FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

2 1 0 Typeset by L A TEX 2ε 0 c V. Tryhuk, O. Dlouhý 2004

3 2

4 Obsah Úvod 5 Cíle Požadované znalosti Doba potřebná ke studiu Klíčová slova Vybrané části vektorového počtu Operace s geometrickými vektory ve V (E 3 ) Poznámka k označení Lineární nezávislost vektorů Součiny vektorů Skalární součin vektorů Vektorový součin vektorů Smíšený součin vektorů Dvojný vektorový součin vektorů Důležité identity Aplikace vektorového počtu ve sférické trigonometrii Sinová věta pro sférický trojúhelník První kosinová věta pro sférický trojúhelník Lineární prostor, báze a dimenze Vektory v ortonormální bázi Skalární součin v ortonormální bázi Vektorový součin v ortonormální bázi Smíšený součin v ortonormální bázi Některé aplikace vektorového počtu Vektory v souřadnicové soustavě prostoru E Rovina v E Přímka v E Úlohy metrické Vzdálenost bodu od roviny Vzdálenost bodu od přímky Úhel dvou rovin

5 4 OBSAH Úhel dvou přímek Úhel přímky a roviny Úlohy polohy Vzájemná poloha dvou rovin Vzájemná poloha přímky a roviny Vzájemná poloha dvou přímek Příčky a osa mimoběžek Vlastní čísla a vlastní vektory Rejstřík 53 Literatura 53

6 Úvod Cíle Cílem našeho textu není přesné formální vybudování základů vektorové algebry a analytické geometrie v trojrozměrném prostoru. Naopak, chceme pouze vytvořit doplněk textů již napsaných pro studenty kombinované formy studia, který bude reagovat na potřeby studijního programu geodézie a kartografie. V úvodní části modulu se budeme věnovat vektorové algebře, v níž zvolíme poněkud odlišný přístup od modulu BA01 M02 určeného pro obecné zaměření kombinované formy studia. Dáme přednost geometrickému a fyzikálnímu popisu vektorových operací, které navíc nebudeme studovat od začátku v ortonormální bázi. V odpovídajících číselně vyjádřených odstavcích textu jsou stanoveny následující cíle: 1.1 Připomenout základní operace s geometrickými vektory. Je potřebné pochopit geometrickou interpretaci pojmů vektory kolineární (nekolineární), vektory komplanární (nekomplanární) a naučit se s nimi pracovat. 1.2 Jedná se o nejdůležitější odstavec celého modulu. Je potřebné pochopit skalární, vektorový i smíšený součin vektorů včetně vytvoření geometrické představy o významu a možnostech použití těchto pojmů. Jedná se o základní stavební prvky dalších následujících odstavců modulu. 1.3 Odstavec obsahuje základní potřebné pojmy sférické trigonometrie, se kterými je potřebné se do detailů seznámit. Odvozování vzorců není samoúčelné, je zkouškou pochopení obsahu odstavce Pojmy používané v prvních třech odstavcích zobecníme na úroveň, která se standardně používá nejen v matematické literatuře. Potřebné je vytvořit si představu o obsahu pojmu lineární prostor a především pochopit pojmy báze a dimenze lineárního prostoru. 1.5 Studijní zaměření geodézie a kartografie pracuje s vektory nezávisle na volbě souřadnicových soustav. V odstavci se seznámíte s ortonormálními bázemi ve třírozměrném prostoru a aritmetikou počítání s vektory v ortonormální bázi.

7 6 OBSAH 1.6 Cílem odstavce je prohloubit pochopení analytické geometrie v prostoru. Důsledně jsou aplikovány skalární, vektorový a smíšený součin vektorů na metodiku řešení úloh i výpočetní postupy. Přístup se odlišuje od pojetí používaného na středních školách. Pečlivě si proto promyslete a propočítejte i řešené příklady tohoto odstavce. 1.7 Prostudujte si motivační příklad, který pro vás může být v budoucnu užitečný. Odstavec obsahuje základní pojmy nezbytné pro zvládnutí výpočtu vlastních čísel a vlastních vektorů matice. Je potřebné zvládnout techniku výpočtu. V jednom z dalších modulů se seznámíte s rozklady polynomů, které vám umožní zvolit si i jinou metodiku řešení příkladů. Požadované znalosti Znalost geometrických vektorů a základů analytické geometrie v prostoru v rozsahu látky probírané na středních školách. Doba potřebná ke studiu Čas potřebný ke zvládnutí tohoto modulu je odhadnut pro průměrného studenta jako hodnota nejméně?? hodin. Klíčová slova Geometrické vektory, skalární součin vektorů, vektorový součin vektorů, smíšený součin vektorů, lineární nezávislost vektorů, reálný lineární prostor, sférický trojúhelník, souřadnice vektoru, přímka v prostoru, rovina v prostoru, úlohy polohy, úlohy metrické. Na konci modulu zařazen Rejstřík, ve kterém jsou další klíčová slova přehledně uspořádána i s odkazy na odpovídající stránky.

8 Kapitola 1 Vybrané části vektorového počtu 1.1 Operace s geometrickými vektory ve V (E 3 ) Poznámka k označení Aniž bychom se zabývali přesnou definicí afinního prostoru A 3, budeme nejprve studovat tzv. afinní vlastnosti euklidovského prostoru E 3. Euklidovským prostorem E 3 přitom budeme rozumět bodový prostor, v němž: každému bodu A E 3 je jednoznačně přiřazena uspořádaná trojice [a 1, a 2, a 3 ] reálných čísel, které nazýváme souřadnicemi bodu A a píšeme A = [a 1, a 2, a 3 ], každým dvěma bodům A, B E 3, kde A = [a 1, a 2, a 3 ], B = [b 1, b 2, b 3 ], je přiřazena euklidovská vzdálenost ρ(a, B) bodů A, B, pro kterou platí ρ(a, B) = 3 i=1 (a i b i ) 2. Každé uspořádané dvojici bodů (A, B) přiřadíme orientovanou úsečku s počátečním bodem A a koncovým bodem B a budeme ji nazývat umístěním vektoru u = AB. Můžeme pak také psát B = A + u nebo B A = u. Přitom vektorem u budeme rozumět třídu orientovaných úseček, které mají týž směr a velikost. Tuto vlastnost můžeme také popsat tak, že orientované úsečky AB, CD patří do jedné třídy, jestliže úsečky (A, D) a (B, C) mají týž střed. B à D A C

9 8 Vybrané části vektorového počtu Množinu všech vektorů pak nazýváme vektorovým zaměřením prostoru E 3 a označujeme ji V (E 3 ). Pro takto zavedené pojmy platí: a) Pro libovolný bod A E 3 a libovolný vektor u V (E 3 ) existuje jediný bod B E 3 takový, že AB= u. b) Je-li AB= u, BC= v, pak AC= u + v se nazývá součet vektorů u, v. B AB= u BC= v A 3 C AC= u + v Je-li u = AA, pak vektor u se nazývá vektor nulový, značí se o a má délku rovnou nule. Je-li u = AB, pak vektor u = BA (změněná orientace) se nazývá vektor opačný k vektoru u. Úhlem nenulových vektorů u = AB, v = AC nazýváme úhel ϕ polopřímek AB, AC měřený v mezích 0 ϕ π. Poznámka: Prostor bodů v trojrozměrném prostoru E 3 spolu s vektorovým zaměřením V (E 3 ), v nichž platí a) a b) se často nazývá afinním prostorem a značí se A 3. Věta 1. Pro libovolné tři vektory u, v, w ve V (E 3 ) platí 1. u + v = v + u, 2. ( u + v ) + w = u + ( v + w ), 3. u + o = u, 4. ke každému vektoru u existuje opačný vektor u tak, že u + ( u ) = o.

10 1.1 Operace s geometrickými vektory ve V (E 3 ) 9 Součin vektoru s reálným číslem Má-li u = AB délku u a je-li γ R libovolné číslo, pak klademe γ u = o, pokud γ = 0 nebo u = o, γ u = v, kde u o, v = γ u a vektor v je souhlasně (nesouhlasně) rovnoběžný s vektorem u v případě γ > 0 (γ < 0.) A u B v = AC= γ u = 2 u pro γ = 2 > 1 > 0, v = 2 u C Věta 2. Nechť α, β R jsou libovolná čísla a u, v libovolné vektory ve V (E 3 ). Pak platí 1. α(β u) = αβ u, 2. α( u + v ) = α u + α v, 3. (α + β) u = α u + β u, 4. 1 u = u. Lineární nezávislost vektorů Poznámka: Všimněme si, že pro vektory z V 3 = V (E 3 ) platí: (ι) u, v V 3 = u + v V 3 (součet vektorů z V 3 je vektor ve V 3 ). (ιι) u V 3, α R = α u V 3 (násobek vektoru z V 3 je vektor ve V 3 ). (ιιι) Operace sčítání vektorů a násobení vektoru reálným číslem mají vlastnosti uvedené ve větách 1, 2. Vektory kolineární (nekolineární) Nenulové vektory u, v, pro které existují taková umístění, že leží na jedné přímce, nazýváme kolineární vektory. Nulový vektor považujeme za kolineární s každým vektorem. Pro kolineární vektory u, v, platí: a) Je-li u o, pak existuje právě jedno číslo k R takové, že v = k u.

11 10 Vybrané části vektorového počtu b) Rovnice k u + l v = o je splněna alespoň pro jednu dvojici čísel k, l R, přičemž čísla k, l nejsou současně rovna nule. Řekneme naopak, že vektory u, v jsou nekolineární, když rovnice k u+l v = o je splněna pouze tehdy, když k = 0 a současně l = 0. Příklad Vektory x 1, x 2 = 2 x 1 jsou kolineární, protože vektor x 2 je násobkem vektoru x 1. V jiném pohledu, platí rovnice 2 x 1 + x 2 = o a rovnice k x 1 + l x 2 = o má nenulové řešení k = 2, l = 1. Příklad Vektory x 1, x 2 jsou nekolineární. Zjistěte, zda jsou vektory u = x 1 + x 2, v = x 1 x 2, rovněž nekolineární. Řešení: Předpokládejme, že existuje nenulové reálné číslo k takové, že u = k v, tj. vektory u, v jsou kolineární. Pak platí x 1 + x 2 = k( x 1 x 2 ) a odtud (1 k) x 1 + (1 + k) x 2 = o. Protože vektory x 1, x 2 jsou nekolineární, musí platit 1 k = 0 a současně 1 + k = 0, což není možné. Neplatí proto náš předpoklad a vektory u, v jsou nekolineární. Vektory komplanární (nekomplanární) Řekneme, že nenulové vektory u, v, w jsou komplanární, jestliže existují taková jejich umístění, že leží v jedné rovině. Pokud je některý z vektorů u, v, w nulovým vektorem, pak tuto trojici vektorů považujeme také za komplanární. Pro komplanární vektory u, v, w platí: a) Jsou-li u, v nekolineární vektory, pak existuje právě jedna dvojice čísel k, l R taková, že w = k u + l v. b) Rovnice k u + l v + m w = o je splněna alespoň pro jednu trojici čísel k, l, m R, přičemž čísla k, l, m nejsou současně rovna nule. Trojici vektorů u, v, w nazveme nekomplanární, když je rovnice k u + l v + m w = o splněna pouze pro k = l = m = 0. Příklad Vektory x 1, x 2, x 3 jsou nekomplanární. Zjistěte, zda jsou vektory u = x 1 + x 2 + x 3, v = x 1 x 2 + x 3, w = x x 2 + x 3, rovněž nekomplanární. Řešení: Sestavíme rovnici α 1 u + α 2 v + α 3 w = o. Dosadíme-li do rovnice vyjádření vektorů u, v, w, máme α 1 ( x 1 + x 2 + x 3 ) + α 2 ( x 1 x 2 + x 3 ) + α 3 ( x x 2 + x 3 ) = = (α 1 + α 2 + α 3 ) x 1 + (α 1 α 2 + 3α 3 ) x 2 + (α 1 + α 2 + α 3 ) x 3 = o a c 1 = α 1 + α 2 + α 3 = 0, c 2 = α 1 α 2 + 3α 3 = 0, c 3 = α 1 + α 2 + α 3 = 0, protože x 1, x 2, x 3 jsou podle zadání úlohy nekomplanární vektory. Soustava rovnic

12 1.2 Součiny vektorů 11 α 1 + α 2 + α 3 = 0, α 1 α 2 + 3α 3 = 0 má obecné řešení α 1 = 2t, α 2 = α 3 = t R. Pro t 0, například t = 1, můžeme vybrat nenulové řešení α 1 = 2, α 2 = α 3 = 1. Vektory u, v, w jsou proto komplanární a platí rovnice 2 u + v + w = o. Proto je w = 2 u v lineární kombinací vektorů u, v, jak se můžeme přesvědčit provedením zkoušky. Nekolineární vektory x 1, x 2 x 2 x 1 nelze umístit na jedné přímce. Nekomplanární vektory x 1, x 2, x 3 x 3 x 2 x 1 nelze umístit do jedné roviny. 1.2 Součiny vektorů Skalární součin vektorů Definice Skalárním součinem nenulových vektorů u, v V (E 3 ) rozumíme číslo (skalár) u v = u v cos ϕ, kde ϕ = ( u, v ) 0, π je úhel vektorů u, v a u, v jsou jejich délky. Je-li alespoň jeden z vektorů nulový, klademe u v = 0. Pro skalární součin platí následující tvrzení: Věta 3. Je-li α R a u, v, w V (E 3 ), pak 1. u v = v u, 2. u ( v + w ) = u v + u w, 3. (α u) v = α( u v), 4. u u 0 ( u u = 0 u = o). Poznámka: Skalární součin nenulových vektorů lze využít při řešení následujících úloh. 1. Vyšetřování kolmosti nenulových vektorů: Platí přímo z definice, že u v = 0 ϕ = π 2.

13 12 Vybrané části vektorového počtu 2. Výpočet délky nenulového vektoru: u = u u = u. Číslo u = u u se nazývá euklidovská délka vektoru u. 3. Výpočet úhlu nenulových vektorů: Přímo ze vzorce obdržíme vztah cos ϕ = u v u v, ϕ 0, π. 4. Nalezení kolmého průmětu v u vektoru v do vektoru u : v u = u v u. (1.1) u 2 Z pravoúhlého troúhelníku v obrázku v v ϕ u v u můžeme pro u 0 = u psát: u v u = v cos ϕ u 0 = v u v u v u u = u v u 2 u. Všimněte si, že uvedený vztah platí i pro ϕ ( π, π), neboť pak cos ϕ < 0 2 a dojde ke změně orientace jednotkového vektoru u 0 na opačný vektor. 5. Práce A, kterou vykoná síla F stálého směru a velikosti po přímé dráze s je dána vztahem A = F s. Poznámka: Pomocí kolmých průmětů vektorů se můžeme lehce přesvědčit o vlastnosti 2 ve větě 3. v + w w v u v u w u

14 1.2 Součiny vektorů 13 Platí ( v + w ) u = v u + w u. Odtud ( v + w ) u = v + w cos ( v + w, u ) u 0 = v cos ( v, u ) u 0 + w cos ( w, u ) u 0. Odtud v + w cos ( v + w, u ) = v cos ( v, u ) + w cos ( w, u ) a u ( v + w ) = u v + w cos ( v + w, u ) = = u ( v cos ( v, u ) + w cos ( w, u )) = u v + u w. Příklad Řešení: Vypočítejte u v, jestliže u = 4, v = 5, ( u, v ) = 2π/3. u v = u v cos ( u, v ) = 4 5 cos 2π 3 = 4 5 ( 1 2 ) = 10. Příklad Vypočítejte a + b, jestliže a = 4, b = 5, ( a, b ) = 2π/3. Řešení: Pomocí Věty 3 určíme, že a + b 2 = ( a + b ) ( a + b ) = a a + 2 a b + b b = a a b + b 2. Proto a + b 2 = = 21 a a + b = 21 s využitím výsledku předcházejícího příkladu. Vektorový součin vektorů Definice Vektorovým součinem vektorů u, v V (E 3 ) rozumíme vektor označovaný jako u v. Je-li alespoň jeden z vektorů nulový nebo jsou-li vektory u, v kolineární, klademe u v = o. V opačném případě požadujeme, aby měl vektor u v následující vlastnosti: 1. Vektor u v je kolmý k oběma vektorům u, v. 2. Vektory u, v, u v tvoří v tomto pořadí pozitivní trojici vektorů (platí pravidlo pravé ruky). 3. Délka vektoru u v je rovna obsahu plochy sestrojené nad vektory u, v, tj. u v = u v sin ϕ, kde ϕ = ( u, v ) 0, π je úhel vektorů u, v.

15 14 Vybrané části vektorového počtu u v u v = u v sin ϕ = P v P obsah plochy ϕ u Vektorový součin. u v směr palce v směr prstů u Pravidlo pravé ruky pro pořadí u, v, u v. Pro vektorový součin platí následující tvrzení: Věta 4. Je-li α R a u, v, w V (E 3 ), pak 1. u v = v u, 2. α ( u v) = (α u) v = u (α v), 3. ( u + v ) w = u w + v w, 4. w ( u + v ) = w u + w v. Upozornění: Některá pravidla pro násobení reálných čísel u vektorového součinu neplatí! neplatí: u v = v u (viz platné pravidlo u v = v u), neplatí: ( u v) w = u ( v w), neplatí: u v = o ( u = o nebo v = o). Poznámka: Vektorový součin nenulových vektorů lze využít při řešení následujících úloh. 1. Vyšetřování kolinearity nenulových vektorů u, v: u v = o (ϕ = 0 nebo ϕ = π). 2. Výpočet obsahu plochy sestrojené nad vektory u, v. (Výpočet obsahu trojúhelníku.) 3. Nalezení vektoru kolmého ke dvěma zadaným nenulovým vektorům.

16 1.2 Součiny vektorů 15 Příklad Vektory u = AB, v = AC mají délky u = 1, v = 3, a svírají úhel ϕ = ( u, v ) = π/4. Určete obsah trojúhelníku ABC. Řešení: P = 1 2 u v = 1 2 u v sin ϕ = sin π 4 = Smíšený součin vektorů b ` c a c v b P = b c Uvažujme nejprve pozitivní trojici vektorů b, c, a a rovnoběžnostěn, sestrojený nad těmito vektory. Objem rovnoběžnostěnu je součinem obsahu P základny a výšky v, V = P v. Obsah základny je P = b c. Výška je průmět délky vektoru a do vektoru b c, proto (viz úloha 4. skalárního součinu) v = a b c = a cos ( a, b c ) = a ( b c). (1.2) b c Objem V rovnoběžnostěnu je proto v tomto případě vyjádřen tzv. smíšeným součinem V = a ( b c) vektorů b, c, a. Přejdeme k obecnému případu. Definice Nechť a, b, c V (E 3 ). Číslo [ a, b, c ] = a ( b c) nazveme smíšeným součinem vektorů a, b, c (v tomto pořadí).

17 16 Vybrané části vektorového počtu Poznámka: Víme, že c b = b c. Proto [ a, c, b ] = a ( c b) = a ( b c) = [ a, b, c ]. Lze ukázat, že vzájemnou výměnou dvou sousedních vektorů ve vzorci pro smíšený součin se změní znaménko smíšeného součinu. Například [ a, b }{{}, c ] = [ b, a, c }{{} ] = [ b, c }{{}, a ] = [ c, b, a ] = [ c, a }{{} }{{}, b ] = [ a, c, b ] Poznámka: Z geometrického pohledu vidíme, že smíšený součin nenulových vektorů lze využít při řešení následujících úloh. 1. Výpočet objemu rovnoběžnostěnu setrojeného nad vektory a, b, c V (E 3 ): V = [ a, b, c ]. 2. Vyšetřování komplanárnosti vektorů: Nenulové vektory a, b, c jsou komplanární právě tehdy, když je [ a, b, c ] = Stanovení pozitivnosti trojice vektorů: a, b, c je pozitivní trojice vektorů, když [ a, b, c ] > 0 (platí pravidlo pravé ruky), a, b, c je negativní trojice vektorů, když [ a, b, c ] < 0 (neplatí pravidlo pravé ruky), Příklad Rovnoběžnostěn je určen vektory a, b, c a víme, že a = 2, b = 1, c = 2, ( b, c ) = π/4, vektor a svírá se základnou určenou vektory b, c úhel α = π/6. Vypočítejte objem rovnoběžnostěnu. Řešení: Víme, že V = [ a, b, c ]. Platí: [ a, b, c ] = a ( b c ) = a b c cos ( a, b c ) = 2 b c cos π 3 = = 2 2 b c = Výsledek příkladu je V = b c sin ( b, c ) = sin π 4 = 1.

18 1.2 Součiny vektorů 17 Dvojný vektorový součin vektorů Jde o vektorový součin trojice vektorů tvaru a ( b c ). Je jasné, že výsledkem je vektor d, který je kolmý k vektoru b c, a je tedy komplanární s dvojicí vektorů b, c. Dá se ukázat, že pro koeficienty lineární kombinace vektorů b, c platí: a ( b c ) = ( a c) b ( a b) c. (1.3) Na základě tohoto vztahu lze odvodit další užitečné vztahy pro sférickou trigonometrii. Uvažujme například nenulové vektory a, b, c, d. Pak vektorový součin ( a } {{ } b ) ( c d ) = e ( c d ) }{{} = ( e d) c ( e c) d = [ a, b, d ] c [ a, b, c ] d, e (1.3) a skalární součin ( a } {{ } b ) ( c d ) = e ( c d ) = c ( d e ) = c ( d ( a b )) = e = }{{} (1.3) c (( d b) a ( d a) b ) = ( a c )( d b ) ( b c )( a d ). Potřebné vztahy pro sférickou trigonometrii si uvedeme v následujícím odstavci textu. Důležité identity Věta 5. Nechť a, b, c, d, u, v, w V (E 3 ). Pak platí (1) ( a b) ( c d) = a c a d b c b d = ( a c)( b d) ( b c)( a d), (2) a ( b c) = ( a c) b ( a b) c, (3) ( a b) ( c d) = [ a, b, d] c [ a, b, c ] d, (4) [ a, b, c ] [ u, v, w ] = a u a v a w b u b v b w c u c v c w. Zajímavost: V identitě (1) položme a = c = u, b = d = v. Pak ( u v) ( u v) = ( u u)( v v) ( v u)( u v), tj.

19 18 Vybrané části vektorového počtu u v 2 = u 2 v 2 ( u v) 2 0. Odtud ihned plyne známá Cauchyova identita: ( u v) 2 u 2 v 2. Jiný způsob odvození plyne z definice skalárního součinu u v = u v cos ϕ a vlastnosti vektorového součinu u v = u v sin ϕ, protože pak ( u v) 2 = u 2 v 2 cos 2 ϕ, a součtem opět tj. u v 2 = u 2 v 2 sin 2 ϕ ( u v) 2 + u v 2 = u 2 v 2, u v 2 = u 2 v 2 ( u v) 2 0.) 1.3 Aplikace vektorového počtu ve sférické trigonometrii Sférický trojúhelník (schematicky na obrázcích). a b c b O α a c a C A γ b α a = ( b, c ) β B c A α b C γ c a β B a a b b a a c c V prostoru E 3 zvolme body O, A, B, C tak, aby vektory a = OA, b = OB, c = OC byly nekomplanární a jednotkové, tj. a = b = c = 1. Opíšeme-li ze středu O jednotkovou kouli, pak body A, B, C leží na kulové ploše poloměru jedna a tvoří vrcholy sférického trojúhelníku. Rovina procházející body O, A, B protne kulovou plochu v tzv. hlavní kružnici

20 1.3 Aplikace vektorového počtu ve sférické trigonometrii 19 a kratší část hlavní kružnice mezi body A, B vytvoří stranu c sférického trojúhelníku. Podobným způsobem vytvoříme strany a, b sférického trojúhelníku. Úhel mezi stranami b, c při vrcholu A sférického trojúhelníku označíme α. Podobně značí β, γ úhly při vrcholech B, C. Tyto úhly tvoří odchylky stěn trojbokého jehlanu určeného body O, A, B, C. Základními prvky sférického trojúhelníku rozumíme vrcholy A, B, C, strany a, b, c a úhly α, β, γ sférického trojúhelníku. Mezi prvky sférického trojúhelníku platí následující vztahy: (5) a = ( b, c ) b = ( c, a ) c = ( a, b ) (6) α = ( a b, a c) β = ( b c, b a) γ = ( c a, c b) (7) cos a = b c cos b = c a cos c = a b (8) sin a = b c sin b = c a sin c = a b (9) cos α = ( a b) ( a c) a b a c cos β = ( b c) ( b a) b c b a cos γ = ( c a) ( c b) c a c b Vzorce (5), (6) jsou patrné ze schematického znázornění na předcházejícím obrázku vlevo. Protože a = b = c = 1, zjednoduší se vzorce pro skalární i vektorový součin. Například platí a b = a b cos ( a, b ) = cos ( a, b ) = cos c, a b = a b sin ( a, b ) = sin ( a, b ) = sin c. Takto obdržíme snadno pomocí vektorů a, b, c všechny vztahy (7) a (8). Vzorce (9) jsou důsledkem (6) a vzorce pro vyjádření úhlu vektorů pomocí skalárního součinu vektorů. Sinová věta pro sférický trojúhelník Použijeme vzorec (3) Věty 5: ( a b) ( c d) = [ a, b, d] c [ a, b, c ] d.

21 20 Vybrané části vektorového počtu Vektory a, b, c jsou vektory naší konstrukce. Vzorec obsahuje vektor d, který můžeme volit libovolně. Položme nejprve ve vzorci d = a. Získáme a úpravou ( a b) ( c } {{ a } ) = [ a, b, a ] c [ a, } {{ } b, c ] a = a c =0 [ a, b, c ] a = ( a b) ( a c). V euklidovské normě pak [ a, b, c ] a = [ a, b, c ] a }{{} =1 = a b a c sin α = sin c sin b sin α }{{} (8) = ( a b) ( a c) = }{{} 6 s výsledkem [ a, b, c ] = sin c sin b sin α. (1.4) Podobným způsobem lze pokračovat volbami d = b a d = c a ukázat, že můžeme zvolit cestu cyklické záměny : a b c a, a b c a, α β γ α. Ve vzorci, se kterým budeme pracovat, postupně nahrazujeme objekty (vektory, úhly, strany) těmi objekty, na které ukazuje šipka. Vzorec (1.4) má tvar [ a, b, c ] = sin c sin b sin α. První cyklickou záměnou získáme [ b, c, a ] = sin a sin c sin β, druhou cyklickou záměnou pak [ c, a, b ] = sin b sin a sin γ. (Další cyklická záměna by zopakovala vzorec (1.4).) Výměnou pořadí vektorů ve smíšeném součinu se nejvýše mění znaménko a s ohledem na absolutní hodnotu smíšeného součinu jsou čísla na levé straně všech tří získaných vzorců stejná. Proto platí rovnosti 1 sin c sin b sin α = sin a sin c sin β = sin b sin a sin γ, sin a sin b sin c tj. (10) sin α sin a = sin β sin b = sin γ sin c vzhledem k tomu, že sin a sin b sin c 0. Tyto poslední získané rovnosti jsou matematickým zápisem sinové věty pro sférický trojúhelník. Slovním vyjádřením sinové věty je formulace: Ve sférickém trojúhelníku poměry sinů stran ku sinům protilehlých úhlů jsou si rovny.

22 1.4 Lineární prostor, báze a dimenze 21 První kosinová věta pro sférický trojúhelník Použijeme vzorec (1) Věty 5: ( a b) ( c d) = ( a c)( b d) ( b c)( a d). Opět položme ve vzorci d = a. Získáme Odtud pomocí (7) pak ( a b) ( c } {{ a } ) = ( a c)( b a) ( b c)( a }{{} a ). a c a 2 =1 b c = ( a c)( b a) + ( a b) ( a c), cos a = cos b cos c + a b a c cos α. Vzorce (8) vedou k první kosinové větě pro stranu a: (11) cos a = cos b cos c + sin b sin c cos α. Cyklickou záměnou a b c a, α β γ α získáme postupně první kosinové věty pro zbývající strany b, c : (12) cos b = cos c cos a + sin c sin a cos β, (13) cos c = cos a cos b + sin a sin b cos γ. Poznámka: Je-li γ = π/2, je sférický trojúhelník pravoúhlý a vzorec (13) dává tvar Pythagorovy věty pro pravoúhlý sférický trojúhelník: (14) cos c = cos a cos b. (Pro malé pravoúhlé sférické trojúhelníky pak platí vzorec c 2. = a 2 + b 2.) 1.4 Lineární prostor, báze a dimenze Poznámka: Pojem vektorového zaměření V (E 3 ) (včetně jeho vlastností daných Větami 1 a 2) se v matematice zobecňuje na pojem lineární prostor nebo též vektorový prostor. Geometrické vektory vytvářejí přirozený model lineárního prostoru a umožňují nám pochopení obsahu tohoto pojmu. Porovnejme v následující definici axiomy I1 I4 (zákony pro sčítání vektorů, existence nulového a opačného vektoru) s obsahem Věty 1 a axiomy II1, II2 (zákony pro násobení vektorů) spolu s III1, III2 (distributivní zákony) s obsahem Věty 2.

23 22 Vybrané části vektorového počtu Definice prostorem, když Množinu M = {x, y, z,...} nazveme (reálným) lineárním x, y M = x + y M (na M je definováno sčítání prvků), α R, x M = αx M (na M je definováno násobení skalárem α R), pro každé x, y M, α R a operace sčítání a násobení skalárem jsou pro každé x, y, z M a každé α, β R vázány axiomy: I1. x + y = y + x, I2. (x + y) + z = x + (y + z), I3. existuje nulový prvek o M takový, že x + o = x, I4. ke každému prvku x existuje opačný prvek x tak, že platí x + ( x) = o, II1. 1 x = x, II2. α(βx) = (αβ)x, III1. (α + β)x = αx + βx, III2. α(x + y) = αx + αy. Prvky x, y, z,... nazýváme vektory. Také pojmy kolinearity (nekolinearity) a komplanarity (nekomplanarity) se zobecňují v lineárním prostoru na tzv. lineární závislost (lineární nezávislost) vektorů. Jsou-li x 1, x 2,..., x n vektory a c 1, c 2,..., c n R čísla, pak vek- Definice tor x = c 1 x 1 + c 2 x c n x n nazveme lineární kombinací vektorů x 1, x 2,..., x n. Vektory x 1, x 2,..., x n nazveme lineárně nezávislé, když c 1 x 1 + c 2 x c n x n = o c 1 = c 2 = = c n = 0, tj. žádný z vektorů nelze zapsat jako lineární kombinaci vektorů zbývajících. V opačném případě jsou vektory x 1, x 2,..., x n lineárně závislé. Protože máme definován pojem lineární nezávislosti vektorů, můžeme zavést užitečné pojmy báze a dimenze lineárního prostoru. Definice Vektory x 1, x 2,..., x n tvoří bázi lineárního prostoru M, když jsou lineárně nezávislé a každý další vektor x M je již jednoznačnou lineární kombinací vektorů x 1, x 2,..., x n, tj. x M = x = c 1 x 1 + c 2 x c n x n (c 1,..., c n R). (1.5) Počet n vektorů báze se nazývá dimenze lineárního prostoru M a koeficienty c 1,..., c n R lineární kombinace (1.5) se nazývají souřadnice vektoru x v uspořádané bázi x 1, x 2,..., x n.

24 1.5 Vektory v ortonormální bázi 23 Příklad Vektorové zaměření V (E 3 ) je lineárním prostorem dimenze tři. Namísto zápisu M = {x, y, z,...} používáme zápis V (E 3 ) = { x, y, z,...}. Příklad Pravidla pro počítání s reálnými čísly nám umožňují ukázat, že množina M = R n uspořádaných n tic s prvky x = (x 1, x 2,..., x n ), y = (y 1, y 2,..., y n ) a operacemi sčítání x + y = (x 1, x 2,..., x n ) + (y 1, y 2,..., y n ) = (x 1 + y 1, x 2 + y 2,..., x n + y n ) a násobení reálným číslem αx = α(x 1, x 2,..., x n ) = (αx 1, αx 2,..., αx n ) je tzv. aritmetickým lineáním prostorem, který má dimenzi n. Nulovým prvkem je uspořádaná n tice o = (0, 0,..., 0) a opačným vektorem k vektoru x = (x 1, x 2,..., x n ) je vektor x = ( x 1, x 2,..., x n ). 1.5 Vektory v ortonormální bázi Nechť e 1, e 2, e 3 je uspořádaná pozitivní soustava vzájemně kolmých ( e i e j = 0 pro i j) a jednotkových ( e i = 1) vektorů (i, j {1, 2, 3}). Sestavíme-li pro α 1, α 2, α 3 R rovnici α 1 e 1 + α 2 e 2 + α 3 e 3 = o, pak postupné skalární násobení rovnice vektory e 1, e 2, e 3 vede k výsledku α 1 = α 2 = α 3 = 0. Například násobení vektorem e 1 dává výsledek α 1 e 1 e 1 } {{ } e 1 2 =1 +α 2 e 2 e } {{ } 1 0 +α 3 e 3 e 1 } {{ } 0 = o e }{{} 1 α 1 = 0. 0 Vektory e 1, e 2, e 3 jsou proto lineárně nezávislé, tvoří tzv. ortonormální bázi E = e 1, e 2, e 3 prostoru V (E 3 ) a každý vektor x V (E 3 ) je jejich lineární kombinací x = x 1 e 1 + x 2 e 2 + x 3 e 3 (x 1, x 2, x 3 R). Ortonormálních bází je v prostoru V (E 3 ) nekonečný počet (liší se od sebe posunutím a otočením soustavy).vždy uvažujeme jednu konkrétní soustavu, ke které se vztahují souřadnice vektoru x V (E 3 ). Připomeneme si výsledky pro skalární a vektorové součiny vektorů báze E, vyplývající z dřívějších definic.

25 24 Vybrané části vektorového počtu Lze vyjádřit skalární součiny: e 1 e 1 = e 1 2 = 1 e 1 e 2 = 0 e 1 e 3 = 0 e 2 e 1 = 0 e 2 e 2 = e 2 2 = 1 e 2 e 3 = 0 e 3 e 1 = 0 e 3 e 2 = 0 e 3 e 3 = e 3 2 = 1 podle definice ortonormální báze. Podobně vektorové součiny jsou e 3 = e 1 e 2 e 2 = e 3 e 1 e 1 = e 2 e 3 e 1 e 1 = o e 1 e 2 = e 3 e 1 e 3 = e 2 e 2 e 1 = e 3 e 2 e 2 = o e 2 e 3 = e 1 e 3 e 1 = e 2 e 3 e 2 = e 1 e 3 e 3 = o podle definice vektorového součinu (použijte v obrázku pravidlo pravé ruky ). Skalární součin v ortonormální bázi S ohledem na pravidla pro počítání se skalárním součinem (Věta 3) můžeme počítat a b = (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = Získali jsme vzorec = a 1 b 1 e 1 e } {{ } 1 +a 1 b 2 e 1 e 2 +a } {{ } 1 b 3 e 1 e 3 + } {{ } a 2 b 1 e 2 e } {{ } 1 +a 2 b 2 e 2 e 2 +a } {{ } 2 b 3 e 2 e 3 + } {{ } a 3 b 1 e 3 e } {{ } 1 +a 3 b 2 e 3 e 2 +a } {{ } 3 b 3 e 3 e 3 = a } {{ } 1 b 1 + a 2 b 2 + a 3 b a b = a 1 b 1 + a 2 b 2 + a 3 b 3 pro vektory a = a 1 e 1 +a 2 e 2 +a 3 e 3, b = b 1 e 1 +b 2 e 2 +b 3 e 3, uvažované v ortonormální bázi E.

26 1.5 Vektory v ortonormální bázi 25 Vektorový součin v ortonormální bázi Podobným způsobem lze využít Větu 5 pro výpočet vektorového součinu vektorů a = a 1 e 1 + a 2 e 2 + a 3 e 3, b = b 1 e 1 + b 2 e 2 + b 3 e 3 v ortonormální bázi E. Rozepsání vektorového součinu dává vektor a b = (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = = a 1 b 1 e 1 e } {{ } 1 +a 1 b 2 e 1 e 2 +a } {{ } 1 b 3 e 1 e } {{ } 3 o e 3 +a 2 b 1 e 2 e 1 } {{ } +a 2 b 2 e 2 e } {{ } 2 e 3 o e 2 + +a 2 b 3 e 2 e } {{ } 3 + e 1 +a 3 b 1 e 3 e } {{ } 1 +a 3 b 2 e 3 e 2 +a } {{ } 3 b 3 e 3 e } {{ } 3 e 2 e 1 o = (a 2 b 3 a 3 b 2 ) e 1 + (a 3 b 1 a 1 b 3 ) e 2 + (a 1 b 2 a 2 b 1 ) e 3. Tento výsledek můžeme zapsat jako symbolický determinant třetího řádu, který při výpočtu rozvineme podle prvního řádku: = a b = e 1 e 2 e 3 a 1 a 2 a 3 = (a 2 b 3 a 3 b 2 ) e 1 (a 1 b 3 a 3 b 1 ) e 2 + (a 1 b 2 a 2 b 1 ) e 3. b 1 b 2 b 3 Příklad Najděte vektor kolmý k vektorům a = e 1 2 e 2 + e 3, b = 2 e1 + e 2 e 3. Řešení: d = a b = e 1 e 2 e = e e e 3. Řešením úlohy je každý vektor kolineární s vektorem d. Smíšený součin v ortonormální bázi Uvažujeme smíšený součin [ a, b, c ] = a ( b c) pro vektory a = a 1 e 1 + a 2 e 2 + a 3 e 3, b = b 1 e 1 + b 2 e 2 + b 3 e 3, c = c 1 e 1 + c 2 e 2 + c 3 e 3 v ortonormální bázi E a víme, že d = b c = (b 2 c 3 b 3 c 2 ) e } {{ } 1 +(b 3 c 1 b 1 c 3 ) e } {{ } 2 +(b 1 c 2 b 2 c 1 ) e } {{ } 3 = d 1 e 1 +d 2 e 2 +d 3 e 3. d 1 d 2 d 3

27 26 Vybrané části vektorového počtu Skalární součin a ( b c) = a d = = a 1 d 1 + a 2 d 2 + a 3 d 3 = a 1 (b 2 c 3 b 3 c 2 ) + a 2 (b 3 c 3 b 1 c 3 ) + a 3 (b 1 c 2 b 2 c 1 ) = = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 a 1 b 3 c 2 a 2 b 1 c 3 a 3 b 2 c 1. Smíšený součin proto můžeme zapsat jako determinant třetího řádu [ a, b, c ] = a 1 a 2 a 3 b 1 b 2 b 3. c 1 c 2 c 3 Příklad Vypočítejte objem rovnoběžnostěnu sestrojeného nad vektory a = e 1, b = e 1 3 e 3, c = 2 e 1 + e 2 + e 3. Tvoří vektory a, b, c pozitivní trojici vektorů? Řešení: [ a, b, c ] = = = 3 > 0. Vektory a, b, c tvoří pozitivní trojici vektorů, protože [ a, b, c ] > 0. Objem rovnoběžnostěnu sestrojeného nad vektory a, b, c je [ a, b, c ] = 3 = 3 (jednotky 3 ). Příklad Jsou dány vektory a = e 1 + e 3, b = e 2 e 3, c = e 1 + e 2. Vypočítejte a ( b c) a) podle vzorce pro počítání vektorového součinu v souřadnicích báze E, b) pomocí vzorce (2) Věty 5. Řešení: a) Nejprve najdeme d = b c = e 1 e 2 e = e 1 e 2 e 3. Pak b) Vzorec má tvar a ( b c) = a d = e 1 e 2 e a ( b c) = ( a c) b ( a b) c. = e e 2 e 3. Skalární součiny a c = (1 e e e 3 ) (1 e e e 3 ) = = 1, a b = (1 e e e 3 ) (0 e e 2 1 e 3 ) = ( 1) = 1. Proto a ( b c) = b ( 1) c = b + c = e 2 e 3 + e 1 + e 2 = e e 2 e 3.

28 Kapitola 2 Některé aplikace vektorového počtu 2.1 Vektory v souřadnicové soustavě prostoru E 3 Zvolíme-li v E 3 pevný bod O a uspořádanou pozitivní ortonormální bázi e 1, e 2, e 3 ve V (E 3 ), pak dostaneme tzv. kartézský souřadnicový systém a označíme jej O; e 1, e 2, e 3. Bod O nazýváme počátkem a přímky určené bodem O a postupně vektory e 1, e 2, e 3 nazýváme souřadnicovými osami x, y, z. Je konvence označovat tuto speciální bázi jako i, j, k namísto e 1, e 2, e 3. S každým bodem A je možné uvažovat polohový vektor (rádiusvektor) r A = OA = x A i + y A j + z A k bodu A. Zápis vektoru r A = OA budeme zkracovat na tvar OA = x A i + y A j + z A k = (xa, y A, z A ), čísla x A, y A, z A nazveme souřadnicemi bodu A a píšeme A = [x A, y A, z A ]. Dvěma různými body A = [x A, y A, z A ], B = [x B, y B, z B ] je pak určen vektor AB = OB OA = (x B x A ) i+(y B y A ) j+(z B z A ) k = (x B x A, y B y A, z B z A ). z y j k O i 1 OA A = [x A, y A, z A ] x A AB OA OB O B

29 28 Některé aplikace vektorového počtu 2.2 Rovina v E 3 Skutečnost, že rovina ρ je v prostoru E 3 určena bodem A = [x A, y A, z A ] ρ a dvěma nekolineárními vektory u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) ležícími v rovině ρ budeme zapisovat ρ = [A; u, v ]. Můžeme použít několik různých přístupů k popisu roviny (stanovení podmínky, za které je obecný bod X = [x, y, z] bodem roviny ρ). Uvedeme dva z takových přístupů Libovolný bod X = [x, y, x] ρ právě, když vektory AX, u, v jsou komplanární. ρ ` X ρ ` vektory u, v leží v ρ ` v A AX X ρ u To lze vyjádřit dvěma způsoby: 1. AX = t u + s v (t, s R jsou parametry) jsou parametrické rovnice roviny ρ, které rozepisujeme do souřadnic x = x A + tu 1 + sv 1, y = y A + tu 2 + sv 2, z = z A + tu 3 + sv 3. Z těchto rovnic umíme vyčíst souřadnice bodu A ρ i vektorů u, v roviny ρ. 2. Pro komplanární vektory je smíšený součin [ AX, u, v ] = 0. Proto [ AX, u, v ] = x x A y y A z z A u 1 u 2 u 3 = v 1 v 2 v 3 = (x x A ) (u 2 v 3 u 3 v 2 ) (y y A ) (u 1 v 3 u 3 v 1 )+(z z A ) (u 1 v 2 u 2 v 1 ) = = ax + by + cz + d = 0 a výsledkem je obecná rovnice roviny ρ.

30 2.2 Rovina v E Vektor n = (n 1, n 2, n 3 ) o kolmý k rovině ρ se nazývá normálový vektor roviny ρ. Z vlastností vektorového součinu víme, že vektor u v je kolmý ke každému z vektorů u, v ležících v rovině ρ, proto je kolmý k rovině ρ. Je zřejmé, že za normálový vektor roviny můžeme volit libovolný nenulový vektor kolineární s vektorem u v. n = k( u v) ` v ρ A AX u ` ` X ρ Libovolný bod X = [x, y, x] ρ právě, když vektory AX, n jsou kolmé. Podmínku kolmosti vektorů vyjadřuje skalární součin AX n = (x x A, y y A, z z A ) (n 1, n 2, n 3 ) = = n 1 x + n 2 y + n 3 z (n 1 x A + n 2 y A + n 3 z A ) = ax + by + cz + d = 0. Vidíme, že koeficienty a, b, c obecného tvaru rovnice roviny ρ jsou souřadnice normálového vektoru roviny ρ, tj. n = (a, b, c), kde vektor n je kolineární s vektorem u v Příklad Rovina ρ má obecnou rovnici roviny x + 2z + 1 = 0. Najděte bod A a normálový vektor roviny ρ. Řešení: Obecná rovnice roviny ρ má tvar ax + by + cz + d = 0, kde normálový vektor n = (a, b, c). Zadání úlohy proto napíšeme ve tvaru 1x + 0y + 2z + 1 = 0 a proto n = (1, 0, 2). Bodem roviny je libovolný bod A = [x A, y A, z A ], který splňuje rovnici x A + 2z A + 1 = 0. Protože rovnice nezávisí na y, lze volit pro jednoduchost y A = 0 a například volbou x A = 1 získáme z rovnice z A = 0. Bod A = [ 1, 0, 0] ρ. Poznámka: Rovnice roviny x + 2z + 1 = 0 posledního příkladu nezávisí na y, pro každé y je rovnice stejná, proto je rovina rovnoběžná

31 30 Některé aplikace vektorového počtu se souřadnicovou osou y. To je vidět také na normálovém vektoru n = (1, 0, 2), který má druhou souřadnici nulovou (situaci graficky znázorněte). Podobně rovnice x = 3 je v E 3 obecnou rovnicí roviny, která je rovnoběžná se souřadnicovými osami y i z. Příklad Body A = [1, 1, 1], B = [0, 1, 2], C = [ 2, 3, 1] jsou body roviny ρ. Najděte obecnou rovnici roviny ρ a) Užitím vektorového součinu vektorů. b) Užitím smíšeného součinu vektorů. Řešení: Rovina ρ = [A; u, v ], kde A = [1, 1, 1] a vektory u = AB = ( 1, 0, 1), v = AC = ( 3, 2, 2) jsou nekomplanární. i j k a) Vektor u v = = 2 i 5 j 2 k = ( 2, 5, 2) je kolineární s normálovým vektorem roviny. Proto můžeme zvolit například n = (a, b, c) = (2, 5, 2). Bod A = [1, 1, 1] ρ : 2x + 5y + 2z + d = 0. Proto je d = 9 a hledaná rovnice je ρ : 2x + 5y + 2z 9 = 0. b) Vektory AX, u, v jsou pro body X ρ komplanární. Proto smíšený součin [ AX, u, v ] = 0, tj. x 1 y 1 z = 2(x 1) 5(y 1) 2(z 1) = 0. Úpravou získané rovnice obdržíme výsledek ρ : 2x + 5y + 2z 9 = 0. Cvičení Ukažte, že 3x + 6y + 2z 13 = 0 je obecnou rovnicí roviny, která vytíná na souřadnicových osách úseky v poměru 2 : 1 : 3 a prochází bodem A = [1, 2, 1]. Jaké jsou délky úseků na osách? Návod: Situaci si graficky znázorněte. Průsečíky hledané roviny se souřadnicovými osami jsou body A = [2q, 0, 0], B = [0, q, 0], C = [0, 0, 3q], kde q = 0 je délka úseku. Rovina je proto určena například bodem A a vektory u = AB, v = AC. Jedním z výpočetních postupů předcházejícího příkladu obdržíme požadovaný výsledek.

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více