Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS)
|
|
- Matyáš Jelínek
- před 9 lety
- Počet zobrazení:
Transkript
1 1 Úvod Cíle úlohy Předpokládané znalosti Autotest základních znalostí Základy práce se systémem GC-MS (EI) Parametry plynového chromatografu Základní charakteristiky MS detektoru Konkurenční výhody MS detektoru oproti konvenčním detektorům Základní prvky MS Systém zavádění vzorků Iontový zdroj Analyzátory iontů Zdroj vakua Registrační zařízení Druhy, příčiny a odstranění problémů při práci se systémem GC-MS Interpretace hmotnostních spekter (EI) Srovnání s referenčními spektry uloženými v knihovně hmotnostních spekter Interpretace na základě rozboru získaného spektra Základní kroky a pravidla Základní pravidla fragmentace Použitá instrumentace Práce se systémem GC-MS (EI) Optimalizace parametrů detektoru (GC-MS) Režimy snímání hmotnostních spekter Přístrojové podmínky GC-MS Dílčí úlohy a demonstrace Prohlížení a zpracování získaných chromatografických a spektrálních dat Identifikace složek analyzované směsi Stanovení známých látek Diagnóza a odstranění problémů GC-MS systému Kontrolní otázky Řešení autotestu Úvod Hmotová spektrometrie (MS) je fyzikální metoda pro určování hmot volných molekul a jejich částí převedených pro tento účel na kladné, příp. záporné ionty. Hmotový spektrometr je iontově optické zařízení, které ze směsi plynných molekul (iontů) separuje nabité částice podle jejich efektivních hmot (m/z). Na základě určení hmotnosti iontů a relace mezi molekulárním a fragmentačními ionty lze pak provést predikci identity analyzovaných látek. Charakter hmotového spektra závisí na způsobu zavedení vzorku do detektoru, podmínkách a způsobu ionizace, uspořádání analyzátoru(ů) iontů a způsobu registrace iontů. Strana 1 (celkem 10) Karel Cejpek VŠCHT Praha 2006
2 Hmotový spektrometr je dnes zřejmě nejplatnějším detektorem vhodným pro plynovou chromatografii. Pro naprostou většinu aplikací je dostatečně citlivý, selektivní a nabízí ve srovnání s dalšími konvenčními detektory zdaleka nejvíc kvalitativních informací. Spojení plynové chromatografie (GC) s hmotnostním spektrometrickým (MS) detektorem se využívá čím dál častěji jako nástroj první volby při rutinní analýze mnohých složek potravin. Obvyklému uspořádání GC-MS systémů při analýze potravin odpovídá ionizace nárazem elektronu (electron impact, EI) s jednoduchým kvadrupolovým (Q) hmotovým filtrem (analyzátorem iontů). 2 Cíle úlohy - seznámit se s možnostmi metod GC-MS pro použití v analýze potravin a s obvyklými technickými parametry instrumentace - osvojit si základní pravidla pro přípravu GC-MS systému k analýze a práci s jednotlivými prvky instrumentace - naučit se pracovat a optimalizovat nastavitelné parametry detekce tak, aby byl dosažen cíl analýzy (zejména způsoby kalibrace MS) - naučit se základním pravidlům interpretace MS spekter (EI) na praktických příkladech. 3 Předpokládané znalosti - principy hmotnostní spektrometrie - možnosti a podmínky ionizace analytů - typy analyzátorů iontů.. 4 Autotest základních znalostí 1. Jaké jsou hlavní součásti hmotnostního spektrometru? 2. Jaké jsou obvyklé pracovní podmínky iontového zdroje při ionizaci nárazem elektronu (EI)? 3. Lze při EI ionizaci měřit také látky, které mají při pracovních podmínkách iontového zdroje nízkou tenzi par? Strana 2 (celkem 10) Karel Cejpek VŠCHT Praha 2006
3 4. Co slouží jako zdroj elektronů pro ionizaci analyzovaných látek (reakčního plynu) v iontovém zdroji? 5. Jaké látky se používají jako tzv. reakční plyny při chemické ionizaci? 6. Co je to hmotové (hmotnostní) spektrum? 7. Co je to efektivní hmota (m/z)? 8. Co jsou monoisotopické ionty? 9. Jaký je obecný rozdíl v hmotnostních spektrech látky získaných po EI ionizaci a chemické ionizaci (CI)? 10. Proč lze s výhodou použít pro kvantifikaci látek analyzovaných metodou GC-MS isotopově značené standardy? 5 Základy práce se systémem GC-MS (EI) 5.1 Parametry plynového chromatografu viz úloha č. 2 v cyklu Laboratoř ze speciální analýzy potravin II (GC-FID) 5.2 Základní charakteristiky MS detektoru - destruktivní, hmotnostní ( mass flow-sensitive ) - odezva se nemění se změnou průtoku - univerzální (skenovací mód) selektivní (režim SIM), nastavitelný pro jakoukoliv složku - mez detekce u obvyklých analytů při analýze potravin 1 pg (SIM) 10 ng (scan), lineární dynamický rozsah až Konkurenční výhody MS detektoru oproti konvenčním detektorům - selektivita (hmotová), nižší nároky na chromatografické rozlišení - více informací pro identifikaci (unikátní spektra) - informace o molekulové hmotnosti - informace o elementární struktuře (vysokorozlišovací MS) - informace o struktuře při řízené fragmentaci, určení funkčních skupin, konektivity - možnost použití isotopově značených standardů pro kvantifikaci. 5.4 Základní prvky MS - systém zavádění vzorků (propojení s GC) - iontový zdroj Strana 3 (celkem 10) Karel Cejpek VŠCHT Praha 2006
4 - analyzátor(y) iontů (separace iontů) - registrační zařízení - zdroj vakua Systém zavádění vzorků - propojení s GC (interface) - požadavky na rozměry a stabilitu stacionární fáze kolony - omezený průměr (i.d. obvykle 0,25-0,32 mm) v závislosti na délce kapilárních kolon a max. výkonu pump; max. průtok 1-2 ml.min -1, příp. dělení toku efluentu (splitter, separátor); omezený průtok efluentu dán nutností evakuace detektoru. - menší tloušťka vrstvy stacionární fáze, stabilnější stacionární fáze a preference nepolárních stacionárních fází; souvisí s citlivostí iontového zdroje vůči znečištění (deposit), snížení výkonnosti systému; typické ionty pocházející ze stacionární fáze. - požadavky na spojovací prvky (fítinky) - kondicionace kolony před zavedením do GC-MS propojení Iontový zdroj - princip ionizačního procesu EI (ionizace nárazem elektronu); pozitivní a negativní ionty; energie; fragmentace organických látek nárazem elektronu, ionizační potenciál, mechanismy fragmentace; vlákno emitující elektrony; parametry iontového zdroje, fokusace; ionizace elektrony: zachycení elektronu neutrální molekulou (záporné ionty se většinou nesledují): ( M + e M ) nebo odstranění elektronu z neutrální molekuly, vznik kladně nabitého molekulového iontu: + M + e M + 2 e ; ionty se při přebytku získané vnitřní energie mohou štěpit na fragmenty nesoucí náboj se sudým (F + ) nebo lichým (F + ) počtem elektronů, neutrální radikály a neutrální částice: + + M F1 + R M + F N, další možný rozpad fragmentačních iontů: F F + N + + F2 F4 + R Strana 4 (celkem 10) Karel Cejpek VŠCHT Praha 2006
5 - princip a parametry chemické ionizace, energie, vznikající ionty, pozitivní a negativní ionty - kombinované iontové zdroje Analyzátory iontů - rozlišovací schopnost (resolution power, RP) m RP =, m 0,5 měření ppm m m ( ) = 10 m M S 6 chyba ppm, kde S m M = naměřená hmota, m S = skutečná hmota - magnetické analyzátory (jednoduchá, dvojitá fokusace) - kvadrupolový analyzátor (Q; single, multiple) popis, parametry, princip filtrace iontů. Separace iontů probíhá v proměnném elektrickém poli umístěném mezi čtyřmi hyperbolickými tyčemi, na které je vloženo stejnosměrné napětí. K tomu, aby ionty pronikly elektrostatickým polem, se musí podrobit oscilaci; stabilita závisí na hodnotě m/z. Radiofrekvenční pole je rychle skenováno, aby byly detegovány všechny ionty v měřeném rozsahu v dostatečném počtu skenů během eluce píku. - iontová past (IT) princip, parametry, odlišnosti od kvadrupolu - průletový analyzátor (TOF) parametry, specifika - MS/MS techniky - analyzátory v tandemu, kolizní cely, výběr prekursorových iontů Zdroj vakua - dvě pumpy - hrubá (olejová) pumpa, - difusní (turbo) pumpa - dosažení vysokého vakua Registrační zařízení - detekce iontů, záznam spektra - zesilovače, elektronový násobič, fotonásobič. 5.5 Druhy, příčiny a odstranění problémů při práci se systémem GC-MS - běžné kontaminanty (ionty) v hmotovém spektru, jejich možné zdroje (z GC i MSD) - symptomy znečištěného detektoru Strana 5 (celkem 10) Karel Cejpek VŠCHT Praha 2006
6 - příčiny znečištění detektoru, prevence znečištění - čištění iontového zdroje, ochrana emisního vlákna (katody) - symptomy týkající se vakua. 6 Interpretace hmotnostních spekter (EI) 6. 1 Srovnání s referenčními spektry uloženými v knihovně hmotnostních spekter - předběžné vyhledávání (redukované spektrum) - podrobné vyhledávání (podle m. h., podle fragmentů) - komerční, nekomerční a vlastní knihovny Interpretace na základě rozboru získaného spektra Základní kroky a pravidla - hlavní pík/ion - molekulární pík, intenzita m. píku a stabilita molekuly, stabilizace cyklizací iontů, stabilizace delokalizací náboje - klastr (skupina) molekulárního píku (isotopické píky/ionty) - přirozené isotopy isotopy C, S, N, halogenů, monoisotopická hmota - stanovení elementárního složení iontů (sumární vzorec) - dusíkové pravidlo, počet nenasycených míst, pravidlo sudého počtu elektronů, Stevenson-Audierovo pravidlo - možnost potvrzení nálezu analyzované látky na základě prokázání přítomnosti odpovídajících iontů s typickými hodnotami m/z a s charakteristickým poměrem intenzit v daném retenčním čase Základní pravidla fragmentace - závislost na instrumentálních a experimentálních podmínkách - míra fragmentace souvisí s disociační energií jednotlivých vazeb v molekule - hledání a hodnocení typických fragmentů iontů nebo neutrálních fragmentů, indikátorů přítomnosti funkčních skupin nebo strukturních typů sloučenin - obecně platné projevy fragmentace některých strukturních typů organických sloučenin. Strana 6 (celkem 10) Karel Cejpek VŠCHT Praha 2006
7 7 Použitá instrumentace N network GC System s 5973N Mass Selective Detector, příp. s 5975 inert Mass Selective Detector, vše Agilent Technologies. 8 Práce se systémem GC-MS (EI) Po inspekci nástřikového prostoru se připraví a poté do přístroje nainstaluje vhodná kolona. Přístroj se zapne, nastaví se požadovaný průtok nosného plynu kolonou, splitový poměr, teplota pece, nástřiku a detektoru a poté se nahraje, event. upraví příslušná metoda a spustí se pumpy. Po několika desítkách minut až hodinách jsou dosažené podmínky v detektoru vhodné pro analýzu. 8.1 Optimalizace parametrů detektoru (GC-MS) - kalibrace MSD - důvody, provedení, parametry, vyhodnocení - testovací sloučeniny a směsi. 8.2 Režimy snímání hmotnostních spekter - GC-MS experimenty - full scan - data jsou použita k vytvoření TIC - SIM - technika určená pro stopovou analýzu - doba skenovacího cyklu, délka elučního pásu (10-15 s). Strana 7 (celkem 10) Karel Cejpek VŠCHT Praha 2006
8 8.3 Přístrojové podmínky GC-MS - běžné GC parametry - rozsah hmot, nastavení solvent delay. 9 Dílčí úlohy a demonstrace Studenti (laboratorní skupina) provedou minimálně jednu úlohu z každé skupiny úloh podle pokynů vyučujícího. 9.1 Prohlížení a zpracování získaných chromatografických a spektrálních dat Práce s modelovými směsmi, většinou rozbor již získaných záznamů - - čistota chromatografických píků - průměrná spektra - určení poměru iontů - prohlížení a srovnání tabelovaných spekter - určení pravděpodobného molekulárního iontu - stanovení počtu atomů C v molekule - srovnání přesných hmot - stanovení počtu a druhu halogenů - identifikace důležitých substruktur. 9.2 Identifikace složek analyzované směsi GC-MS analýza různých vzorků extrakty z Maillardových systémů, lihoviny, extrakty s rozkladnými produkty česneku, silice aj. Cílem je určení neznámých látek srovnáním s dostupnými knihovnami spekter, rozborem spektra a srovnáním s dalšími údaji (retenčními indexy) v databázích dodaných vyučujícím, příp. srovnáním se standardy. Také práce s již získanými záznamy GC-MS analýz - výběr knihovny spekter Strana 8 (celkem 10) Karel Cejpek VŠCHT Praha 2006
9 - odečet a vyčištění spektra - interpretace výsledků srovnání spektra s tabelovanými spektry - hledání sloučenin (jejich spekter) v knihovnách - tvorba vlastní knihovny spekter. 9.3 Stanovení známých látek - aplikace režimu SIM (Selected Ion Monitoring, sledování zvolených iontů) - demonstrace zvýšené citlivosti a selektivity (na vybraných extraktech). 9.4 Diagnóza a odstranění problémů GC-MS systému - chromatografické symptomy - symptomy hmotnostního detektoru - symptomy tlakové - symptomy teplotní. 10 Kontrolní otázky 1. Jaké omezení plynou pro výběr kapilárních kolon při GC-MS aplikacích? 2. Ve kterých případech a pro které typy struktur volíme MS metody s chemickou ionizací? 3. Proč je nutné udržovat v prostoru MS detektorů (tj. v iontovém zdroji a analyzátoru) nízký tlak ( vakuum )? 4. Vysvětlete příčinu fragmentace molekulárních iontů při ionizaci nárazem elektronů (EI). 5. Co se děje během optimalizace podmínek (ladění) GC-MS systému? 6. Vysvětlete, proč lze za použití režimu sledování vybraných iontů (SIM) dosáhnout řádově lepší citlivosti než při snímání celého spektra iontů (full scan, TIC). 7. Co je to rozlišovací schopnost spektrometru a chyba měření hmoty (v ppm)? 8. Popište základní strategii při interpretaci spekter. 9. Jaké jsou základní charakteristiky EI spektra alkanů? 10. Jaké jsou základní charakteristiky EI spektra aromatických uhlovodíků? Strana 9 (celkem 10) Karel Cejpek VŠCHT Praha 2006
10 . 11 Řešení autotestu 1. Zařízení pro vstup vzorku, iontový zdroj, analyzátor iontů, registrační zařízení. 2. Energie emitovaných elektronů ev (obvykle (50-)70 ev), pracovní tlak Pa, teplota do 400 C. 3. Ne. Ionizace nárazem elektronu (podobně i CI) probíhá pouze u molekul v plynném stavu. 4. Jako zdroj elektronů slouží wolframová nebo rheniová katoda (žhavené vlákno ), která poskytuje emisní proud do 500 µa. 5. Nejčastěji methan, také n-propan, isobutan, vodík, methanol, amoniak, atd. 6. Hmotové spektrum (čárové nebo spojité) je výsledkem (záznamem) detekce iontů (fragmentů) v určitém rozsahu hodnot m/z (osa x). Intenzita čar/píků (osa y) je úměrná počtu fragmentů s konkrétní hodnotou m/z během jednoho skenu. 7. Efektivní hmota m/z představuje poměr hmoty (relativní molekulové hmotnosti) a počtu nábojů (obvykle +1, ale také +2 nebo +3), tj. bezrozměrných veličin. Pokud je hmota vyjádřena v daltonech (Da), m/z se uvádí v thomsonech (Th). 8. Jsou to ionty skládající se pouze z jednoho isotopu každého z prvků přítomných v ionizované molekule (fragmentu). 9. Ionizace EI (70 ev) umožňuje rozsáhlejší fragmentaci molekuly než měkčí CI. EI spektra proto obsahují obecně molekulový ion s nižší intenzitou a četnější fragmentární ionty než CI. Za podmínek CI je molekulový ion obvykle základním (base) iontem. 10. Isotopově značený standard má totožné chování (vlastnosti) v GC systému jako neznačená analyzovaná látka, při MS detekci jej lze ale snadno odlišit odlišnou hmotou. Strana 10 (celkem 10) Karel Cejpek VŠCHT Praha 2006
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE MASS SPECTROMETRY (MS) Alternativní názvy (spojení s GC, LC, CZE, ITP): Hmotnostně spektrometrický (selektivní) detektor Mass spectrometric (selective) detector (MSD) Spektrometrie
Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie
Klinická a farmaceutická analýza Petr Kozlík Katedra analytické chemie e-mail: kozlik@natur.cuni.cz http://web.natur.cuni.cz/~kozlik/ 1 Spojení separačních technik s hmotnostní spektrometrem Separační
INTERPRETACE HMOTNOSTNÍCH SPEKTER
INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku
Iontové zdroje II. Iontové zdroje pracující za sníženého tlaku Elektronová/chemická ionizace Iontové zdroje pro spojení s planárními separacemi Ionizace laserem za účasti matrice Ambientní ionizační techniky
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE A MOŽNOSTI JEJÍHO SPOJENÍ SE SEPARAČNÍMI METODAMI SEPARACE chromatografie CGC, GC x GC HPLC, UPLC, UHPLC, CHIP-LC elektromigrační m. CZE, CITP INTERFACE SPOJENÍ x ROZHRANÍ GC vyhřívaná
Hmotnostní spektrometrie
Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů
Hmotnostní spektrometrie - Mass Spectrometry (MS)
Hmotnostní spektrometrie - Mass Spectrometry (MS) Další pojem: Hmotnostně spektrometrický (selektivní) detektor - Mass spectrometric (selective) detector (MSD) Spektrometrie - metoda založená na interakci
No. 1- určete MW, vysvětlení izotopů
No. 1- určete MW, vysvětlení izotopů ESI/APCI + 325 () 102 (35) 327 (33) 326 (15) 328 (5) 150 200 250 300 350 400 450 500 ESI/APCI - 323 () 97 (51) 325 (32) 324 (13) 326 (6) 150 200 250 300 350 400 450
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení těkavých látek (metoda: plynová chromatografie s hmotnostně spektrometrickým detektorem) Garant úlohy: doc. Ing. Jana Pulkrabová, Ph.D. 1 OBSAH
10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie
10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých
Hmotnostní spektrometrie. Historie MS. Schéma MS
Hmotnostní spektrometrie MS mass spectrometry MS je analytická technika, která se používá k měření poměru hmotnosti ku náboji (m/z) u iontů původně studium izotopového složení dnes dynamicky se vyvíjející
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie II. Příprava předmětu byla podpořena projektem
Indentifikace molekul a kvantitativní analýza pomocí MS
Indentifikace molekul a kvantitativní analýza pomocí MS Identifikace molekul snaha určit molekulovou hmotnost, sumární složení, strukturní části molekuly (funkční skupiny, aromatická jádra, alifatické
Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně
Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně Šárka Dušková 24. září 2015-61. konzultační den Hodnocení expozice chemickým látkám na pracovištích 1 HPLC-MS/MS HPLC high-performance
Hmotnostní detekce v separačních metodách
Hmotnostní detekce v separačních metodách MC230P83 2/1 Z+Zk 4 kredity doc. RNDr. Josef Cvačka, Ph.D. Mgr. Martin Hubálek, Ph.D. Ústav organické chemie a biochemie AVČR, v.v.i. Flemingovo nám. 2, 166 10
Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin
Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními principy hmotnostní spektrometrie a v žádném případě nezahrnuje
Laboratoř ze speciální analýzy potravin II. Úloha 2 - Plynová chromatografie (GC-FID)
1 Úvod... 2 2 Cíle úlohy... 2 3 Předpokládané znalosti... 3 4 Autotest základních znalostí... 3 5 Výpočty a nastavení proměnných při separaci... 3 5.1 Druhy interakcí... 3 5.2 Chromatogram... 3 5.3 Parametry
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení těkavých látek (metoda: plynová chromatografie s hmotnostně spektrometrickým detektorem) Garant úlohy: Ing. Jaromír Hradecký, Ph.D. 1 OBSAH Základní
Separační metody v analytické chemii. Plynová chromatografie (GC) - princip
Plynová chromatografie (GC) - princip Plynová chromatografie (Gas chromatography, zkratka GC) je typ separační metody, kdy se od sebe oddělují složky obsažené ve vzorku a které mohou být převedeny do plynné
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE -samostatně - strukturní analýza, identifikace látek - kvalitativní i kvantitativní detekce v GC a LC - prvková analýza kombinace s ICP - pyrolýzní hmotnostní spektrometrie - analýza
Spojení hmotové spektrometrie se separačními metodami
Spojení hmotové spektrometrie se separačními metodami RNDr. Radomír Čabala, Dr. Katedra analytické chemie Přírodovědecká fakulta Univerzita Karlova Praha Spojení hmotové spektrometrie se separačními metodami
Hmotnostní spektrometrie (1)
Hmotnostní spektrometrie (1) 12_Chudoba_HCVDGrigsby_1ACC 12 (0.677) 57 % 27 43 55 41 28 29 32 54 69 67 67 71 83 81 79 85 95 93 97 99 105 111 113 125 127 137 153155 165 183 197 211 225 20 40 60 80 100 120
SBORNÍK PŘÍSPĚVKŮ. XXXVIII. Symposium o nových směrech výroby a hodnocení potravin Skalský Dvůr
SBORNÍK PŘÍSPĚVKŮ XXXVIII. Symposium o nových směrech výroby a hodnocení potravin 21. 23. 5. 2007 Skalský Dvůr Ed. Holasová M., Fiedlerová V., Špicner J. VÚPP, Praha 2007 ISSN 1802-1433 RYCHLÉ METODY PRO
DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018
DETEKTORY pro kapalinovou chromatografii Izolační a separační metody, 2018 Detektory v kapalinové chromatografii Typ detektoru Zkratka Měřená veličina Refraktometrický detektor RID index lomu Spektrofotometrický
Chromatografie. Petr Breinek
Chromatografie Petr Breinek Chromatografie-I 2012 Společným znakem všech chromatografických metod je kontinuální dělení složek analyzované směsi mezi dvěma fázemi. Pohyblivá fáze (mobilní), eluent Nepohyblivá
HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth edition, Blackie Academic & Professional 1996 Colin F. Poole and Salwa K.
Vysokoúčinná kapalinová chromatografie - Detektory - I Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth
ÚSTAV CHEMIE A ANALÝZY POTRAVIN
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMIE A ANALÝZY POTRAVIN Technická 5, 166 28 Praha 6 tel./fax.: + 420 220 443 185; jana.hajslova@vscht.cz LABORATOŘ Z ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ
Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda
Zdroje iont používané v hmotnostní spektrometrii Miloslav Šanda Ionizace v MS Hmotnostní spektrometrie je fyzikáln chemická metoda, pi které se provádí separace iont podle jejich hmotnosti a náboje m/z
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie I. Příprava předmětu byla podpořena projektem
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda
MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL Miloslav Šanda Ionizaní techniky využívané k analýze biomolekul (biopolymer) MALDI : proteiny, peptidy, oligonukleotidy, sacharidy ESI : proteiny, peptidy, oligonukleotidy,
Mass Spectrometry (MS) Lenka Veverková 2012
HMOTNOSTNÍ SPEKTROMETRIE Mass Spectrometry (MS) Lenka Veverková 2012 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře
ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE
ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE (c) David MILDE 2003-2010 Metody anorganické MS ICP-MS hmotnostní spektrometrie s indukčně vázaným plazmatem, GD-MS spojení doutnavého výboje s MS, SIMS hmotnostní
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
Základy hmotnostní spektrometrie
Základy hmotnostní spektrometrie Hmotnostní spektrometrie Spektrometrické metody metody založen ené na interakci hmoty a záenz ení Hmotnostní spektrometrie je fyzikáln ln chemická metoda, která využívá
Základní principy interpretace spekter
Základní principy interpretace spekter Vyloučení iontů, které nesouvisí s analytem Určení molekulové hmotnosti Určení prvků přítomných v molekule Určení elementárního složení z přesné hmotnosti Hledání
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
GC-MS aplikace v toxikologii
Plynová chromatografie a hmotnostní spektrometrie (GC-MS) GC-MS aplikace v toxikologii M. Balíková GC-MS aplikace v toxikologii MS (mass spectrometry) hmotnostní spektrometrie: fyzikálně chemická metoda
HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice
HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice Lukáš Chytil Ústav organické technologie VŠCHT Praha Medicinální diagnostika a hmotnostní spektrometrie Medicinální diagnostika: - Klasické
Základní principy interpretace spekter
Základní principy interpretace spekter Obecný postup interpretace spekter Určení molekulové hmotnosti Fragmentace iontů se sudým počtem elektronů Fragmentace iontů s lichým počtem elektronů Interpretace
Kapalinová chromatografie ve spojení s hmotnostní detekcí ( LC-MS )
Úloha do laboratorního cvičení - Speciální metody Kapalinová chromatografie ve spojení s hmotnostní detekcí ( LC-MS ) Analýza bílého vína: stanovení organických kyselin Teoretická část úlohy: Chemické
06. Plynová chromatografie (GC)
06. Plynová chromatografie (GC) Plynová chromatografie je analytická a separační metoda, která má výsadní postavení v analýze těkavých látek. Mezi hlavní výhody této techniky patří jednoduché a rychlé
jako markeru oxidativního
Monitoring koncentrace 8-isoprostanu jako markeru oxidativního stresu v kondenzátu vydechovaného vzduchu Lukáš Chytil Ústav organické technologie Úvod Cíl: - nalezení vhodného analytické metody pro analýzu
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Odůvodnění veřejné zakázky
Odůvodnění veřejné zakázky ZADAVATEL: Česká zemědělská univerzita v Praze Sídlem: Kamýcká 129, 165 21 Praha - Suchdol Zastoupený: Ing. Jana Vohralíková, kvestorka IČO: 60460709 Profil zadavatele: https://zakazky.czu.cz
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS 1 Rozsah a účel Postup je určen pro stanovení obsahu melaminu a kyseliny kyanurové v krmivech. 2 Princip
PLYNOVÁ CHROMATOGRAFIE (GC)
PLYNOVÁ CHROMATOGRAFIE (GC) Dělení látek mezi stacionární a mobilní fázi na základě rozdílů v těkavosti a struktuře (separované látky vykazují rozdílnou chromatografickou afinitu) Metoda vhodná pro látky:
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE Mass Spectrometry (MS) (c) Lenka Veverková, 2013 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře
Hmotnostní analyzátory a detektory iont
Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory Hmotnostní analyzátory Rozdlí ionty v prostoru nebo v ase podle jejich m/z Analyzátory Magnetický analyzátor (MAG) Elektrostatický analyzátor
Hmotnostní spektrometrie
Hmotnostní spektrometrie Vznik a detekce iontů EI spektra, interpretace Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Charakter hmotnostního spektra Způsob detekce (pokud jde
STANOVENÍ STOPOVÝCH KONCENTRACÍ FAME V LETECKÉM PETROLEJI. JAROSLAV KÁŇA a, JOSEF CHUDOBA b, PAVEL ŠIMÁČEK a a MILAN POSPÍŠIL a. Experimentální část
STANOVENÍ STOPOVÝCH KONCENTRACÍ FAME V LETECKÉM PETROLEJI JAROSLAV KÁŇA a, JOSEF CHUDOBA b, PAVEL ŠIMÁČEK a a MILAN POSPÍŠIL a a Ústav technologie ropy a alternativních paliv, Fakulta technologie ochrany
CRH/NPU I - Systém pro ultraúčinnou kapalinovou chromatografii (UHPLC) ve spojení s tandemovým hmotnostním spektrometrem (MS/MS)
ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY v souladu s 156 zákona č. 137/2006, Sb., o veřejných zakázkách, ve znění pozdějších předpisů Nadlimitní veřejná zakázka na dodávky zadávaná v otevřeném řízení v souladu s ust.
Pondělí 10. září 2007
Pondělí 10. září 2007 8:00-13:00 Příjezd účastníků, registrace, instalace stánků 12:00-13:00 Oběd Sekce 1: Úvod do hmotnostní spektrometrie (předsedající: M. Ryska, V. Havlíček) 13:00-13:10 J. Čáslavský
Moderní nástroje v analýze biomolekul
Moderní nástroje v analýze biomolekul Definice Hmotnostní spektrometrie (zkratka MS z anglického Mass spectrometry) je fyzikálně chemická metoda. Metoda umožňující určit molekulovou hmotnost chemických
Kapalinová chromatografie s tandemovou hmotnostní detekcí Teoretický úvod
Kapalinová chromatografie s tandemovou hmotnostní detekcí Teoretický úvod Vysokoúčinná kapalinová chromatografie s tandemovou hmotnostní detekcí se řadí mezi nejcitlivější separační metody určené ke kvantitativní
Hmotnostní analyzátory II
Hmotnostní analyzátory II Typy analyzátorů Iontová cyklotronová rezonance Orbitrap Analyzátory iontové pohyblivosti Hybridní hmotnostní spektrometry Hmotnostní analyzátor Vzorek Data Iontový zdroj Hmotnostní
Vysokoúčinná kapalinová chromatografie
Vysokoúčinná kapalinová chromatografie HPLC High Performance Liquid Chromatography Vysokoúčinná...X... Vysoceúčinná kapalinová chromatografie RRLC Rapid Resolution Liquid Chromatography Rychle rozlišovací
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT
VYHDNCVÁNÍ CHRMATGRAFICKÝCH DAT umístění práce: laboratoř č. S31 vedoucí práce: Ing. J. Krupka 1. Cíl práce: Seznámení s možnostmi, které poskytuje GC chromatografie pro kvantitativní a kvalitativní analýzu.
ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY DLE 156 ZÁKONA 137/2006 Sb., O VEŘEJNÝCH ZAKÁZKÁCH
ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY DLE 156 ZÁKONA 137/2006 Sb., O VEŘEJNÝCH ZAKÁZKÁCH ZADAVATEL Ústav makromolekulární chemie AV ČR, v.v.i. Sídlem Heyrovského nám. 2, 16206, Praha 6 IČ: 61389013 Jednající: RNDr.
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS 1 Účel a rozsah Tato metoda specifikuje podmínky pro stanovení nepovolených doplňkových látek Zn-bacitracinu,
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS)
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS) Fejgl 1,2, M., Černý 1,3, R., Světlík 1,2, I., Tomášková 1, L. 1 CRL ODZ ÚJF AV ČR, v.v.i., Na Truhlářce 39/64, 180 86 Praha 8 2 SÚRO,
Kombinované techniky
Kombinované techniky Separace/izolace složek Identifikace frakcí Kvantifikace složek Řešení multidisciplinární přístup - postupná aplikace metod simultánní přístup spřažené techniky pomlčkové techniky
Program 14. ročníku Školy hmotnostní spektrometrie
Program 14. ročníku Školy hmotnostní spektrometrie 16. - 20. září 2013, Priessnitzovy léčebné lázně a.s., Jeseník Pondělí 16. 9. 2013 11:00-13:30 Příjezd účastníků, registrace, instalace stánků firem Zahájení
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav chemie a analýzy potravin. Aplikovaná hmotnostní spektrometrie (MS)
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav chemie a analýzy potravin Aplikovaná hmotnostní spektrometrie (MS) VŠCHT PRAHA 2 A brief introdusction to mass spectrometry http://www.youtube.com/watch?v=nuih9-6fm6u
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Část 16 Iontová chromatografie Iontová chromatografie je speciální technika vyvinutá pro separaci anorganických iontů a organických
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Základy interpretace MS spekter získaných měkkými ionizačními technikami. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.
Základy interpretace MS spekter získaných měkkými ionizačními technikami Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Pravidlo sudého počtu elektronů v (kvazi)molekulárním iontu
TYPY KOLON A STACIONÁRNÍCH FÁZÍ V PLYNOVÉ CHROMATOGRAFII
TYPY KOLON A STACIONÁRNÍCH FÁZÍ V PLYNOVÉ CHROMATOGRAFII Náplňové kolony - historicky první kolony skleněné, metalické, s metalickým povrchem snažší výroba, vysoká robustnost nižší účinnost nevhodné pro
CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).
CHROMATOGRAFIE ÚOD Existují různé chromatografické metody, viz rozdělení metod níže. Společný rys chromatografických dělení: vzorek jako směs látek - složek se dělí na jednotlivé složky působením dvou
Hmotnostní spektrometrie ve spojení se separačními metodami
Pražské analytické centrum inovací Projekt CZ.04.3.07/4.2.01.1/0002 spolufinancovaný ESF a Státním rozpočtem ČR Hmotnostní spektrometrie ve spojení se separačními metodami Ivan Jelínek PřF UK Praha Definice:
Metody spektrální. Metody hmotnostní spektrometrie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Metody hmotnostní spektrometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti HMOTNOSTNÍ SPEKTROMETRIE - samostatně - strukturní analýza, identifikace látek - kvalitativní
zbytkové plyny (ve velmi vysokém vakuu: plyny vzniklé rozkladem těchto látek, nebo jejich syntézou Vakuová fyzika 1 1 / 43
Měření parciálních tlaků V měřeném prostoru se zpravidla nachází: zbytkové plyny (ve velmi vysokém vakuu: H 2, CO, Ar, N 2, O 2, CO 2, uhlovodíky, He) vodní pára páry organických materiálů, nacházejících
Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku
MC230P43 Hmotnostní detekce v separačních metodách, 2015 Iontové zdroje II. Iontové zdroje pracující za sníženého tlaku Elektronová/chemická ionizace Iontové zdroje pro spojení s planárními separacemi
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení vinylthiooxazolidonu (dále VOT) v krmivech.
Hmotnostní spektrometrie
Hmotnostní spektrometrie MS - ÚVOD Základní pojmy v hmotnostní sp. Hmotnostní spektrometrie = Mass Spectrometry = MS - analytická metoda, která slouží k převedení molekul na ionty, rozlišení těchto iontů
Modulace a šum signálu
Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr
Diagnostika bronchiálního. ho astmatu HPLC/MS analýzou. Kamila Syslová Ústav organické technologie
Diagnostika bronchiálního ho astmatu HPLC/MS analýzou Kamila Syslová Ústav organické technologie Bronchiální astma Civilizační onemocnění rostoucí počet případů snižující se věková hranice prvních projevů
Chyby spektrometrických metod
Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1 Jan Sýkora LC/NMR Jan Sýkora (ÚCHP AV ČR) LC - NMR 1 H NMR (500 MHz) mez detekce ~ 1 mg/ml (5 µmol látky) NMR parametry doba
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Metody separace. přírodních látek
Metody separace přírodních látek (5) Chromatografie; základní definice a klasifikace ruzných metod; kapalinová chromatografie, plynová chromatografie, přístrojová technika. Chromatografie «F(+)d» 1897
Hmotnostní spektrometrie zdroj analytických informací
Klin. Biochem. Metab., 20 (41), 2012, No. 4, p. 210 215. Hmotnostní spektrometrie zdroj analytických informací Friedecký D. 1,2, Lemr K. 3 1 Laboratoř dědičných metabolických poruch, OKB, Fakultní nemocnice
Stručná historie hmotnostní spektrometrie. Analytická chemie II: Úvod do hmotnostní spektrometrie. Stručná historie hmotnostní spektrometrie.
ACh II - MS Analytická chemie II: Úvod do hmotnostní spektrometrie Jan Preisler 3A14, Ústav chemie PřF MU, UKB, tel.: 54949 6629 preisler@chemi.muni.cz Specializovaný kurz: C7895 Hmotnostní spektrometrie
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC 1 Rozsah a účel Tato metoda specifikuje podmínky pro stanovení dekochinátu metodou vysokoúčinné kapalinové chromatografie
Stanovení složení mastných kyselin
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení složení mastných kyselin (metoda: plynová chromatografie s plamenovým ionizačním detektorem) Garant úlohy: Ing. Jana Kohoutková, Ph.D. 1 Obsah
Molekulární modelování a bioinformatika. Hmotnostní spektrometrie I
Molekulární modelování a bioinformatika Hmotnostní spektrometrie I Co nás čeká 1) Základy hmotnostní spektrometrie, ionizační techniky, analyzátory, fragmentační techniky. 2) Měření proteinů, peptidů,
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE Prof. RNDr. Jan Vřešťál, DrSc. Doc. RNDr. Pavel Brož, Ph.D. MASARYKOVA UNIVERZITA, PŘÍRODOVĚDECKÁ FAKULTA, KATEDRA TEORETICKÉ A FYZIKÁLNÍ CHEMIE, Sylabus přednášky 1. Postavení
Dusíkové pravidlo. Počet dusíků m/z lichá m/z sudá 0, 2, 4,... (sudý) EE + OE +.
Dusíkové pravidlo Základní formulace (platí pro M R a OE +. ): lichá M R = lichý počet dusíků v molekule sudá M R = sudý počet dusíků v molekule nebo nula Pro ionty EE + přesně naopak: lichá hodnota m/z
Iontové zdroje. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
Iontové zdroje Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Elektronová ionizace (Electron ionization, Electron Impact, EI) Dempster, Bleakney, Nier Látka je v plynném stavu
P. Martinková, D. Pospíchalová, R. Jobánek, M. Jokešová. Stanovení perfluorovaných organických látek v elektroodpadech
P. Martinková, D. Pospíchalová, R. Jobánek, M. Jokešová Stanovení perfluorovaných organických látek v elektroodpadech Perfluorované a polyfluorované uhlovodíky (PFC,PFAS) Perfluorované - všechny vodíky
Hmotnostní spektrometrie
Hmotnostní spektrometrie Hmotnostní spektrometrie (MS) je analytická metoda sloužící k převedení molekul na ionty, rozlišení těchto iontů podle poměru hmotnosti a náboje (m/z) a následnému záznamu relativních