 1 = 0 a = 1 2

49 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 1 2a 1 = 0 a = 1 2 x ( ) = a x x = 2 4a x (2a 1) = 2 4a

50 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 1 2a 1 = 0 a = 1 2 x ( ) = x 0 = 2 2 2a x x = 2 4a x (2a 1) = 2 4a

51 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 1 2a 1 = 0 a = 1 2 x ( ) = x 0 = = 0 2a x x = 2 4a x (2a 1) = 2 4a

52 Lineární rovnice s parametrem Příklad 4 Příklad 4 Řešte rovnici s neznámou x R a parametrem a R x (a 1) + a (x + 4) = 2. Řešení: x a x + a x + 4a = 2 / 4a 1 2a 1 = 0 a = 1 2 x ( ) = x 0 = = 0 x R 2a x x = 2 4a x (2a 1) = 2 4a

53 Lineární rovnice s parametrem Příklad 4 2 2a 1 0

54 Lineární rovnice s parametrem Příklad 4 2 2a 1 0 a 1 2

55 Lineární rovnice s parametrem Příklad 4 2 2a 1 0 a 1 2 x (2a 1) = 2 4a

56 Lineární rovnice s parametrem Příklad 4 2 2a 1 0 a 1 2 x (2a 1) = 2 4a x = 2 4a 2a 1

57 Lineární rovnice s parametrem Příklad 4 2 2a 1 0 a 1 2 x (2a 1) = 2 4a x = 2 4a 2a 1 2 (2a 1) x = 2a 1

58 Lineární rovnice s parametrem Příklad 4 2 2a 1 0 a 1 2 x (2a 1) = 2 4a x = 2 4a 2a 1 2 (2a 1) x = 2a 1 x = 2

59 Lineární rovnice s parametrem Příklad 4 2 2a 1 0 a 1 2 x (2a 1) = 2 4a x = 2 4a 2a 1 2 (2a 1) x = 2a 1 x = 2 Závěr: a a { } 1 2 a R { 1 2 } x x R x { 2}

60 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m.

61 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky:

62 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0

63 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 x 2 x 1 + m

64 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 x 2 x 1 + m Upravíme 2m 2 + x = m 1 x + 1 m

65 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 Upravíme 2m 2 + x x 2 x 1 + m = m 1 x + 1 m 2m (x + 1 m) = (m 1) (2 + x) / (2 + x)(x + 1 m)

66 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 Upravíme 2m 2 + x x 2 x 1 + m = m 1 x + 1 m 2m (x + 1 m) = (m 1) (2 + x) 2mx + 2m 2m 2 = 2m 2 + mx x / (2 + x)(x + 1 m)

67 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 Upravíme 2m 2 + x x 2 x 1 + m = m 1 x + 1 m 2m (x + 1 m) = (m 1) (2 + x) 2mx + 2m 2m 2 = 2m 2 + mx x 2mx mx + x = 2m 2 2 / (2 + x)(x + 1 m)

68 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 Upravíme 2m 2 + x x 2 x 1 + m = m 1 x + 1 m 2m (x + 1 m) = (m 1) (2 + x) 2mx + 2m 2m 2 = 2m 2 + mx x 2mx mx + x = 2m 2 2 mx + x = 2m 2 2 / (2 + x)(x + 1 m)

69 Příklad 5 Příklad 5 Řešte rovnici s neznámou x R a parametrem m R 2m 2 + x = m 1 x + 1 m. Řešení: Podmínky: 2 + x 0 x + 1 m 0 Upravíme 2m 2 + x x 2 x 1 + m = m 1 x + 1 m 2m (x + 1 m) = (m 1) (2 + x) 2mx + 2m 2m 2 = 2m 2 + mx x 2mx mx + x = 2m 2 2 mx + x = 2m 2 2 x (m + 1) = 2m 2 2 / (2 + x)(x + 1 m)

70 Příklad 5 1 m + 1 = 0

71 Příklad 5 1 m + 1 = 0 m = 1

72 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2

73 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2 x 0 = 2 2

74 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2 x 0 = = 0

75 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2 x 0 = = 0 x R

76 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2 x 0 = = 0 x R Podmínky: x 2 x 1 + m

77 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2 x 0 = = 0 x R Podmínky: x 2 x 1 + m x 1 1

78 Příklad 5 1 m + 1 = 0 m = 1 x ( 1 + 1) = 2 ( 1) 2 2 x 0 = = 0 x R Podmínky: x 2 x 1 + m x 1 1 x 2

79 Příklad 5 2 m + 1 0

80 Příklad 5 2 m m 1

81 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2

82 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2 x = 2m2 2 m + 1

83 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2 x = 2m2 2 m (m + 1) (m 1) x = m + 1

84 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2 x = 2m2 2 m (m + 1) (m 1) x = m + 1 x = 2m 2

85 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2 x = 2m2 2 m (m + 1) (m 1) x = m + 1 x = 2m 2 Podmínky: x 2 x 1 + m

86 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2 x = 2m2 2 m (m + 1) (m 1) x = m + 1 x = 2m 2 Podmínky: x 2 x 1 + m 2m 2 2 2m m

87 Příklad 5 2 m m 1 x (m + 1) = 2m 2 2 x = 2m2 2 m (m + 1) (m 1) x = m + 1 x = 2m 2 Podmínky: x 2 x 1 + m 2m 2 2 2m m m 0 m 1

88 Příklad 5 Závěr: m m { 1} m {0; 1} x x R { 2} x m R {0; ±1} x {2m 2}

89 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2.

90 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky:

91 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0

92 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 x 1 x m

93 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 x 1 x m Upravíme 2x + m x + 1 3m x m = 2

94 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 Upravíme x 1 x m 2x + m x + 1 3m x m = 2 / (x + 1)(x m) (2x + m) (x m) 3m (x + 1) = 2 (x + 1) (x m)

95 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 Upravíme x 1 x m 2x + m x + 1 3m x m = 2 / (x + 1)(x m) (2x + m) (x m) 3m (x + 1) = 2 (x + 1) (x m) 2x 2 + mx m 2 2mx 3mx 3m = 2x 2 + 2x 2mx 2m

96 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 Upravíme x 1 x m 2x + m x + 1 3m x m = 2 / (x + 1)(x m) (2x + m) (x m) 3m (x + 1) = 2 (x + 1) (x m) 2x 2 + mx m 2 2mx 3mx 3m = 2x 2 + 2x 2mx 2m 2mx m 2 3m = 2x 2m

97 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 Upravíme x 1 x m 2x + m x + 1 3m x m = 2 / (x + 1)(x m) (2x + m) (x m) 3m (x + 1) = 2 (x + 1) (x m) 2x 2 + mx m 2 2mx 3mx 3m = 2x 2 + 2x 2mx 2m 2mx m 2 3m = 2x 2m 2mx 2x = m 2 + m

98 Příklad 6 Příklad 6 Řešte rovnici s neznámou x R a parametrem m R 2x + m x + 1 3m x m = 2. Řešení: Podmínky: x x m 0 Upravíme x 1 x m 2x + m x + 1 3m x m = 2 / (x + 1)(x m) (2x + m) (x m) 3m (x + 1) = 2 (x + 1) (x m) 2x 2 + mx m 2 2mx 3mx 3m = 2x 2 + 2x 2mx 2m 2mx m 2 3m = 2x 2m 2mx 2x = m 2 + m x ( 2m 2) = m 2 + m

99 Příklad 6 1 2m 2 = 0

100 Příklad 6 1 2m 2 = 0 2m = 2

101 Příklad 6 1 2m 2 = 0 2m = 2 m = 1

102 Příklad 6 1 2m 2 = 0 2m = 2 m = 1 x ( 2 ( 1) 2) = ( 1) 2 + ( 1)

103 Příklad 6 1 2m 2 = 0 2m = 2 m = 1 x ( 2 ( 1) 2) = ( 1) 2 + ( 1) x (2 2) = 1 1

104 Příklad 6 1 2m 2 = 0 2m = 2 m = 1 x ( 2 ( 1) 2) = ( 1) 2 + ( 1) x (2 2) = = 0

105 Příklad 6 1 2m 2 = 0 2m = 2 m = 1 x ( 2 ( 1) 2) = ( 1) 2 + ( 1) x (2 2) = = 0 x R

106 Příklad 6 1 2m 2 = 0 2m = 2 m = 1 x ( 2 ( 1) 2) = ( 1) 2 + ( 1) x (2 2) = = 0 x R Podmínky: x 1 x m

107 Příklad 6 1 2m 2 = 0 2m = 2 m = 1 x ( 2 ( 1) 2) = ( 1) 2 + ( 1) x (2 2) = = 0 x R Podmínky: x 1 x m x 1

108 Příklad 6 2 2m 2 0

109 Příklad 6 2 2m 2 0 m 1

110 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m

111 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2

112 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2 m (m + 1) x = 2 (m + 1)

113 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2 m (m + 1) x = 2 (m + 1) x = m 2

114 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2 m (m + 1) x = 2 (m + 1) x = m 2 Podmínky: x 1 x m

115 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2 m (m + 1) x = 2 (m + 1) x = m 2 Podmínky: x 1 x m m 2 1 m 2 m

116 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2 m (m + 1) x = 2 (m + 1) x = m 2 Podmínky: x 1 x m m 2 1 m 2 m m 2 m 2m

117 Příklad 6 2 2m 2 0 m 1 x ( 2m 2) = m 2 + m x = m2 + m 2m 2 m (m + 1) x = 2 (m + 1) x = m 2 Podmínky: x 1 x m m 2 1 m 2 m m 2 m 2m m 2 m 0

118 Příklad 6 Závěr: m m { 1} x x R { 1} m {0; 2} x m R { 1; 0; 2} x { } m 2

119 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1

120 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka:

121 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka: x a 0

122 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka: x a 0 x a

123 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka: x a 0 x a Upravíme x x a = a + 1

124 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka: x a 0 x a Upravíme x x a = a + 1 / (x a) x = (x a) (a + 1)

125 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka: x a 0 x a Upravíme x x a = a + 1 / (x a) x = (x a) (a + 1) x = ax + x a 2 a

126 Příklad 7 Příklad 7 Určete všechny hodnoty parametru a R, pro které má rovnice aspoň jeden záporný kořen. x x a = a + 1 Řešení: Podmínka: x a 0 x a Upravíme x x a = a + 1 / (x a) x = (x a) (a + 1) x = ax + x a 2 a ax = a (a + 1)

127 Příklad 7 ax = a (a + 1) 1 a = 0

128 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0

129 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 x R, x 0

130 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 x R, x 0 2 a 0

131 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 x R, x 0 2 a 0 x = a právě jedno řešení

132 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 2 a 0 x R, x 0 x = a právě jedno řešení Zkoumáme, pro které hodnoty parametru má daná rovnice aspoň jeden záporný kořen.

133 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 2 a 0 x R, x 0 x = a právě jedno řešení Zkoumáme, pro které hodnoty parametru má daná rovnice aspoň jeden záporný kořen. a) Pro a = 0 jsou řešeními dané rovnice všechna x R {0}, tedy i všechna x R. To znamená, že pro a = 0 má daná rovnice aspoň jeden záporný kořen.

134 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 2 a 0 x R, x 0 x = a právě jedno řešení Zkoumáme, pro které hodnoty parametru má daná rovnice aspoň jeden záporný kořen. a) Pro a = 0 jsou řešeními dané rovnice všechna x R {0}, tedy i všechna x R. To znamená, že pro a = 0 má daná rovnice aspoň jeden záporný kořen. b) Je-li a 0, je řešením x = a + 1. Tento kořen je záporný, právě když a + 1 < 0, tj. a < 1.

135 Příklad 7 ax = a (a + 1) 1 a = 0 0 x = 0 2 a 0 x R, x 0 x = a právě jedno řešení Zkoumáme, pro které hodnoty parametru má daná rovnice aspoň jeden záporný kořen. a) Pro a = 0 jsou řešeními dané rovnice všechna x R {0}, tedy i všechna x R. To znamená, že pro a = 0 má daná rovnice aspoň jeden záporný kořen. b) Je-li a 0, je řešením x = a + 1. Tento kořen je záporný, právě když a + 1 < 0, tj. a < 1. Závěr: Daná rovnice má aspoň jeden záporný kořen pro a = 0 a pro všechna a < 1.

136 Cvičení Cvičení Řešte rovnice s neznámou x R: 1. a 2 x x + a = 1, a R, 2. xa 2 = a (1 + 3x) 3, a R, m x + m + x m = 1, m R, x + 1 ( ) (m + 1) x 6 = 3 1 m2 m, m R, x x 5. px 2 p 2 = 1 (4x + 1), p R {0}. p

137 Cvičení 1. a x 2. a x a {1} x R a {0} x a { 1} a R {±1} x { } x 1 a+1 a {3} x R a R {0; 3} x { } 1 a 3. m x 4. m x m { 1} x R {±1} m { 1} x m {1} x m {2} x R {0} m R {±1} x {m 2} m R { 1; 2} x { 3m 3} 5. p p = 2 p = 2 x x x R p R {0, ±2} x = 1 p(p+2).

138 Cvičení Cvičení 6. Určete všechny hodnoty parametru p R tak, aby řešením rovnice 2p (xp + 1) (p 2 + 1) x = 2 bylo kladné reálné číslo. 2x + a2 2x a2 7. Řešte v R rovnici + a + 3 a 3 = (a2 + 4)x a 2 s parametrem 9 a R {±3}. Potom určete všechny hodnoty parametru a, pro něž má daná rovnice aspoň jeden záporný kořen. 8. Rozhodněte, pro které hodnoty reálného parametru a má následující rovnice s neznámou x kladný kořen: a) 6a ax + 2x = 15, b) x 2 3 ax+1 2 = a 1 2.

139 Cvičení 6. p p ( ; 1) {1} x > 0 x 7. a a = 2 x x a R { 3; 2; 3} x = 6a2 (a 2) 2 a R { 3; 0; 2; 3} aspoň jeden záporný kořen [ 3(2a 5) 8. a) a 2 > 0 a ( ; 2) ( [ 5 2 ; )], b) 3a+4 2 3a > 0 a ( 4 3 ; 2 ) ] 3

Rovnice v oboru komplexních čísel

Rovnice v oboru komplexních čísel Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

2. Řešení algebraické

2. Řešení algebraické @016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

Rovnice a nerovnice v podílovém tvaru

Rovnice a nerovnice v podílovém tvaru Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

4 Rovnice a nerovnice

4 Rovnice a nerovnice 36 Rovnice a nerovnice 4 Rovnice a nerovnice 4.1 Lineární rovnice a jejich soustavy Požadované dovednosti řešit lineární rovnice o jedné neznámé vyjádřit neznámou ze vzorce užít lineární rovnice při řešení

Více

VÝUKOVÝ MATERIÁL PRO ŽÁKY

VÝUKOVÝ MATERIÁL PRO ŽÁKY PROJEKT Zlepšení podmínek výuky učebních oborů CZ.1.07./1.1.06/01.0079 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky VÝUKOVÝ MATERIÁL PRO ŽÁKY Vyučovací

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

EXPONENCIÁLNÍ ROVNICE

EXPONENCIÁLNÍ ROVNICE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

MATEMATIKA ZÁKLADNÍ ÚROVEŇ

MATEMATIKA ZÁKLADNÍ ÚROVEŇ NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Opravná zkouška 2SD 2012-2013 (celý rok)

Opravná zkouška 2SD 2012-2013 (celý rok) Opravná zkouška SD 01-01 (celý rok) 1) Přímá železniční trať má stoupání 5 a délku,5 km. Vypočítej její celkové převýšení. b) ) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Vypočítej obsah vybarveného

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Repetitorium matematiky (soubor testů) KMA/P113

Repetitorium matematiky (soubor testů) KMA/P113 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (soubor testů) KMA/P Lenka Součková Ústí nad Labem 0 Obor: Klíčová slova: Anotace: Fyzika (dvouoborové studium),

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

A 9. Počítejte v radiánech, ne ve stupních!

A 9. Počítejte v radiánech, ne ve stupních! A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00

Více

Rovnice s neznámou pod odmocninou a jejich užití

Rovnice s neznámou pod odmocninou a jejich užití Rovnice s neznámou pod odmocninou a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.2 Kvadratické funkce, rovnice a nerovnice

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Funkce. Lineární a kvadratické funkce s absolutní hodnotou. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště

Funkce. Lineární a kvadratické funkce s absolutní hodnotou. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště Funkce Lineární a kvadratické funkce s absolutní hodnotou Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 2012-14 Obsah Absolutní hodnota funkce 1 Absolutní hodnota funkce

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

2.5.1 Kvadratická funkce

2.5.1 Kvadratická funkce .5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Tematická oblast: Rovnice (VY_32_INOVACE_05_1)

Tematická oblast: Rovnice (VY_32_INOVACE_05_1) Tematická oblast: (VY_32_INOVACE_05_1) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží k

Více

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x. Program 2. Aplikace určitého integrálu zadání 1. y = x 2 + Bx 3A y = ln(bx), x = 1/A a x = 3A Vypočítejte její obsah. 3. Určete obsah plochy ohraničené parametricky zadanou křivkou (tzv. cykloidou) x(t)

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_03 ŠVP Podnikání RVP 64-41-L/51

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Cyklické redundantní součty a generátory

Cyklické redundantní součty a generátory Cyklické redundantní součty a generátory pseudonáhodných čísel Rostislav Horčík: Y01DMA 20. dubna 2010: CRC a pseudonáhodná čísla 1/17 Definice Řekneme, že polynomy a(x), b(x) jsou kongruentní modulo m(x),

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_08 ŠVP Podnikání RVP 64-41-L/51

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Popis: Stav zásoby v ks: Cena v Kč/1ks bez DPH: kuželový kolík (ČSN 02 2153): KOLÍK DIN 1-A1 10x40 12 21,63

Popis: Stav zásoby v ks: Cena v Kč/1ks bez DPH: kuželový kolík (ČSN 02 2153): KOLÍK DIN 1-A1 10x40 12 21,63 Popis: Stav zásoby v ks: Cena v Kč/1ks bez DPH: kuželový kolík (ČSN 02 2153): KOLÍK DIN 1-A1 10x40 12 21,63 válcový kolík (ČSN 02 2150): KOLÍK DIN 7-A2 1m6 x 4 800 0,3 KOLÍK DIN 7-A2 2m6 x 4 1000 0,28

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_10 ŠVP Podnikání RVP 64-41-L/51

Více