FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Rozměr: px
Začít zobrazení ze stránky:

Download "FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

2 1 0 Typeset by L A TEX 2ε 0 c V. Tryhuk, O. Dlouhý 2004

3 2

4 Obsah Úvod 5 Cíle Požadované znalosti Doba potřebná ke studiu Klíčová slova Vybrané části vektorového počtu Operace s geometrickými vektory ve V (E 3 ) Poznámka k označení Lineární nezávislost vektorů Součiny vektorů Skalární součin vektorů Vektorový součin vektorů Smíšený součin vektorů Dvojný vektorový součin vektorů Důležité identity Aplikace vektorového počtu ve sférické trigonometrii Sinová věta pro sférický trojúhelník První kosinová věta pro sférický trojúhelník Lineární prostor, báze a dimenze Vektory v ortonormální bázi Skalární součin v ortonormální bázi Vektorový součin v ortonormální bázi Smíšený součin v ortonormální bázi Některé aplikace vektorového počtu Vektory v souřadnicové soustavě prostoru E Rovina v E Přímka v E Úlohy metrické Vzdálenost bodu od roviny Vzdálenost bodu od přímky Úhel dvou rovin

5 4 OBSAH Úhel dvou přímek Úhel přímky a roviny Úlohy polohy Vzájemná poloha dvou rovin Vzájemná poloha přímky a roviny Vzájemná poloha dvou přímek Příčky a osa mimoběžek Vlastní čísla a vlastní vektory Rejstřík 53 Literatura 53

6 Úvod Cíle Cílem našeho textu není přesné formální vybudování základů vektorové algebry a analytické geometrie v trojrozměrném prostoru. Naopak, chceme pouze vytvořit doplněk textů již napsaných pro studenty kombinované formy studia, který bude reagovat na potřeby studijního programu geodézie a kartografie. V úvodní části modulu se budeme věnovat vektorové algebře, v níž zvolíme poněkud odlišný přístup od modulu BA01 M02 určeného pro obecné zaměření kombinované formy studia. Dáme přednost geometrickému a fyzikálnímu popisu vektorových operací, které navíc nebudeme studovat od začátku v ortonormální bázi. V odpovídajících číselně vyjádřených odstavcích textu jsou stanoveny následující cíle: 1.1 Připomenout základní operace s geometrickými vektory. Je potřebné pochopit geometrickou interpretaci pojmů vektory kolineární (nekolineární), vektory komplanární (nekomplanární) a naučit se s nimi pracovat. 1.2 Jedná se o nejdůležitější odstavec celého modulu. Je potřebné pochopit skalární, vektorový i smíšený součin vektorů včetně vytvoření geometrické představy o významu a možnostech použití těchto pojmů. Jedná se o základní stavební prvky dalších následujících odstavců modulu. 1.3 Odstavec obsahuje základní potřebné pojmy sférické trigonometrie, se kterými je potřebné se do detailů seznámit. Odvozování vzorců není samoúčelné, je zkouškou pochopení obsahu odstavce Pojmy používané v prvních třech odstavcích zobecníme na úroveň, která se standardně používá nejen v matematické literatuře. Potřebné je vytvořit si představu o obsahu pojmu lineární prostor a především pochopit pojmy báze a dimenze lineárního prostoru. 1.5 Studijní zaměření geodézie a kartografie pracuje s vektory nezávisle na volbě souřadnicových soustav. V odstavci se seznámíte s ortonormálními bázemi ve třírozměrném prostoru a aritmetikou počítání s vektory v ortonormální bázi.

7 6 OBSAH 1.6 Cílem odstavce je prohloubit pochopení analytické geometrie v prostoru. Důsledně jsou aplikovány skalární, vektorový a smíšený součin vektorů na metodiku řešení úloh i výpočetní postupy. Přístup se odlišuje od pojetí používaného na středních školách. Pečlivě si proto promyslete a propočítejte i řešené příklady tohoto odstavce. 1.7 Prostudujte si motivační příklad, který pro vás může být v budoucnu užitečný. Odstavec obsahuje základní pojmy nezbytné pro zvládnutí výpočtu vlastních čísel a vlastních vektorů matice. Je potřebné zvládnout techniku výpočtu. V jednom z dalších modulů se seznámíte s rozklady polynomů, které vám umožní zvolit si i jinou metodiku řešení příkladů. Požadované znalosti Znalost geometrických vektorů a základů analytické geometrie v prostoru v rozsahu látky probírané na středních školách. Doba potřebná ke studiu Čas potřebný ke zvládnutí tohoto modulu je odhadnut pro průměrného studenta jako hodnota nejméně?? hodin. Klíčová slova Geometrické vektory, skalární součin vektorů, vektorový součin vektorů, smíšený součin vektorů, lineární nezávislost vektorů, reálný lineární prostor, sférický trojúhelník, souřadnice vektoru, přímka v prostoru, rovina v prostoru, úlohy polohy, úlohy metrické. Na konci modulu zařazen Rejstřík, ve kterém jsou další klíčová slova přehledně uspořádána i s odkazy na odpovídající stránky.

8 Kapitola 1 Vybrané části vektorového počtu 1.1 Operace s geometrickými vektory ve V (E 3 ) Poznámka k označení Aniž bychom se zabývali přesnou definicí afinního prostoru A 3, budeme nejprve studovat tzv. afinní vlastnosti euklidovského prostoru E 3. Euklidovským prostorem E 3 přitom budeme rozumět bodový prostor, v němž: každému bodu A E 3 je jednoznačně přiřazena uspořádaná trojice [a 1, a 2, a 3 ] reálných čísel, které nazýváme souřadnicemi bodu A a píšeme A = [a 1, a 2, a 3 ], každým dvěma bodům A, B E 3, kde A = [a 1, a 2, a 3 ], B = [b 1, b 2, b 3 ], je přiřazena euklidovská vzdálenost ρ(a, B) bodů A, B, pro kterou platí ρ(a, B) = 3 i=1 (a i b i ) 2. Každé uspořádané dvojici bodů (A, B) přiřadíme orientovanou úsečku s počátečním bodem A a koncovým bodem B a budeme ji nazývat umístěním vektoru u = AB. Můžeme pak také psát B = A + u nebo B A = u. Přitom vektorem u budeme rozumět třídu orientovaných úseček, které mají týž směr a velikost. Tuto vlastnost můžeme také popsat tak, že orientované úsečky AB, CD patří do jedné třídy, jestliže úsečky (A, D) a (B, C) mají týž střed. B à D A C

9 8 Vybrané části vektorového počtu Množinu všech vektorů pak nazýváme vektorovým zaměřením prostoru E 3 a označujeme ji V (E 3 ). Pro takto zavedené pojmy platí: a) Pro libovolný bod A E 3 a libovolný vektor u V (E 3 ) existuje jediný bod B E 3 takový, že AB= u. b) Je-li AB= u, BC= v, pak AC= u + v se nazývá součet vektorů u, v. B AB= u BC= v A 3 C AC= u + v Je-li u = AA, pak vektor u se nazývá vektor nulový, značí se o a má délku rovnou nule. Je-li u = AB, pak vektor u = BA (změněná orientace) se nazývá vektor opačný k vektoru u. Úhlem nenulových vektorů u = AB, v = AC nazýváme úhel ϕ polopřímek AB, AC měřený v mezích 0 ϕ π. Poznámka: Prostor bodů v trojrozměrném prostoru E 3 spolu s vektorovým zaměřením V (E 3 ), v nichž platí a) a b) se často nazývá afinním prostorem a značí se A 3. Věta 1. Pro libovolné tři vektory u, v, w ve V (E 3 ) platí 1. u + v = v + u, 2. ( u + v ) + w = u + ( v + w ), 3. u + o = u, 4. ke každému vektoru u existuje opačný vektor u tak, že u + ( u ) = o.

10 1.1 Operace s geometrickými vektory ve V (E 3 ) 9 Součin vektoru s reálným číslem Má-li u = AB délku u a je-li γ R libovolné číslo, pak klademe γ u = o, pokud γ = 0 nebo u = o, γ u = v, kde u o, v = γ u a vektor v je souhlasně (nesouhlasně) rovnoběžný s vektorem u v případě γ > 0 (γ < 0.) A u B v = AC= γ u = 2 u pro γ = 2 > 1 > 0, v = 2 u C Věta 2. Nechť α, β R jsou libovolná čísla a u, v libovolné vektory ve V (E 3 ). Pak platí 1. α(β u) = αβ u, 2. α( u + v ) = α u + α v, 3. (α + β) u = α u + β u, 4. 1 u = u. Lineární nezávislost vektorů Poznámka: Všimněme si, že pro vektory z V 3 = V (E 3 ) platí: (ι) u, v V 3 = u + v V 3 (součet vektorů z V 3 je vektor ve V 3 ). (ιι) u V 3, α R = α u V 3 (násobek vektoru z V 3 je vektor ve V 3 ). (ιιι) Operace sčítání vektorů a násobení vektoru reálným číslem mají vlastnosti uvedené ve větách 1, 2. Vektory kolineární (nekolineární) Nenulové vektory u, v, pro které existují taková umístění, že leží na jedné přímce, nazýváme kolineární vektory. Nulový vektor považujeme za kolineární s každým vektorem. Pro kolineární vektory u, v, platí: a) Je-li u o, pak existuje právě jedno číslo k R takové, že v = k u.

11 10 Vybrané části vektorového počtu b) Rovnice k u + l v = o je splněna alespoň pro jednu dvojici čísel k, l R, přičemž čísla k, l nejsou současně rovna nule. Řekneme naopak, že vektory u, v jsou nekolineární, když rovnice k u+l v = o je splněna pouze tehdy, když k = 0 a současně l = 0. Příklad Vektory x 1, x 2 = 2 x 1 jsou kolineární, protože vektor x 2 je násobkem vektoru x 1. V jiném pohledu, platí rovnice 2 x 1 + x 2 = o a rovnice k x 1 + l x 2 = o má nenulové řešení k = 2, l = 1. Příklad Vektory x 1, x 2 jsou nekolineární. Zjistěte, zda jsou vektory u = x 1 + x 2, v = x 1 x 2, rovněž nekolineární. Řešení: Předpokládejme, že existuje nenulové reálné číslo k takové, že u = k v, tj. vektory u, v jsou kolineární. Pak platí x 1 + x 2 = k( x 1 x 2 ) a odtud (1 k) x 1 + (1 + k) x 2 = o. Protože vektory x 1, x 2 jsou nekolineární, musí platit 1 k = 0 a současně 1 + k = 0, což není možné. Neplatí proto náš předpoklad a vektory u, v jsou nekolineární. Vektory komplanární (nekomplanární) Řekneme, že nenulové vektory u, v, w jsou komplanární, jestliže existují taková jejich umístění, že leží v jedné rovině. Pokud je některý z vektorů u, v, w nulovým vektorem, pak tuto trojici vektorů považujeme také za komplanární. Pro komplanární vektory u, v, w platí: a) Jsou-li u, v nekolineární vektory, pak existuje právě jedna dvojice čísel k, l R taková, že w = k u + l v. b) Rovnice k u + l v + m w = o je splněna alespoň pro jednu trojici čísel k, l, m R, přičemž čísla k, l, m nejsou současně rovna nule. Trojici vektorů u, v, w nazveme nekomplanární, když je rovnice k u + l v + m w = o splněna pouze pro k = l = m = 0. Příklad Vektory x 1, x 2, x 3 jsou nekomplanární. Zjistěte, zda jsou vektory u = x 1 + x 2 + x 3, v = x 1 x 2 + x 3, w = x x 2 + x 3, rovněž nekomplanární. Řešení: Sestavíme rovnici α 1 u + α 2 v + α 3 w = o. Dosadíme-li do rovnice vyjádření vektorů u, v, w, máme α 1 ( x 1 + x 2 + x 3 ) + α 2 ( x 1 x 2 + x 3 ) + α 3 ( x x 2 + x 3 ) = = (α 1 + α 2 + α 3 ) x 1 + (α 1 α 2 + 3α 3 ) x 2 + (α 1 + α 2 + α 3 ) x 3 = o a c 1 = α 1 + α 2 + α 3 = 0, c 2 = α 1 α 2 + 3α 3 = 0, c 3 = α 1 + α 2 + α 3 = 0, protože x 1, x 2, x 3 jsou podle zadání úlohy nekomplanární vektory. Soustava rovnic

12 1.2 Součiny vektorů 11 α 1 + α 2 + α 3 = 0, α 1 α 2 + 3α 3 = 0 má obecné řešení α 1 = 2t, α 2 = α 3 = t R. Pro t 0, například t = 1, můžeme vybrat nenulové řešení α 1 = 2, α 2 = α 3 = 1. Vektory u, v, w jsou proto komplanární a platí rovnice 2 u + v + w = o. Proto je w = 2 u v lineární kombinací vektorů u, v, jak se můžeme přesvědčit provedením zkoušky. Nekolineární vektory x 1, x 2 x 2 x 1 nelze umístit na jedné přímce. Nekomplanární vektory x 1, x 2, x 3 x 3 x 2 x 1 nelze umístit do jedné roviny. 1.2 Součiny vektorů Skalární součin vektorů Definice Skalárním součinem nenulových vektorů u, v V (E 3 ) rozumíme číslo (skalár) u v = u v cos ϕ, kde ϕ = ( u, v ) 0, π je úhel vektorů u, v a u, v jsou jejich délky. Je-li alespoň jeden z vektorů nulový, klademe u v = 0. Pro skalární součin platí následující tvrzení: Věta 3. Je-li α R a u, v, w V (E 3 ), pak 1. u v = v u, 2. u ( v + w ) = u v + u w, 3. (α u) v = α( u v), 4. u u 0 ( u u = 0 u = o). Poznámka: Skalární součin nenulových vektorů lze využít při řešení následujících úloh. 1. Vyšetřování kolmosti nenulových vektorů: Platí přímo z definice, že u v = 0 ϕ = π 2.

13 12 Vybrané části vektorového počtu 2. Výpočet délky nenulového vektoru: u = u u = u. Číslo u = u u se nazývá euklidovská délka vektoru u. 3. Výpočet úhlu nenulových vektorů: Přímo ze vzorce obdržíme vztah cos ϕ = u v u v, ϕ 0, π. 4. Nalezení kolmého průmětu v u vektoru v do vektoru u : v u = u v u. (1.1) u 2 Z pravoúhlého troúhelníku v obrázku v v ϕ u v u můžeme pro u 0 = u psát: u v u = v cos ϕ u 0 = v u v u v u u = u v u 2 u. Všimněte si, že uvedený vztah platí i pro ϕ ( π, π), neboť pak cos ϕ < 0 2 a dojde ke změně orientace jednotkového vektoru u 0 na opačný vektor. 5. Práce A, kterou vykoná síla F stálého směru a velikosti po přímé dráze s je dána vztahem A = F s. Poznámka: Pomocí kolmých průmětů vektorů se můžeme lehce přesvědčit o vlastnosti 2 ve větě 3. v + w w v u v u w u

14 1.2 Součiny vektorů 13 Platí ( v + w ) u = v u + w u. Odtud ( v + w ) u = v + w cos ( v + w, u ) u 0 = v cos ( v, u ) u 0 + w cos ( w, u ) u 0. Odtud v + w cos ( v + w, u ) = v cos ( v, u ) + w cos ( w, u ) a u ( v + w ) = u v + w cos ( v + w, u ) = = u ( v cos ( v, u ) + w cos ( w, u )) = u v + u w. Příklad Řešení: Vypočítejte u v, jestliže u = 4, v = 5, ( u, v ) = 2π/3. u v = u v cos ( u, v ) = 4 5 cos 2π 3 = 4 5 ( 1 2 ) = 10. Příklad Vypočítejte a + b, jestliže a = 4, b = 5, ( a, b ) = 2π/3. Řešení: Pomocí Věty 3 určíme, že a + b 2 = ( a + b ) ( a + b ) = a a + 2 a b + b b = a a b + b 2. Proto a + b 2 = = 21 a a + b = 21 s využitím výsledku předcházejícího příkladu. Vektorový součin vektorů Definice Vektorovým součinem vektorů u, v V (E 3 ) rozumíme vektor označovaný jako u v. Je-li alespoň jeden z vektorů nulový nebo jsou-li vektory u, v kolineární, klademe u v = o. V opačném případě požadujeme, aby měl vektor u v následující vlastnosti: 1. Vektor u v je kolmý k oběma vektorům u, v. 2. Vektory u, v, u v tvoří v tomto pořadí pozitivní trojici vektorů (platí pravidlo pravé ruky). 3. Délka vektoru u v je rovna obsahu plochy sestrojené nad vektory u, v, tj. u v = u v sin ϕ, kde ϕ = ( u, v ) 0, π je úhel vektorů u, v.

15 14 Vybrané části vektorového počtu u v u v = u v sin ϕ = P v P obsah plochy ϕ u Vektorový součin. u v směr palce v směr prstů u Pravidlo pravé ruky pro pořadí u, v, u v. Pro vektorový součin platí následující tvrzení: Věta 4. Je-li α R a u, v, w V (E 3 ), pak 1. u v = v u, 2. α ( u v) = (α u) v = u (α v), 3. ( u + v ) w = u w + v w, 4. w ( u + v ) = w u + w v. Upozornění: Některá pravidla pro násobení reálných čísel u vektorového součinu neplatí! neplatí: u v = v u (viz platné pravidlo u v = v u), neplatí: ( u v) w = u ( v w), neplatí: u v = o ( u = o nebo v = o). Poznámka: Vektorový součin nenulových vektorů lze využít při řešení následujících úloh. 1. Vyšetřování kolinearity nenulových vektorů u, v: u v = o (ϕ = 0 nebo ϕ = π). 2. Výpočet obsahu plochy sestrojené nad vektory u, v. (Výpočet obsahu trojúhelníku.) 3. Nalezení vektoru kolmého ke dvěma zadaným nenulovým vektorům.

16 1.2 Součiny vektorů 15 Příklad Vektory u = AB, v = AC mají délky u = 1, v = 3, a svírají úhel ϕ = ( u, v ) = π/4. Určete obsah trojúhelníku ABC. Řešení: P = 1 2 u v = 1 2 u v sin ϕ = sin π 4 = Smíšený součin vektorů b ` c a c v b P = b c Uvažujme nejprve pozitivní trojici vektorů b, c, a a rovnoběžnostěn, sestrojený nad těmito vektory. Objem rovnoběžnostěnu je součinem obsahu P základny a výšky v, V = P v. Obsah základny je P = b c. Výška je průmět délky vektoru a do vektoru b c, proto (viz úloha 4. skalárního součinu) v = a b c = a cos ( a, b c ) = a ( b c). (1.2) b c Objem V rovnoběžnostěnu je proto v tomto případě vyjádřen tzv. smíšeným součinem V = a ( b c) vektorů b, c, a. Přejdeme k obecnému případu. Definice Nechť a, b, c V (E 3 ). Číslo [ a, b, c ] = a ( b c) nazveme smíšeným součinem vektorů a, b, c (v tomto pořadí).

17 16 Vybrané části vektorového počtu Poznámka: Víme, že c b = b c. Proto [ a, c, b ] = a ( c b) = a ( b c) = [ a, b, c ]. Lze ukázat, že vzájemnou výměnou dvou sousedních vektorů ve vzorci pro smíšený součin se změní znaménko smíšeného součinu. Například [ a, b }{{}, c ] = [ b, a, c }{{} ] = [ b, c }{{}, a ] = [ c, b, a ] = [ c, a }{{} }{{}, b ] = [ a, c, b ] Poznámka: Z geometrického pohledu vidíme, že smíšený součin nenulových vektorů lze využít při řešení následujících úloh. 1. Výpočet objemu rovnoběžnostěnu setrojeného nad vektory a, b, c V (E 3 ): V = [ a, b, c ]. 2. Vyšetřování komplanárnosti vektorů: Nenulové vektory a, b, c jsou komplanární právě tehdy, když je [ a, b, c ] = Stanovení pozitivnosti trojice vektorů: a, b, c je pozitivní trojice vektorů, když [ a, b, c ] > 0 (platí pravidlo pravé ruky), a, b, c je negativní trojice vektorů, když [ a, b, c ] < 0 (neplatí pravidlo pravé ruky), Příklad Rovnoběžnostěn je určen vektory a, b, c a víme, že a = 2, b = 1, c = 2, ( b, c ) = π/4, vektor a svírá se základnou určenou vektory b, c úhel α = π/6. Vypočítejte objem rovnoběžnostěnu. Řešení: Víme, že V = [ a, b, c ]. Platí: [ a, b, c ] = a ( b c ) = a b c cos ( a, b c ) = 2 b c cos π 3 = = 2 2 b c = Výsledek příkladu je V = b c sin ( b, c ) = sin π 4 = 1.

18 1.2 Součiny vektorů 17 Dvojný vektorový součin vektorů Jde o vektorový součin trojice vektorů tvaru a ( b c ). Je jasné, že výsledkem je vektor d, který je kolmý k vektoru b c, a je tedy komplanární s dvojicí vektorů b, c. Dá se ukázat, že pro koeficienty lineární kombinace vektorů b, c platí: a ( b c ) = ( a c) b ( a b) c. (1.3) Na základě tohoto vztahu lze odvodit další užitečné vztahy pro sférickou trigonometrii. Uvažujme například nenulové vektory a, b, c, d. Pak vektorový součin ( a } {{ } b ) ( c d ) = e ( c d ) }{{} = ( e d) c ( e c) d = [ a, b, d ] c [ a, b, c ] d, e (1.3) a skalární součin ( a } {{ } b ) ( c d ) = e ( c d ) = c ( d e ) = c ( d ( a b )) = e = }{{} (1.3) c (( d b) a ( d a) b ) = ( a c )( d b ) ( b c )( a d ). Potřebné vztahy pro sférickou trigonometrii si uvedeme v následujícím odstavci textu. Důležité identity Věta 5. Nechť a, b, c, d, u, v, w V (E 3 ). Pak platí (1) ( a b) ( c d) = a c a d b c b d = ( a c)( b d) ( b c)( a d), (2) a ( b c) = ( a c) b ( a b) c, (3) ( a b) ( c d) = [ a, b, d] c [ a, b, c ] d, (4) [ a, b, c ] [ u, v, w ] = a u a v a w b u b v b w c u c v c w. Zajímavost: V identitě (1) položme a = c = u, b = d = v. Pak ( u v) ( u v) = ( u u)( v v) ( v u)( u v), tj.

19 18 Vybrané části vektorového počtu u v 2 = u 2 v 2 ( u v) 2 0. Odtud ihned plyne známá Cauchyova identita: ( u v) 2 u 2 v 2. Jiný způsob odvození plyne z definice skalárního součinu u v = u v cos ϕ a vlastnosti vektorového součinu u v = u v sin ϕ, protože pak ( u v) 2 = u 2 v 2 cos 2 ϕ, a součtem opět tj. u v 2 = u 2 v 2 sin 2 ϕ ( u v) 2 + u v 2 = u 2 v 2, u v 2 = u 2 v 2 ( u v) 2 0.) 1.3 Aplikace vektorového počtu ve sférické trigonometrii Sférický trojúhelník (schematicky na obrázcích). a b c b O α a c a C A γ b α a = ( b, c ) β B c A α b C γ c a β B a a b b a a c c V prostoru E 3 zvolme body O, A, B, C tak, aby vektory a = OA, b = OB, c = OC byly nekomplanární a jednotkové, tj. a = b = c = 1. Opíšeme-li ze středu O jednotkovou kouli, pak body A, B, C leží na kulové ploše poloměru jedna a tvoří vrcholy sférického trojúhelníku. Rovina procházející body O, A, B protne kulovou plochu v tzv. hlavní kružnici

20 1.3 Aplikace vektorového počtu ve sférické trigonometrii 19 a kratší část hlavní kružnice mezi body A, B vytvoří stranu c sférického trojúhelníku. Podobným způsobem vytvoříme strany a, b sférického trojúhelníku. Úhel mezi stranami b, c při vrcholu A sférického trojúhelníku označíme α. Podobně značí β, γ úhly při vrcholech B, C. Tyto úhly tvoří odchylky stěn trojbokého jehlanu určeného body O, A, B, C. Základními prvky sférického trojúhelníku rozumíme vrcholy A, B, C, strany a, b, c a úhly α, β, γ sférického trojúhelníku. Mezi prvky sférického trojúhelníku platí následující vztahy: (5) a = ( b, c ) b = ( c, a ) c = ( a, b ) (6) α = ( a b, a c) β = ( b c, b a) γ = ( c a, c b) (7) cos a = b c cos b = c a cos c = a b (8) sin a = b c sin b = c a sin c = a b (9) cos α = ( a b) ( a c) a b a c cos β = ( b c) ( b a) b c b a cos γ = ( c a) ( c b) c a c b Vzorce (5), (6) jsou patrné ze schematického znázornění na předcházejícím obrázku vlevo. Protože a = b = c = 1, zjednoduší se vzorce pro skalární i vektorový součin. Například platí a b = a b cos ( a, b ) = cos ( a, b ) = cos c, a b = a b sin ( a, b ) = sin ( a, b ) = sin c. Takto obdržíme snadno pomocí vektorů a, b, c všechny vztahy (7) a (8). Vzorce (9) jsou důsledkem (6) a vzorce pro vyjádření úhlu vektorů pomocí skalárního součinu vektorů. Sinová věta pro sférický trojúhelník Použijeme vzorec (3) Věty 5: ( a b) ( c d) = [ a, b, d] c [ a, b, c ] d.

21 20 Vybrané části vektorového počtu Vektory a, b, c jsou vektory naší konstrukce. Vzorec obsahuje vektor d, který můžeme volit libovolně. Položme nejprve ve vzorci d = a. Získáme a úpravou ( a b) ( c } {{ a } ) = [ a, b, a ] c [ a, } {{ } b, c ] a = a c =0 [ a, b, c ] a = ( a b) ( a c). V euklidovské normě pak [ a, b, c ] a = [ a, b, c ] a }{{} =1 = a b a c sin α = sin c sin b sin α }{{} (8) = ( a b) ( a c) = }{{} 6 s výsledkem [ a, b, c ] = sin c sin b sin α. (1.4) Podobným způsobem lze pokračovat volbami d = b a d = c a ukázat, že můžeme zvolit cestu cyklické záměny : a b c a, a b c a, α β γ α. Ve vzorci, se kterým budeme pracovat, postupně nahrazujeme objekty (vektory, úhly, strany) těmi objekty, na které ukazuje šipka. Vzorec (1.4) má tvar [ a, b, c ] = sin c sin b sin α. První cyklickou záměnou získáme [ b, c, a ] = sin a sin c sin β, druhou cyklickou záměnou pak [ c, a, b ] = sin b sin a sin γ. (Další cyklická záměna by zopakovala vzorec (1.4).) Výměnou pořadí vektorů ve smíšeném součinu se nejvýše mění znaménko a s ohledem na absolutní hodnotu smíšeného součinu jsou čísla na levé straně všech tří získaných vzorců stejná. Proto platí rovnosti 1 sin c sin b sin α = sin a sin c sin β = sin b sin a sin γ, sin a sin b sin c tj. (10) sin α sin a = sin β sin b = sin γ sin c vzhledem k tomu, že sin a sin b sin c 0. Tyto poslední získané rovnosti jsou matematickým zápisem sinové věty pro sférický trojúhelník. Slovním vyjádřením sinové věty je formulace: Ve sférickém trojúhelníku poměry sinů stran ku sinům protilehlých úhlů jsou si rovny.

22 1.4 Lineární prostor, báze a dimenze 21 První kosinová věta pro sférický trojúhelník Použijeme vzorec (1) Věty 5: ( a b) ( c d) = ( a c)( b d) ( b c)( a d). Opět položme ve vzorci d = a. Získáme Odtud pomocí (7) pak ( a b) ( c } {{ a } ) = ( a c)( b a) ( b c)( a }{{} a ). a c a 2 =1 b c = ( a c)( b a) + ( a b) ( a c), cos a = cos b cos c + a b a c cos α. Vzorce (8) vedou k první kosinové větě pro stranu a: (11) cos a = cos b cos c + sin b sin c cos α. Cyklickou záměnou a b c a, α β γ α získáme postupně první kosinové věty pro zbývající strany b, c : (12) cos b = cos c cos a + sin c sin a cos β, (13) cos c = cos a cos b + sin a sin b cos γ. Poznámka: Je-li γ = π/2, je sférický trojúhelník pravoúhlý a vzorec (13) dává tvar Pythagorovy věty pro pravoúhlý sférický trojúhelník: (14) cos c = cos a cos b. (Pro malé pravoúhlé sférické trojúhelníky pak platí vzorec c 2. = a 2 + b 2.) 1.4 Lineární prostor, báze a dimenze Poznámka: Pojem vektorového zaměření V (E 3 ) (včetně jeho vlastností daných Větami 1 a 2) se v matematice zobecňuje na pojem lineární prostor nebo též vektorový prostor. Geometrické vektory vytvářejí přirozený model lineárního prostoru a umožňují nám pochopení obsahu tohoto pojmu. Porovnejme v následující definici axiomy I1 I4 (zákony pro sčítání vektorů, existence nulového a opačného vektoru) s obsahem Věty 1 a axiomy II1, II2 (zákony pro násobení vektorů) spolu s III1, III2 (distributivní zákony) s obsahem Věty 2.

23 22 Vybrané části vektorového počtu Definice prostorem, když Množinu M = {x, y, z,...} nazveme (reálným) lineárním x, y M = x + y M (na M je definováno sčítání prvků), α R, x M = αx M (na M je definováno násobení skalárem α R), pro každé x, y M, α R a operace sčítání a násobení skalárem jsou pro každé x, y, z M a každé α, β R vázány axiomy: I1. x + y = y + x, I2. (x + y) + z = x + (y + z), I3. existuje nulový prvek o M takový, že x + o = x, I4. ke každému prvku x existuje opačný prvek x tak, že platí x + ( x) = o, II1. 1 x = x, II2. α(βx) = (αβ)x, III1. (α + β)x = αx + βx, III2. α(x + y) = αx + αy. Prvky x, y, z,... nazýváme vektory. Také pojmy kolinearity (nekolinearity) a komplanarity (nekomplanarity) se zobecňují v lineárním prostoru na tzv. lineární závislost (lineární nezávislost) vektorů. Jsou-li x 1, x 2,..., x n vektory a c 1, c 2,..., c n R čísla, pak vek- Definice tor x = c 1 x 1 + c 2 x c n x n nazveme lineární kombinací vektorů x 1, x 2,..., x n. Vektory x 1, x 2,..., x n nazveme lineárně nezávislé, když c 1 x 1 + c 2 x c n x n = o c 1 = c 2 = = c n = 0, tj. žádný z vektorů nelze zapsat jako lineární kombinaci vektorů zbývajících. V opačném případě jsou vektory x 1, x 2,..., x n lineárně závislé. Protože máme definován pojem lineární nezávislosti vektorů, můžeme zavést užitečné pojmy báze a dimenze lineárního prostoru. Definice Vektory x 1, x 2,..., x n tvoří bázi lineárního prostoru M, když jsou lineárně nezávislé a každý další vektor x M je již jednoznačnou lineární kombinací vektorů x 1, x 2,..., x n, tj. x M = x = c 1 x 1 + c 2 x c n x n (c 1,..., c n R). (1.5) Počet n vektorů báze se nazývá dimenze lineárního prostoru M a koeficienty c 1,..., c n R lineární kombinace (1.5) se nazývají souřadnice vektoru x v uspořádané bázi x 1, x 2,..., x n.

24 1.5 Vektory v ortonormální bázi 23 Příklad Vektorové zaměření V (E 3 ) je lineárním prostorem dimenze tři. Namísto zápisu M = {x, y, z,...} používáme zápis V (E 3 ) = { x, y, z,...}. Příklad Pravidla pro počítání s reálnými čísly nám umožňují ukázat, že množina M = R n uspořádaných n tic s prvky x = (x 1, x 2,..., x n ), y = (y 1, y 2,..., y n ) a operacemi sčítání x + y = (x 1, x 2,..., x n ) + (y 1, y 2,..., y n ) = (x 1 + y 1, x 2 + y 2,..., x n + y n ) a násobení reálným číslem αx = α(x 1, x 2,..., x n ) = (αx 1, αx 2,..., αx n ) je tzv. aritmetickým lineáním prostorem, který má dimenzi n. Nulovým prvkem je uspořádaná n tice o = (0, 0,..., 0) a opačným vektorem k vektoru x = (x 1, x 2,..., x n ) je vektor x = ( x 1, x 2,..., x n ). 1.5 Vektory v ortonormální bázi Nechť e 1, e 2, e 3 je uspořádaná pozitivní soustava vzájemně kolmých ( e i e j = 0 pro i j) a jednotkových ( e i = 1) vektorů (i, j {1, 2, 3}). Sestavíme-li pro α 1, α 2, α 3 R rovnici α 1 e 1 + α 2 e 2 + α 3 e 3 = o, pak postupné skalární násobení rovnice vektory e 1, e 2, e 3 vede k výsledku α 1 = α 2 = α 3 = 0. Například násobení vektorem e 1 dává výsledek α 1 e 1 e 1 } {{ } e 1 2 =1 +α 2 e 2 e } {{ } 1 0 +α 3 e 3 e 1 } {{ } 0 = o e }{{} 1 α 1 = 0. 0 Vektory e 1, e 2, e 3 jsou proto lineárně nezávislé, tvoří tzv. ortonormální bázi E = e 1, e 2, e 3 prostoru V (E 3 ) a každý vektor x V (E 3 ) je jejich lineární kombinací x = x 1 e 1 + x 2 e 2 + x 3 e 3 (x 1, x 2, x 3 R). Ortonormálních bází je v prostoru V (E 3 ) nekonečný počet (liší se od sebe posunutím a otočením soustavy).vždy uvažujeme jednu konkrétní soustavu, ke které se vztahují souřadnice vektoru x V (E 3 ). Připomeneme si výsledky pro skalární a vektorové součiny vektorů báze E, vyplývající z dřívějších definic.

25 24 Vybrané části vektorového počtu Lze vyjádřit skalární součiny: e 1 e 1 = e 1 2 = 1 e 1 e 2 = 0 e 1 e 3 = 0 e 2 e 1 = 0 e 2 e 2 = e 2 2 = 1 e 2 e 3 = 0 e 3 e 1 = 0 e 3 e 2 = 0 e 3 e 3 = e 3 2 = 1 podle definice ortonormální báze. Podobně vektorové součiny jsou e 3 = e 1 e 2 e 2 = e 3 e 1 e 1 = e 2 e 3 e 1 e 1 = o e 1 e 2 = e 3 e 1 e 3 = e 2 e 2 e 1 = e 3 e 2 e 2 = o e 2 e 3 = e 1 e 3 e 1 = e 2 e 3 e 2 = e 1 e 3 e 3 = o podle definice vektorového součinu (použijte v obrázku pravidlo pravé ruky ). Skalární součin v ortonormální bázi S ohledem na pravidla pro počítání se skalárním součinem (Věta 3) můžeme počítat a b = (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = Získali jsme vzorec = a 1 b 1 e 1 e } {{ } 1 +a 1 b 2 e 1 e 2 +a } {{ } 1 b 3 e 1 e 3 + } {{ } a 2 b 1 e 2 e } {{ } 1 +a 2 b 2 e 2 e 2 +a } {{ } 2 b 3 e 2 e 3 + } {{ } a 3 b 1 e 3 e } {{ } 1 +a 3 b 2 e 3 e 2 +a } {{ } 3 b 3 e 3 e 3 = a } {{ } 1 b 1 + a 2 b 2 + a 3 b a b = a 1 b 1 + a 2 b 2 + a 3 b 3 pro vektory a = a 1 e 1 +a 2 e 2 +a 3 e 3, b = b 1 e 1 +b 2 e 2 +b 3 e 3, uvažované v ortonormální bázi E.

26 1.5 Vektory v ortonormální bázi 25 Vektorový součin v ortonormální bázi Podobným způsobem lze využít Větu 5 pro výpočet vektorového součinu vektorů a = a 1 e 1 + a 2 e 2 + a 3 e 3, b = b 1 e 1 + b 2 e 2 + b 3 e 3 v ortonormální bázi E. Rozepsání vektorového součinu dává vektor a b = (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = = a 1 b 1 e 1 e } {{ } 1 +a 1 b 2 e 1 e 2 +a } {{ } 1 b 3 e 1 e } {{ } 3 o e 3 +a 2 b 1 e 2 e 1 } {{ } +a 2 b 2 e 2 e } {{ } 2 e 3 o e 2 + +a 2 b 3 e 2 e } {{ } 3 + e 1 +a 3 b 1 e 3 e } {{ } 1 +a 3 b 2 e 3 e 2 +a } {{ } 3 b 3 e 3 e } {{ } 3 e 2 e 1 o = (a 2 b 3 a 3 b 2 ) e 1 + (a 3 b 1 a 1 b 3 ) e 2 + (a 1 b 2 a 2 b 1 ) e 3. Tento výsledek můžeme zapsat jako symbolický determinant třetího řádu, který při výpočtu rozvineme podle prvního řádku: = a b = e 1 e 2 e 3 a 1 a 2 a 3 = (a 2 b 3 a 3 b 2 ) e 1 (a 1 b 3 a 3 b 1 ) e 2 + (a 1 b 2 a 2 b 1 ) e 3. b 1 b 2 b 3 Příklad Najděte vektor kolmý k vektorům a = e 1 2 e 2 + e 3, b = 2 e1 + e 2 e 3. Řešení: d = a b = e 1 e 2 e = e e e 3. Řešením úlohy je každý vektor kolineární s vektorem d. Smíšený součin v ortonormální bázi Uvažujeme smíšený součin [ a, b, c ] = a ( b c) pro vektory a = a 1 e 1 + a 2 e 2 + a 3 e 3, b = b 1 e 1 + b 2 e 2 + b 3 e 3, c = c 1 e 1 + c 2 e 2 + c 3 e 3 v ortonormální bázi E a víme, že d = b c = (b 2 c 3 b 3 c 2 ) e } {{ } 1 +(b 3 c 1 b 1 c 3 ) e } {{ } 2 +(b 1 c 2 b 2 c 1 ) e } {{ } 3 = d 1 e 1 +d 2 e 2 +d 3 e 3. d 1 d 2 d 3

27 26 Vybrané části vektorového počtu Skalární součin a ( b c) = a d = = a 1 d 1 + a 2 d 2 + a 3 d 3 = a 1 (b 2 c 3 b 3 c 2 ) + a 2 (b 3 c 3 b 1 c 3 ) + a 3 (b 1 c 2 b 2 c 1 ) = = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 a 1 b 3 c 2 a 2 b 1 c 3 a 3 b 2 c 1. Smíšený součin proto můžeme zapsat jako determinant třetího řádu [ a, b, c ] = a 1 a 2 a 3 b 1 b 2 b 3. c 1 c 2 c 3 Příklad Vypočítejte objem rovnoběžnostěnu sestrojeného nad vektory a = e 1, b = e 1 3 e 3, c = 2 e 1 + e 2 + e 3. Tvoří vektory a, b, c pozitivní trojici vektorů? Řešení: [ a, b, c ] = = = 3 > 0. Vektory a, b, c tvoří pozitivní trojici vektorů, protože [ a, b, c ] > 0. Objem rovnoběžnostěnu sestrojeného nad vektory a, b, c je [ a, b, c ] = 3 = 3 (jednotky 3 ). Příklad Jsou dány vektory a = e 1 + e 3, b = e 2 e 3, c = e 1 + e 2. Vypočítejte a ( b c) a) podle vzorce pro počítání vektorového součinu v souřadnicích báze E, b) pomocí vzorce (2) Věty 5. Řešení: a) Nejprve najdeme d = b c = e 1 e 2 e = e 1 e 2 e 3. Pak b) Vzorec má tvar a ( b c) = a d = e 1 e 2 e a ( b c) = ( a c) b ( a b) c. = e e 2 e 3. Skalární součiny a c = (1 e e e 3 ) (1 e e e 3 ) = = 1, a b = (1 e e e 3 ) (0 e e 2 1 e 3 ) = ( 1) = 1. Proto a ( b c) = b ( 1) c = b + c = e 2 e 3 + e 1 + e 2 = e e 2 e 3.

28 Kapitola 2 Některé aplikace vektorového počtu 2.1 Vektory v souřadnicové soustavě prostoru E 3 Zvolíme-li v E 3 pevný bod O a uspořádanou pozitivní ortonormální bázi e 1, e 2, e 3 ve V (E 3 ), pak dostaneme tzv. kartézský souřadnicový systém a označíme jej O; e 1, e 2, e 3. Bod O nazýváme počátkem a přímky určené bodem O a postupně vektory e 1, e 2, e 3 nazýváme souřadnicovými osami x, y, z. Je konvence označovat tuto speciální bázi jako i, j, k namísto e 1, e 2, e 3. S každým bodem A je možné uvažovat polohový vektor (rádiusvektor) r A = OA = x A i + y A j + z A k bodu A. Zápis vektoru r A = OA budeme zkracovat na tvar OA = x A i + y A j + z A k = (xa, y A, z A ), čísla x A, y A, z A nazveme souřadnicemi bodu A a píšeme A = [x A, y A, z A ]. Dvěma různými body A = [x A, y A, z A ], B = [x B, y B, z B ] je pak určen vektor AB = OB OA = (x B x A ) i+(y B y A ) j+(z B z A ) k = (x B x A, y B y A, z B z A ). z y j k O i 1 OA A = [x A, y A, z A ] x A AB OA OB O B

29 28 Některé aplikace vektorového počtu 2.2 Rovina v E 3 Skutečnost, že rovina ρ je v prostoru E 3 určena bodem A = [x A, y A, z A ] ρ a dvěma nekolineárními vektory u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) ležícími v rovině ρ budeme zapisovat ρ = [A; u, v ]. Můžeme použít několik různých přístupů k popisu roviny (stanovení podmínky, za které je obecný bod X = [x, y, z] bodem roviny ρ). Uvedeme dva z takových přístupů Libovolný bod X = [x, y, x] ρ právě, když vektory AX, u, v jsou komplanární. ρ ` X ρ ` vektory u, v leží v ρ ` v A AX X ρ u To lze vyjádřit dvěma způsoby: 1. AX = t u + s v (t, s R jsou parametry) jsou parametrické rovnice roviny ρ, které rozepisujeme do souřadnic x = x A + tu 1 + sv 1, y = y A + tu 2 + sv 2, z = z A + tu 3 + sv 3. Z těchto rovnic umíme vyčíst souřadnice bodu A ρ i vektorů u, v roviny ρ. 2. Pro komplanární vektory je smíšený součin [ AX, u, v ] = 0. Proto [ AX, u, v ] = x x A y y A z z A u 1 u 2 u 3 = v 1 v 2 v 3 = (x x A ) (u 2 v 3 u 3 v 2 ) (y y A ) (u 1 v 3 u 3 v 1 )+(z z A ) (u 1 v 2 u 2 v 1 ) = = ax + by + cz + d = 0 a výsledkem je obecná rovnice roviny ρ.

30 2.2 Rovina v E Vektor n = (n 1, n 2, n 3 ) o kolmý k rovině ρ se nazývá normálový vektor roviny ρ. Z vlastností vektorového součinu víme, že vektor u v je kolmý ke každému z vektorů u, v ležících v rovině ρ, proto je kolmý k rovině ρ. Je zřejmé, že za normálový vektor roviny můžeme volit libovolný nenulový vektor kolineární s vektorem u v. n = k( u v) ` v ρ A AX u ` ` X ρ Libovolný bod X = [x, y, x] ρ právě, když vektory AX, n jsou kolmé. Podmínku kolmosti vektorů vyjadřuje skalární součin AX n = (x x A, y y A, z z A ) (n 1, n 2, n 3 ) = = n 1 x + n 2 y + n 3 z (n 1 x A + n 2 y A + n 3 z A ) = ax + by + cz + d = 0. Vidíme, že koeficienty a, b, c obecného tvaru rovnice roviny ρ jsou souřadnice normálového vektoru roviny ρ, tj. n = (a, b, c), kde vektor n je kolineární s vektorem u v Příklad Rovina ρ má obecnou rovnici roviny x + 2z + 1 = 0. Najděte bod A a normálový vektor roviny ρ. Řešení: Obecná rovnice roviny ρ má tvar ax + by + cz + d = 0, kde normálový vektor n = (a, b, c). Zadání úlohy proto napíšeme ve tvaru 1x + 0y + 2z + 1 = 0 a proto n = (1, 0, 2). Bodem roviny je libovolný bod A = [x A, y A, z A ], který splňuje rovnici x A + 2z A + 1 = 0. Protože rovnice nezávisí na y, lze volit pro jednoduchost y A = 0 a například volbou x A = 1 získáme z rovnice z A = 0. Bod A = [ 1, 0, 0] ρ. Poznámka: Rovnice roviny x + 2z + 1 = 0 posledního příkladu nezávisí na y, pro každé y je rovnice stejná, proto je rovina rovnoběžná

31 30 Některé aplikace vektorového počtu se souřadnicovou osou y. To je vidět také na normálovém vektoru n = (1, 0, 2), který má druhou souřadnici nulovou (situaci graficky znázorněte). Podobně rovnice x = 3 je v E 3 obecnou rovnicí roviny, která je rovnoběžná se souřadnicovými osami y i z. Příklad Body A = [1, 1, 1], B = [0, 1, 2], C = [ 2, 3, 1] jsou body roviny ρ. Najděte obecnou rovnici roviny ρ a) Užitím vektorového součinu vektorů. b) Užitím smíšeného součinu vektorů. Řešení: Rovina ρ = [A; u, v ], kde A = [1, 1, 1] a vektory u = AB = ( 1, 0, 1), v = AC = ( 3, 2, 2) jsou nekomplanární. i j k a) Vektor u v = = 2 i 5 j 2 k = ( 2, 5, 2) je kolineární s normálovým vektorem roviny. Proto můžeme zvolit například n = (a, b, c) = (2, 5, 2). Bod A = [1, 1, 1] ρ : 2x + 5y + 2z + d = 0. Proto je d = 9 a hledaná rovnice je ρ : 2x + 5y + 2z 9 = 0. b) Vektory AX, u, v jsou pro body X ρ komplanární. Proto smíšený součin [ AX, u, v ] = 0, tj. x 1 y 1 z = 2(x 1) 5(y 1) 2(z 1) = 0. Úpravou získané rovnice obdržíme výsledek ρ : 2x + 5y + 2z 9 = 0. Cvičení Ukažte, že 3x + 6y + 2z 13 = 0 je obecnou rovnicí roviny, která vytíná na souřadnicových osách úseky v poměru 2 : 1 : 3 a prochází bodem A = [1, 2, 1]. Jaké jsou délky úseků na osách? Návod: Situaci si graficky znázorněte. Průsečíky hledané roviny se souřadnicovými osami jsou body A = [2q, 0, 0], B = [0, q, 0], C = [0, 0, 3q], kde q = 0 je délka úseku. Rovina je proto určena například bodem A a vektory u = AB, v = AC. Jedním z výpočetních postupů předcházejícího příkladu obdržíme požadovaný výsledek.

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008 Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více