LOGICKÉ OBVODY J I Ř Í K A L O U S E K

Rozměr: px
Začít zobrazení ze stránky:

Download "LOGICKÉ OBVODY J I Ř Í K A L O U S E K"

Transkript

1 LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006

2 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY Číselné soustavy - úvod Rozdělení číselných soustav Polyadcké číselné soustavy Desítková soustava Dvojková soustava Šestnáctková soustava Osmčková soustava Převody mez soustavam LOGICKÉ OBVODY Kombnační logcké obvody Sekvenční logcké obvody Booleovské funkce Možnost zápsu booleovských funkcí Algebra booleovských funkcí Sestavení funkce ze zapsané Booleovské funkce Zjednodušování zápsu logcké funkce Návrh kombnačního obvodu z logcké funkce Hradlo NAND Hradlo NOR Hradlo NOT Sekvenční obvody paměťové členy Paměťový člen RS Paměťový člen JK Paměťový člen D

3 1. ČÍSELNÉ SOUSTAVY 1.1. Číselné soustavy - úvod Číselná soustava je způsob zobrazení (reprezentace) čísel. Nejznámější, a také nejrozšířenější soustavou je soustava desítková, také zvaná arabská. Ve výpočetní technce je však nejpoužívanější soustavou soustava dvojková a rovněž šestnáctková Rozdělení číselných soustav Číselné soustavy můžeme rozdělt na: polyadcké soustavy, které mají defnovaný jeden základ z, kde z 2. Nejpoužívanější základy jsou 2, 8, 10, 16, tyto soustavy se nazývají dvojková (bnární), osmčková (oktalová), desítková (decmální) a šestnáctková (hexadecmální). nepolyadcké soustavy se smíšeným základy. Tyto soustavy mají několk základů. Nejznámější nepolyadcká soustava je soustava římských číslc. Dále se budeme věnovat pouze soustavám polyadckým, protože nepolyadcké soustavy se ve výpočetní technce nepoužívají Polyadcké číselné soustavy Každé přrozené číslo p polyadcké číselné soustavy lze vyjádřt ve tvaru z-adckého rozvoje n p = a K = 0 n n z = an z + an 1z + + a2 z + a1z + Kde z je přrozené číslo větší než 1, { 1, 2, 3,, z 1} adckého zápsu a K, a pak lze zapsat pomocí tzv. z- ( α n α n 1 Kα 2 α 1 α 0 ) z. a 0 z 0 Např.: ( ) 10 Zde z se nazývá základ z-adcké číselné soustavy a, a jsou znaky reprezentující čísla a. Znaky α (popř. někdy také čísla a ) se nazývají číslce (cfry). Index číslce a, resp. pozce, která tomuto ndexu v číselném obrazu přísluší, se nazývá řád číslce a, resp. řád obrazu číslce a. Číslce s ndexem se nazývá číslce řádu nebo číslce -tého řádu Desítková soustava Desítkovou nebo také decmální soustavou je soustava o základu deset (z = 10). V této soustavě se používá deset číslc: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Každé číslo lze v desítkové soustavě zapsat pomocí polynomu a = a n 10 n + a n-1 10 n a a a

4 Např. číslo 2013 můžeme zapsat tímto způsobem: 2013 = = Dvojková soustava Dvojkovou (bnární) soustavou je soustava o základu dva (z = 2). Používá pouze dvou číslc 0 a 1. Je používána především ve výpočetní technce. Všechny výpočty uvntř počítače probíhají právě v této soustavě. Důvod je celkem prostý, je mnohem snadnější realzovat zařízení rozpoznávající dva stavy než zařízení rozpoznávající deset stavů. Příkladem může být žárovka, když svítí, jedná se o stav jedna, když nesvítí, jde o stav nula. V prax se s dvojkovou soustavou setkáte př programování, když zde se jž více pracuje se soustavou šestnáctkovou a také v počítačových sítích př prác s IP adresou a maskou sítě Šestnáctková soustava Šestnáctkovou (hexadecmální) soustavou je soustava o základu šestnáct (z = 16). Používá šestnáct číslc. Protože však v běžném žvotě používáme pouze 10 čísel (0..9), pro vyjádření zbývajících číslc používáme písmena abecedy. V šestnáctkové soustavě se tedy používají tyto číslce: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. S touto soustavou se setkáte v grafce, např. př defnování barev, dále také v programování a v počítačových sítích (např. MAC adresa) Osmčková soustava Osmčkovou (oktálovou) soustavou je soustava o základu osm (z = 8). Používá osm číslc. V osmčkové soustavě se tedy používají číslce: 0, 1, 2, 3, 4, 5, 6, 7. S touto soustavou se můžete setkat například v operačním systému UNIX př zadávání různých atrbutů Převody mez soustavam Převod z desítkové soustavy: Metoda postupného dělení základem: Číslo z desítkové soustavy dělíme číslem základu nové soustavy. Získaný (neúplný) podíl opět dělíme základem nové soustavy. Toto aplkujeme tak dlouho, dokud není neúplný podíl roven nule. Koefcenty a vycházejí jako zbytky celočíselného dělení v pořadí a 0, a 1, a 2,..., a n. Pozční záps čísla v nové soustavě získáme tak, že napíšeme všechny zbytky v pořadí od konce do začátku a n a n-1... a 1 a 0 Příklad: Převeďte číslo do dvojkové soustavy. Řešení: Podíl Zbytek Koefcenty 79:2 = 39 1 a 0 =1 39:2 = 19 1 a 1 =1 19:2 = 9 1 a 2 =1 9:2 = 4 1 a 3 =1 4:2 = 2 0 a 4 =0 2:2 = 1 0 a 5 =0 1:2 = 0 1 a 6 =1 Výsledek: =

5 Příklad: Převeďte číslo do osmčkové soustavy soustavy. Řešení: Podíl Zbytek Koefcenty 82:8 = 10 2 a 0 =2 10:8 = 1 2 a 1 =2 1:8 = 0 1 a 2 =1 Výsledek: = Příklad: Převeďte číslo do šestnáctkové soustavy. Řešení: Podíl Zbytek Koefcenty 2007:16 = a 0 =7 125:16 = 7 13 a 1 =13 7:16 = 0 7 a 2 =7 V šestnáctkové soustavě číslu 13 (koefcent a 1 ) odpovídá písmeno D, výsledkem tedy bude: = 7D7 2 Převod do desítkové soustavy: Zde použjeme metodu váhových kódů. Číslo rozepíšeme na součet mocnn a po jejch sečtení dostaneme výsledek v desítkové soustavě. Příklad: Převeďte číslo do desítkové soustavy. Řešení: = 1x x x x x x2 0 = 1x32 + 0x16 + 1x8 + 0x4 + 1x2 + 1x1 = = 43 Výsledek: = Příklad: Převeďte číslo do desítkové soustavy. Řešení: 1075= 1x x x x8 0 = 1x x64 + 7x8 + 5x1 = = 573 Výsledek: = Příklad: Převeďte číslo A3C 16 do desítkové soustavy. Řešení: A3C= 10x x x16 0 = 10x x x1 = = 2620 Výsledek: A3C 16 = Převod mez soustavam, z nchž žádná není desítková: Nejprve převedeme číslo do desítkové soustavy (vz. postup výše) a poté z desítkové soustavy metodou postupného dělení základem převedeme do požadované soustavy. Pokud se jedná o převod z dvojkové soustavy do osmčkové nebo šestnáctkové, lze použít tento postup: 4

6 Převod z dvojkové soustavy do osmčkové: číslo z dvojkové soustavy rozdělíme do trojc (zprava) a tyto trojce převedeme metodou váhových kódů do osmčkové soustavy. Příklad: Převeďte číslo do osmčkové soustavy. Řešení: rozdělíme na trojce, číslo pokud je třeba doplníme zleva nulam: Tyto trojce samostatně převedeme do osmčkové soustavy x x x2 0 1x x x2 0 0x x x Výsledek: = Převod z dvojkové soustavy do šestnáctkové: číslo z dvojkové soustavy rozdělíme do čtveřc (zprava) a tyto čtveřce převedeme metodou váhových kódů do šestnáctkové soustavy. Příklad: Převeďte číslo do šestnáctkové soustavy. Řešení: rozdělíme na čtveřce, číslo pokud je třeba doplníme zleva nulam: Tyto čtveřce samostatně převedeme do šestnáctkové soustavy x x2 2 +1x x2 0 1x x x x2 0 6 B Výsledek: = 6B 16 5

7 2. LOGICKÉ OBVODY 2.1. Kombnační logcké obvody Kombnační logcký obvod je logcký obvod, jehož výstupní proměnné závsí pouze na logckých hodnotách vstupních proměnných. Výstupní proměnné nejsou tedy závslé na vntřním stavu obvodu. Příkladem jsou tzv. logcká hradla: logcký součn, součet,.. Chování kombnačních obvodů se dá vyjádřt pravdvostní tabulkou nebo funkcí v Booleově algebře. Klíčová slova této kaptoly: Booleova algebra, logcká funkce, Karnaughova mapa, sekvenční, kombnační, hradlo, paměťový člen. Kombnační obvody s nepamatují co se s nm dělo v mnulost. Čas potřebný k prostudování učva kaptoly: 6 hodny Obr. 1: Kombnační logcký obvod 2.2. Sekvenční logcké obvody Sekvenční logcký obvod je logcký obvod, jehož výstupní proměnné závsí jednak na proměnných vstupních a také na jejch předchozím stavu, případně na vntřním stavu obvodu. Jedné kombnac vstupu může tedy odpovídat více různých hodnot výstupů. Sekvenční obvod má paměť pro všechny nebo jen pro několk vstupních a výstupních hodnot. Sekvenční logcké obvody dělíme na: Asynchronní sekvenční obvody Synchronní sekvenční obvody Asynchronní sekvenční obvody V těchto obvodech dochází ke změně výstupních stavů okamžtě po změně stavů vstupních. 6

8 Synchronní sekvenční obvody Výstupní stavy nemění svůj stav hned po změně vstupu, ale až po změně taktovacího (clock) sgnálu. Obvod mění své hodnoty jen v defnovaných okamžcích, daných hodnovým sgnálem, např. př jeho náběžné hraně. Obr. 2: Sekvenční logcký obvod 2.3. Booleovské funkce Funkce, které popsují chování kombnačních obvodů. Jedná se o dvouhodnotové funkce s dvouhodnotovým proměnným Možnost zápsu booleovských funkcí Tabulkový záps: Tento záps je jedním z nejpoužívanějších způsobů zápsu. Tabulka pro úplnou n booleovskou funkc obsahuje pro n vstupních proměnných 2 kombnací logckých n hodnot. Proto musí tato tabulka obsahovat 2 řádku. Je tedy zřejmé, že tento způsob je vhodný pro záps funkcí s menším počtem vstupních proměnných, neboť pro 8 vstupních proměnných bude mít tabulka jž 256 řádků. Ukázka booleovské funkce s dvěm vstupním proměnným: X 1 X 0 F Obr. 3: Ukázka boolovské funkce zapsané tabulkovým zápsem 7

9 Číselný záps: Tento záps využívá skutečnost, že vstupní proměnné lze chápat také jako číslo vyjádřené ve dvojkové soustavě. X 1 X 0 Číslo desítkové soustavy Toto pořadí se uvádí zleva doprava od nejvyšší váhy k váze nejnžší. Například kombnace x 2 x 1 x 0 = 101 = = 5 10 Používají se dvě základní formy zápsu: Dsjunktvní v závorce jsou hodnoty v desítkové soustavě, pro které funkce nabývá logcké hodnoty 1 Konjunktvní - v závorce jsou hodnoty v desítkové soustavě, pro které funkce nabývá logcké hodnoty 0 X 1 X 0 F Tabulka bude tedy po přepsání do: Dsjunktvního zápsu vypadat takto: f(x 2 x 1 x 0 ) = D(3) Konjunktvního zápsu vypadat takto: f(x 2 x 1 x 0 ) = K(0,1,2) Vektorový záps: Využívá se zde skutečnost, že logcké funkce jsou uspořádány v řádcích. První hodnota vektorového zápsu odpovídá nejvyšší hodnotě a poslední pak nejnžší. Vektorový záps pro tabulku bude tedy vypadat: X 1 X 0 F f(x 2 x 1 x 0 ) = 1000 Záps pomocí Karnaughovy mapy: n Tato mapa obsahuje 2 čtverečku, tedy každé kombnac vstupních proměnných je vyhrazen jeden. Pomocí kódovacích čar na levém a horním okraj mapy a podle přpsaných 8

10 proměnných jsou defnovány čtverečky, ve kterých jednotlvé vstupní proměnné nabývají hodnot logcké 0 nebo 1. Oblast nacházející se pod kódovací čarou nabývají hodnotu 1, mmo tuto oblast 0. Obr. 4: Karnaughova mapa pro 3 proměnné Na obr.4 vdíte Karnaughovu mapu pro 3 proměnné (X 0, X 1, X 2 ). Čtvereček, ve kterém je umístěn symbol +, odpovídá hodnotám: X 0 = 0, X 1 =1, X 2 =1. Ukázka Karnaughovy mapy k příslušné tabulce: X 1 X 0 F Tabulce odpovídá tato Karnaughova mapa Ukázky Karnaughových map, včetně ukázek vytvoření mapy pro více proměnných: Pro 1 proměnnou Pro 2 proměnné 9

11 Pro 3 proměnné Pro 4 proměnné pro 5 proměnných Karnaughova mapa se používá maxmálně pro 5 vstupních proměnných, neboť pro větší počet je jž značně nepřehledná. 10

12 Algebra booleovských funkcí Je jedním ze základních způsobů, jak upravovat booleovské funkce. Základní funkce Booleovy algebry jsou: Logcký součet (dsjunkce) Logcký součn (konjunkce) Negace Logcký součet Je taková funkce proměnných a,b,c,., že nabývá hodnoty 1 právě tehdy, když alespoň jedna proměnná má hodnotu 1. Logcký součet značíme: +, nebo také OR např.:y = A + B = A OR B Př.: Je-l funkce Y funkcí dvou proměnných a, b, potom Y = 1, když a = 1 nebo b = 1 nebo se obě současně rovnají jedné. Logcký součn Je taková funkce proměnných a,b,c,., že nabývá hodnoty 1 tehdy a jen tehdy, když všechny proměnné mají hodnotu 1. Logcký součn značíme: * nebo také AND např.: Y=A*B = A AND B Př. Je-l funkce Y funkcí dvou proměnných a, b, potom Y = 1, když a = 1 a zároveň b =1 Negace (Inverze) Je taková funkce proměnné a, která nemá pro tutéž hodnotu jako a. Pokud je tedy proměnná a = 1 potom negace a = 0 Negac značíme: nebo také čárou nad negovaným výrazem, např.: A Př. Je-l funkce Y funkcí jedné proměnné a potom Y = 1, když a = 0 Základní zákony Booleovy algebry 1. Zákon absorpce a a = a a + a = a a ( a + b) = a a + ab = a 2. Zákony absorpce negace a ( a + b) = ab a + ab = a + b a ( a + b) = ab a + ab = a + b 3. Zákony kontradkce a a = 0 a + a = 1 11

13 4. Zákony komutatvní 5. Zákony asocatvní 6. Zákony dstrbutvní 7. Zákon dvojí negace ab = ba a + b = b + a a ( bc) = ( ab) c a + ( b + c) = ( a + b) + c a ( b + c) = ab + ac a + bc = ( a + b) ( a + c) a = a 8. De Morganova pravdla 9. Zákony agresívnost 0 a Zákony neutrálnost 0 a Zákon absorpce konsenzu a b = a + b a + b = a b a 0 = 0 a +1 = 1 a 1 = a a + 0 = a ab + ac + bc = ab + ac ( a + b) ( a + c) ( b + c) = ( a + b) ( a + c) Sestavení funkce ze zapsané Booleovské funkce Máme dánu funkc proměnných a,b,c, tabulkou. Z této tabulky sestavíme rovnc booleovské funkce. a b c Y

14 Základní součtový tvar: Tato funkce je defnována pro hodnoty, kde Y = 1 a b c Y Dílčí součn Potom F = a b c a b c a b c a b c a b c a b c + a b c + a b c + a b c + a b c Základní součnový tvar: Tato funkce je defnována pro hodnoty, kde Y = 0 a b c Y Dílčí součet a + b + c a + b + c a + b + c Potom F = ( a + b + c ) ( a + b + c ) ( a + b + c ) Zjednodušování zápsu logcké funkce Logcká funkce vyjádřená v základním součtovém (součnovém) tvaru není jedným možným vyjádřením logcké funkce. Ve většně případů lze tuto funkc zjednodušt, čímž se usnadní pozdější realzace tohoto logckého obvodu. K mnmalzac Booleovských funkcí vyjádřených pomocí Booleovského výrazu se nejčastěj používají tyto metody: Algebracká mnmalzace Mnmalzace pomocí Karnaughovy mapy Algebracká mnmalzace Tato metoda vychází z aplkace zákonů Booleovy algebry na zapsanou funkc. Zjednodušení závsí zejména na zkušenostech a na matematckých dovednostech zjednodušujícího. Je především vhodná pro menší počet proměnných, a to především kvůl přehlednost. 13

15 Příklad: Zjednodušte funkc ( a + bc)( b + cd) + b + c Mnmalzace pomocí Karnaughovy mapy Mnmalzace pomocí Karnaughovy mapy se provádí sdružováním jednček v mapě do smyček. Př tomto sdružování musíme dodržet tato pravdla: Do smyčky lze sdružt pouze vzájemně sousedící jednčky, přčemž první a poslední řádek (resp. sloupec) mapy se také považují za vzájemně sousedící. V smyčce může být pouze takový počet jednček, který je mocnnou čísla 2, tzn. 2, 4, 8, 16,... Každá smyčka musí mít tvar kruhu nebo elpsy. Smyčky se mohou vzájemně překrývat (každá jednčka může být součástí několka smyček). Snažíme se vytvářet co největší smyčky a mít co nejmenší počet smyček. Každá jednčka musí být uzavřena ve smyčce. Pokud některou jednčku není možné do smyčky uzavřít, musíme vytvořt pro tuto jednčku samostatnou smyčku. Pro získání výsledného mnmalzovaného logckého výrazu postupujeme podle těchto pravdel: Jestlže buňky náležející některé proměnné obsahují celou smyčku (celá smyčka je pod kódovací čarou dané proměnné), zapíšeme tuto proměnnou do výrazu. Jestlže buňky náležející některé proměnné neobsahují žádnou část smyčky, zapíšeme do výrazu tuto proměnnou negovanou 14

16 Buňky náležející některé proměnné, obsahují jen část smyčky, tuto proměnnou gnorujeme. Jednotlvé proměnné zapsané do výrazu mez sebou logcky násobíme (AND) Návrh kombnačního obvodu z logcké funkce Pro realzac kombnačních logckých obvodů používáme logcké členy, nazývané také hradla. Vytvořené kombnační obvody se skládají ze vzájemného spojení těchto logckých členů (hradel). Nejčastěj používaná hradla jsou: Negovaný součn NAND Negovaný součet NOR Negátor NOT Hradlo NAND Toto hradlo realzuje logckou funkc Y = A B Značka obvodu: Pravdvostní tabulka: A B Y

17 Nejpoužívanějším ntegrovaným obvodem, obsahujícím čtyř dvojvstupá hradla NAND je obvod 7400 Obr. 5: Obvod Hradlo NOR Toto hradlo realzuje logckou funkc Y = A + B Značka obvodu: Pravdvostní tabulka: A B Y Nejpoužívanějším ntegrovaným obvodem obsahující čtyř dvojvstupá hradla NOR, je obvod

18 Obr. 6: obvod Hradlo NOT Toto hradlo realzuje logckou funkc Y = A Značka obvodu: Pravdvostní tabulka: A Y Nejpoužívanějším ntegrovaným obvodem obsahující šest hradel NOT, je obvod 7404 Obr. 7: Obvod

19 Komplexní příklad na realzac logcké funkce: Realzujte pomocí dvouvstupých hradel NAND funkc: f(a,b,c) = D(0,1,5,6) 1. Funkc zadanou dsjunktvní formou přepíšeme do tabulky: a b c Y Z tabulky přepíšeme do karnaughovy mapy, pomocí které danou funkc mnmalzujeme: 3. Mnmalzovanou funkc převedeme do tvaru logckých součtů. Tento krok provedeme pomocí De Morganových pravdel: Y = abc + ab + b c = abc + ab + b c = abc ab b c 4. Mnmalzovanou funkc zapojíme pomocí dvouvstupých hradel NAND. Na dvouproměnné výrazy může rovnou zavést do hradla NAND, tří vstupou proměnnou musíme rozdělt a realzovat pomocí dvou dvouvstupých hradel 18

20 Použtí kombnačních obvodů: Logcké funkce Sčítačky Kodéry Dekodéry Demultplexery 19

21 2.5. Sekvenční obvody paměťové členy Paměťové členy, někdy nazývané klopné obvody jsou logcké sekvenční obvody. Mají dva různé stavy a používají se jako paměť hodnoty logcké proměnné. Používají se k realzac: Čítačů Regstrů A mnoha dalších Podle vlastností těchto členů je můžeme rozdělt na: Asynchronně řízené Synchronně řízené Nejčastěj používané paměťové členy: Paměťový člen RS Jedná se o asynchronní obvod řízený dvěma vstupním sgnály: R Reset S Set Vstupní sgnály R,S jsou aktvní v logcké 0, proto jsou uvedeny jako negované. Chování obvodu defnuje pravdvostní tabulky. R S +1 Q 0 0 Zakázaný stav Q Stav R = 0 a současně S = 0 je označován jako zakázaný stav, neboť v tomto případě je porušen vztah mez vstupem Q a Q, neboť by zde platlo Q = Q = 1 Z této tabulky lze odvodt přechodovou tabulku: Q Q +1 R 0 0 X X S 20

22 Obr. 8: Paměťový člen RS vytvořený z hradel NAND Paměťový člen JK Jedná se o synchronní klopný obvod, který má dva vstupní sgnály: J,K a hodnový vstup C a výstupy Q. Reaguje na sestupnou hranu hodnového sgnálu. Chování obvodu defnuje pravdvostní tabulky. J K Q Q Q Z této tabulky lze odvodt přechodovou tabulku: +1 Q Q J K X X 1 0 X X 0 21

23 Paměťový člen D Obr. 9: Paměťový člen JK vytvořený z hradel NAND Jedná se o synchronní klopný obvod, který obsahuje vstup D, vstup hodnového kmtočtu C a výstup Q. Reaguje na nástupní hranu hodnového sgnálu. Př příchodu aktvní úrovně hodnového sgnálu je hodnota ze vstupu D předána na výstup Q. Obr. 10: Paměťový člen D vytvořený z hradel NAND Obr. 11: Časový průběh paměťového členu D 22

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. 12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto:

Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto: Karnaughovy mapy Metoda je použitelná již pro dvě vstupní proměnné, své opodstatnění ale nachází až s větším počtem vstupů, kdy návrh takového výrazu přestává být triviální. Prvním krokem k sestavení logického

Více

Základy číslicové techniky. 2 + 1 z, zk

Základy číslicové techniky. 2 + 1 z, zk Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,

Více

Číselné vyjádření hodnoty. Kolik váží hrouda zlata?

Číselné vyjádření hodnoty. Kolik váží hrouda zlata? Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Sylabus kurzu Elektronika

Sylabus kurzu Elektronika Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

Obsah DÍL 1. Předmluva 11

Obsah DÍL 1. Předmluva 11 DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Základní jednotky používané ve výpočetní technice

Základní jednotky používané ve výpočetní technice Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

Sekvenční logické obvody

Sekvenční logické obvody Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.7. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ..07/.5.00/34.0205 Šablona: III/2 Informační technologie

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Číselné soustavy. Binární číselná soustava

Číselné soustavy. Binární číselná soustava 12. Číselné soustavy, binární číselná soustava. Kódování informací, binární váhový kód, kódování záporných čísel. Standardní jednoduché datové typy s pevnou a s pohyblivou řádovou tečkou. Základní strukturované

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

2.7 Binární sčítačka. 2.7.1 Úkol měření:

2.7 Binární sčítačka. 2.7.1 Úkol měření: 2.7 Binární sčítačka 2.7.1 Úkol měření: 1. Navrhněte a realizujte 3-bitovou sčítačku. Pro řešení využijte dílčích kroků: pomocí pravdivostní tabulky navrhněte a realizujte polosčítačku pomocí pravdivostní

Více

Registry a čítače část 2

Registry a čítače část 2 Registry a čítače část 2 Vypracoval SOU Ohradní Vladimír Jelínek Aktualizace září 2012 Úvod Registry a čítače jsou častým stavebním blokem v číslicových systémech. Jsou založeny na funkci synchronních

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ

MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Projekt: MODERNIZCE VÝUK PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod XOR neboli EXLUSIV OR Obor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří

Více

ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY

ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY Číslicová technika- učební texty. (HS určeno pro SPŠ Zlín) Str.: - - ČÍSLIOVÁ TEHNIK UČENÍ TEXTY (Určeno pro vnitřní potřebu SPŠ Zlín) Zpracoval: ing. Kovář Josef, ing. Hanulík Stanislav Číslicová technika-

Více

OBCHODNÍ AKADEMIE ORLOVÁ

OBCHODNÍ AKADEMIE ORLOVÁ OBCHODNÍ AKADEMIE ORLOVÁ O B C H O D N Í A K A D E M I E O S T R A V A - P O R U B A D A T O V É K O M U N I K A C E 1 U Č E B N Í T E X T P R O D I S T A N Č N Í F O R M U V Z D Ě L Á V Á N Í J I Ř Í

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu ázev školy Autor ázev Téma hodiny Předmět Ročník /y/ C.1.07/1.5.00/34.0394 VY_3_IOVACE_1_ČT_1.01_ vyjádření čísel v různých číselných soustavách Střední odborná škola a Střední

Více

Číslo materiálu. Datum tvorby Srpen 2012

Číslo materiálu. Datum tvorby Srpen 2012 Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_03_Převod čísel mezi jednotlivými číselnými soustavami Střední odborná škola a Střední

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Kódováni dat. Kódy používané pro strojové operace

Kódováni dat. Kódy používané pro strojové operace Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě: Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:

Více

1 z 9 9.6.2008 13:27

1 z 9 9.6.2008 13:27 1 z 9 9.6.2008 13:27 Test: "TVY_KLO" Otázka č. 1 Převodníku je: kombinační logický obvod, který převádí jeden binární kód do druhého Odpověď B: obvod, pomocí kterého můžeme převádět číslo z jedné soustavy

Více

Aut 2- úvod, automatické řízení, ovládací technika a logické řízení

Aut 2- úvod, automatické řízení, ovládací technika a logické řízení Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 30. 10. 2012 Aut 2- úvod, automatické řízení, ovládací technika a logické řízení 1. ÚVOD DO AUTOMATICKÉHO ŘÍZENÍ

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

PODPORA ELEKTRONICKÝCH FOREM VÝUKY

PODPORA ELEKTRONICKÝCH FOREM VÝUKY INVE STICE DO ROZV O JE V ZDĚL ÁV Á NÍ PODPORA ELEKTRONICKÝCH FOREM VÝUKY CZ.1.07/1.1.06/01.0043 Tento projekt je financován z prostředků ESF a státního rozpočtu ČR. SOŠ informatiky a spojů a SOU, Jaselská

Více

VY_32_INOVACE_OV_2.ME_CISLICOVA_TECHNIKA_19_SPOJENI KOMBINACNICH_A_SEKVENCNICH_OBVODU Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_OV_2.ME_CISLICOVA_TECHNIKA_19_SPOJENI KOMBINACNICH_A_SEKVENCNICH_OBVODU Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_OV_2.ME_CISLICOVA_TECHNIKA_19_SPOJENI KOMBINACNICH_A_SEKVENCNICH_OBVODU Střední odborná škola

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Programování. řídících systémů v reálném čase. Střední odborná škola a Střední odborné učiliště - - Centrum Odborné přípravy Sezimovo Ústí

Programování. řídících systémů v reálném čase. Střední odborná škola a Střední odborné učiliště - - Centrum Odborné přípravy Sezimovo Ústí Střední odborná škola a Střední odborné učiliště - - Centrum Odborné přípravy Sezimovo Ústí Studijní text pro 3. a 4. ročníky technických oborů Programování řídících systémů v reálném čase Verze: 1.11

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

Prvky elektronických počítačů Logické obvody a systémy

Prvky elektronických počítačů Logické obvody a systémy Prvky elektronických počítačů Logické obvody a systémy texty pro distanční studium Doc. Ing. yril Klimeš, Sc. Ostravská univerzita v Ostravě, Přírodovědecká fakulta Katedra informatiky a počítačů OBSAH

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Kombinační automaty (logické obvody)

Kombinační automaty (logické obvody) Kombinační automaty (logické obvody) o Název: VY_32_INOVACE_01_CIT_01_Prehled_schematickych_znacek.pptx o Téma: Přehled schématických značek o Název: VY_32_INOVACE_01_CIT_02_Prehled_schematickych_znacek_test.pptx

Více

2.9 Čítače. 2.9.1 Úkol měření:

2.9 Čítače. 2.9.1 Úkol měření: 2.9 Čítače 2.9.1 Úkol měření: 1. Zapište si použité přístroje 2. Ověřte časový diagram asynchronního binárního čítače 7493 3. Ověřte zkrácení početního cyklu čítače 7493 4. Zapojte binární čítač ve funkci

Více

BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE

BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE Úvod Účelem úlohy je seznámení s funkcemi a zapojeními několika sekvenčních logických obvodů, s tzv. bistabilními klopnými obvody a čítači. U logických obvodů se často

Více

Logické řízení. Nejčastěji 0 1 Obecněji L H Je-li to fyzikálně výstižnější VYPNUTO ZAPNUTO Pro slovní pojmy NE ANO False, True F T

Logické řízení. Nejčastěji 0 1 Obecněji L H Je-li to fyzikálně výstižnější VYPNUTO ZAPNUTO Pro slovní pojmy NE ANO False, True F T Logické řízení. Logické řízení - Úvod Logické řízení je cílená činnost, při níž se logickým obvodem zpracovávají informace o řízeném procesu a podle nich ovládají příslušná zařízení tak, aby se dosáhlo

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

V počítači jsou jen jednotky a nuly

V počítači jsou jen jednotky a nuly V počítači jsou jen jednotky a nuly Obsah 1. Dvojková číselná soustava 2. Základy práce v dvojkové soustavě 3. Booleova algebra, logické funkce a binární číslice (bity) 4. Základní logické operátory 5.

Více

HELP Rešerše průmyslových vzorů

HELP Rešerše průmyslových vzorů HELP Rešerše průmyslových vzorů Zpracoval D. Pičman Nový rešeršní systém zpřístupněný Úřadem jako systém s rozšířeným vyhledáváním obsahuje proti původnímu sytému mnohem více vyhledávacích možností. Nicméně

Více

Nejvyšší řád čísla bit č. 7 bit č. 6 bit č.5 bit č. 4 bit č. 3 bit č. 2 bit č. 1 bit č. 0

Nejvyšší řád čísla bit č. 7 bit č. 6 bit č.5 bit č. 4 bit č. 3 bit č. 2 bit č. 1 bit č. 0 Číselné soustavy Cílem této kapitoly je sezn{mit se se z{kladními jednotkami používanými ve výpočetní technice. Poznat číselné soustavy, umět v nich prov{dět z{kladní aritmetické operace a naučit se převody

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

PROTOKOL O LABORATORNÍM CVIČENÍ

PROTOKOL O LABORATORNÍM CVIČENÍ STŘENÍ PRŮMYSLOVÁ ŠKOL V ČESKÝH UĚJOVIÍH, UKELSKÁ 3 ÚLOH: ekodér binárního kódu na sedmisegmentový displej 0.. Zadání PROTOKOL O LORTORNÍM VIČENÍ Navrhněte a realizujte dekodér z binárního kódu na sedmisegmentovku.

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

LEKCE 6. Operátory. V této lekci najdete:

LEKCE 6. Operátory. V této lekci najdete: LEKCE 6 Operátory V této lekci najdete: Aritmetické operátory...94 Porovnávací operátory...96 Operátor řetězení...97 Bitové logické operátory...97 Další operátory...101 92 ČÁST I: Programování v jazyce

Více

2 Ukládání dat do paměti počítače

2 Ukládání dat do paměti počítače Projekt OP VK Inovace studijních oborů zajišťovaných katedrami PřF UHK Registrační číslo: CZ..7/../8.8 Cíl Studenti budou umět zapisovat čísla ve dvojkové, osmičkové, desítkové a v šestnáctkové soustavě

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné

Více

... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu

... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu Předmět Ústav Úloha č. 10 BDIO - Digitální obvody Ústav mikroelektroniky Komplexní příklad - návrh řídicí logiky pro jednoduchý nápojový automat, kombinační + sekvenční logika (stavové automaty) Student

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Multimetr: METEX M386OD (použití jako voltmetr V) METEX M389OD (použití jako voltmetr V nebo ampérmetr A)

Multimetr: METEX M386OD (použití jako voltmetr V) METEX M389OD (použití jako voltmetr V nebo ampérmetr A) 2.10 Logické Obvody 2.10.1 Úkol měření: 1. Na hradle NAND změřte tyto charakteristiky: Převodní charakteristiku Vstupní charakteristiku Výstupní charakteristiku Jednotlivá zapojení nakreslete do protokolu

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Řešení úloh z TSP MU SADY S 1

Řešení úloh z TSP MU SADY S 1 Řešení úloh z TSP MU SADY S 1 projekt RESENI-TSP.CZ úlohy jsou vybírány z dříve použitých TSP MU autoři řešení jsou zkušení lektoři vzdělávací agentury Kurzy-Fido.cz Masarykova univerzita nabízí uchazečům

Více

Mikroprocesorová technika (BMPT)

Mikroprocesorová technika (BMPT) Mikroprocesorová technika (BMPT) Přednáška č. 10 Číselné soustavy v mikroprocesorové technice Ing. Tomáš Frýza, Ph.D. Obsah přednášky Číselné soustavy v mikroprocesorové technice Dekadická, binární, hexadecimální

Více

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní

Více

1.5.1 Číselné soustavy

1.5.1 Číselné soustavy .. Číselné soustavy Předpoklady: základní početní operace Pedagogická poznámka: Tato hodina není součástí klasické gymnaziální sady. Upřímně řečeno nevím proč. Jednak se všichni studenti určitě setkávají

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Nápověda k pokročilému vyhledávání

Nápověda k pokročilému vyhledávání Nápověda k pokročilému vyhledávání Nový rešeršní systém zpřístupněný Úřadem jako systém s rozšířeným vyhledáváním obsahuje proti původnímu sytému mnohem více vyhledávacích možností. Nicméně základní možnosti

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

http://programujte.com/clanek/2006053002-ze-sesitu-cislicove-techniky-br-0001-0011-dil-7400-potreti-a-nenaposledy/ LOGICKÉ OBVODY

http://programujte.com/clanek/2006053002-ze-sesitu-cislicove-techniky-br-0001-0011-dil-7400-potreti-a-nenaposledy/ LOGICKÉ OBVODY Logické funkce, logické obvody - 1 - ME3 Přehledové Texty sebrané z různých zdrojů --- http://programujte.com/clanek/2006012803-ze-sesitu-cislicove-techniky-br-0000-0011-dil-pocitani-v-binarnisoustave/

Více