Aktualizovaný, opravený klíč s konstrukcemi v měřítku 1 : 1
|
|
- Otakar Malý
- před 8 lety
- Počet zobrazení:
Transkript
1 PRO ŽÁY 9. TŘÍ ZŠ tualizovaný, oravený líč s onstrucemi v měřítu 1 : 1 líč e sbírce testových úloh 1. Číslo a roměnná (s. 14 9) 1.1 Oerace s celými čísly, desetinnými čísly a zlomy s ;. 6; );. ); 3. ) ) NO;. N (je záorné); 3. NO 08 ) NO;. N (rovná se); 3. NO ) (-0,35) ) (-1,6);. ) ( 3 3 ); 3. ) (5,45) 14 -, šedesátrát );. ); 3. ) 19 ) 0 60 cm , N (číslo 41 je rvočíslo);. NO 3 (ciferným součtem je číslo 37); 3. NO (rvočísla, 3 a 5) 5 1. NO;. NO; 3. N (číslo není dělitelné devíti) 6 1. NO;. N (ciferný součet není dělitelný devíti); 3. NO ; ; ) 1. Oerace s algebraicými výrazy s x z + 8z b-10a );. ); 3. ) 05 y 06 4,5 07 ) 08-8a 4 b c ( ) 10 ) 11 r r 4s x 3y x ( + ) = + 3xy + 9 y ; ( ) = x y ( x 3y );. ab b ) 5 5n 6 ) a -0b ; );. ); 3. ) 15 u -v xy ( 15xy)+ 9 x y 17 9 ( t + u) ( t u) 18 m = ) 0 ) (5ab) 1 15n 1.3 ineární rovnice s a = 0 nemá řešení N (x = 0,3);. N (jen x = 0); 3. NO (x = 1) ) (x = -1);. ); 3. ) 05 ) (x = 1) 06 x = 3; ( 3)= P( 3)= 7 07 x = 1, 4 08 x =, 5; nutnou součástířešení je zouša (, 5)= P(, 5)= 0, ří. stanovení odmíny x 0, 4 09 ) 10 x = 7 11 x = 3 1 = lovní úlohy s ) mincí sříně; cm;. 4 : N (16 záasů);. NO; 3. N (17 týmů) uchazečů );. F) (9 úloh); 3. ) 09 0,7 m 10 ) (90 žáů) N 3 ( 7);. N (160 č); 3. N č ) (48 náojů);. ) (56 náojů); 3. ) (76 náojů) 14 Nejvíce letáů roznesl oře v áte, a to 5 1 zásily, nejméně a ve čtvrte, a to 5 4 zásily. 15 V ondělí i v úterý snědl ichal 5 balení, ve středu a 1 balení Nutelly. 16 ) 17 ) č N (je rovna 6 m/s);. N (159 m); 3. NO č;. 67 č l;. 3 rybiče; s dánií, 14 s neone, 10 s teter 1. NO;. NO (8 cm); 3. N (1 cm) 3 GO = 60 ; OG = 30 ; OG = č;. 7,5 l/100 m 5 1 cm ; 94 cm ; 86 cm ; 8 cm ; 6 cm 6 9 bonbónů dílů;. 1 částí; 3. 1 čoolád 8 1. NO;. NO; 3. NO 9 1. F) (64 h);. ); 3. ) 1.5 Procenta s F) (96);. ); 3. ) 0 ) ,8 g g sů 06 7 min č %; volných míst 09 9 % č č 1 1. ) (61 č);. F) (750 č); 3. ) (65 č) h č N ( č);. N (7 700 č); 3. NO (min. 8 s) cm NO;. NO; 3. N (960 č) );. F) (15 %); 3. ) č 0 1. N (o 6 méně);. N (1,5násobný); 3. NO 1 1. N (o více než 56 %);. NO; 3. N (Obsah nového obdélníu tvoří 93,75 % obsahu ůvodního obdélníu.) 14 ÍČ bíra testových úloh Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis 016
2 . Závislosti, vztahy a ráce s daty (s ).1 Práce s daty v tabulce s ) (180 č);. ) (350 č); 3. ) (500 č) dětí; osob; studentů N (45 bodů);. N; 3. NO (arolína 31 bodů, Vitor 3 bodů) žáů;. 99 žáů; 3. 3 %; %. Práce s daty v grafu s N (oles o 8 );. N (-11,6 ); 3. NO hlasů;. 0 hlasů; dětí diváů;. 14 % N (15 zástuců);. N (bylo jich stejně, a to 4); 3. NO č;. v neděli; č 3. Geometrie v rovině a rostoru (s ) 3.1 Převody jednote s ;. 0,5; ) );. ); 3. ) ;. 40,3; 3. 0, ) ) 08 1 : hrnů 10 51, litru N (8 % odovídá 88 s);. NO; 3. NO min; ;. 00rát; );. ); 3. ) N ( loty = 6 ídí);. N ( sáhy = 144 alců); 3. N ( střevíce = 4 alců) 3. onstruční úlohy s o X Y o T ÍČ bíra testových úloh Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis
3 ÍČ bíra testových úloh Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis X Y w X T Y R G
4 ÍČ bíra testových úloh Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis T I c P H F
5 17 18 R O P X. Pois onstruce: 1. Zareslíme objety ze zadání (olořímu, úseču, olořímu oačnou olořímce ).. Narýsujeme osu úhlu, označíme ji o Narýsujeme osu úhlu X, označíme ji o (bod X leží na olořímce oačné olořímce ). 4. Průsečí os o 1 a o označíme. 5. Z bodu vedeme olmici olořímce, atu olmice označíme P. 6. estrojíme ružnici se středem v bodě a oloměrem P F);. ); 3. ) 1 1. );. ); 3. F) (8) 1. NO;. NO; 3. NO 3 1. N (uselo by se jednat o úhel roti delší straně.);. N (Jsou odobné.); 3. N (Čtverec a osočtverec mají stejné dély stran a nejsou shodné.) 3.3 Pravoúhlý trojúhelní s );. ); 3. F) 0 1. N (je větší);. N (rovná se); 3. NO m= 6, 5 m m 05 o 5 m m NO;. NO; 3. NO 08 8 m 09 ) cm cm 1 s = 10 cm 13 1 : );. ); 3. ) 15 ) 16 o 00 m 17 8 m/h 18 v = 7 cm 19 1.,38 cm;. 67 cm 0 ) 3.4 Vlastnosti úhlů s ) 0 1. j = 10 ;. y = 30 ; 3. w = NO;. N (latí jen ro ostroúhlé trojúhelníy); 3. N (oučet veliostí jen těchto dvou vnitřních úhlů by řeročil 180.) 04 e = ( a = 4 ; b = 6 ; g = 11 ); 1. N;. NO; 3. NO t = a = a = 48 ; b = 7 ; g = 60 ;. a = 4 ; b = 36 ; g = ) 1 ) F) (8 );. ); 3. ) a = 16 ;. b = 36 ; 3. g = ) (150 ) Obvody a obsahy rovinných útvarů s NO;. NO; 3. N (5 cm) 0 ) m, ří. 1 m;. = 0,7 m ; ÍČ bíra testových úloh Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis 016
6 cm ; 3. : 1;. 4. N N 06 = 1 cm o = 80 cm;. F =16 cm; 3. 31,5 %; 4. = 60 cm 08 ) (obvod čtverce je 48 cm, obvod obdélníu je 5 cm) o = 56 cm;. 0 cm 10 ) 11 4 : NO;. NO; 3. NO 13 1 : 14 = 600 cm = 5 cm ;. 3 : 4; 3. = mm o =,4 m;. = 0,8 m N (Označíme-li růsečí úhloříče, a by dva vnitřní úhly trojúhelníu byly ravé.);. NO; 3. NO );. ); 3. ) 19 ) 0 = 1 84 cm 1 1. N (1 ha odovídá loše 500 čtverců);. NO; 3. NO o,8 dm m 4 1. );. ); 3. F) (řibližně 43 %) 3.6 Objemy a ovrchy těles s NO;. NO; 3. N (Jedna ěta je roti osmičce.) 0 ) stěn;. 10 vrcholů; hran 04 ) 05 o cm 3 06 o 4 hran );. F); 3. ) 08 ) );. ); 3. ) NO;. N (Povrch válce má více než 75 cm.); 3. NO 11 ) (V I = cm 3 ; V II = cm 3 ; V III = cm 3 ) 1 1. V = 1 l;. V = cm 3 ; 3. = 0,54 m );. ); 3. ) N (větší o obsah stěn rychle);. NO; 3. NO N (Těleso má 6 vrcholů.);. NO; 3. NO 16 = 800 cm 17 V = 0,75 m 3 18 ) 19 d = 0 m 0 V = 0, m N (Obvod čtverce s obsahem není stejný jao obvod ruhu s obsahem.);. NO; 3. N (Vylývá z různých obvodů odstav, viz úloha 1.1.) V = 7,07 dm 3 3 V = 750 m 3 4. Nestandardní aliační úlohy (s ) 01 Úloha má dvě řešení: První číslo 1 a druhé číslo 5, nebo rvní číslo 6 a druhé číslo ; cifer 04 n = ) 06 ) 07 ) % ) (V 1. vydání došlo chybě a řešením je i možnost ). Při oravě možnosti ) na v bodě, terý je vnitřním bodem úsečy je srávně již ouze možnost ).) 1 1. N (4,5 m);. N (0,5 m); 3. N (od je vnitřním bodem úsečy Z.) ÍČ bíra testových úloh Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis
7 líč cvičným didaticým testům idaticý test 1 s , ; ; y;. y - y y = %;. 0 m; m ,5rát;. Obsah zůstane stejný m;. 1,6 m Pozn.: Poloměr ůlružnic je 1,5 cm.. rovnoramenný trojúhelní N;. NO; 3. N 1 1. N;. N; 3. N 13 ) 14 ) 15 ) );. ); 3. ) g;. 10 g idaticý test s , nebo 6 5 ; ; x + x nebo x ( 3x + 1);. 3y - 5y + 05 y = mil. č;. 3rát; 3. 4 mil. č ;. 5 g; lahví m;. 9 ha Z X Y 130 ÍČ vičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis 016
8 ,4 cm r o s N;. NO; 3. NO 1 1. NO;. NO; 3. N 13 ) 14 ) 15 ) );. ); 3. ) žáů;. z 9. idaticý test 3 s ; ,75;. 1, x - x - 1;. x + 9 x 3 05 y = ;. 50 %; sazenic min 0 s;. 1 ; ůllitrů cm;. 31,4 dm 0 09 Vnitřní locha zvýrazněného obrazce, hranice je součástí množiny. Poloměr všech tří ružnic je,5 cm G. G F F NO;. N; 3. N 1 1. NO;. NO; 3. N 13 ) 14 ) 15 ) );. ); 3. F) (30 %) %;. 56 % ÍČ vičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis
9 ( ) idaticý test 4 s ; ; x - 6y, ří. 6 x y ;. -13y y = č; ; č m3 ;. 80 ; 3. 1 : m;. 8 m T Řešením je jeden ze dvou trojúhelníů. m Q U P NO;. N; 3. NO 1 1. NO;. N; 3. N 13 ) 14 ) 15 ) );. F) (0 %); 3. ) ;. o 5 % idaticý test 5 s rát ; ,6;. 5, y - 7y - 1;. 7-0x - 17x 05 Platí ro všechna y ;. o 10 % méně; tun ,75rát;. 40rát; 3. o m; č G G Řešením je locha osočtverce, terá vznila růniem dvou ásů o šířce cm, jejichž osami jsou římy a. trany osočtverce jsou do množiny zahrnuty. F NO;. N; 3. NO 1 1. NO;. NO; 3. N 13 ) 14 ) 15 ). G );. ); 3. ) žáů;. Obě šoly dohromady 8 % 10 % 0 % 0 % 4 % F 13 ÍČ cvičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis 016
10 idaticý test 6 s ; ; x - 3x + 6;. y - y y = rát;. 1 ; hl;. 3,96 m; za 1 hodinu;. za hodiny Řešením jsou části ružnice se středem a oloměrem cm, ohraničené růsečíy s římami a (zvýrazněno barevně). Příma je rovnoběžou s římou ve vzdálenosti cm, říma je rovnoběžou s římou ve vzdálenosti cm. Průsečíy jsou do množiny zahrnuty. T N;. NO; 3. N 1 1. N;. N; 3. NO 13 ) 14 ) 15 ) );. ); 3. F) ,5 tisíce chlaců a 7,6 tisíce díve;. v češtině idaticý test 7 s ; ; ;. x + x, ří. x ( x + 1) 05 y = 0,65, ří. y = m 3 ;. 5 %; 3. za 4 dny rát;. 50 dáve; 3. 4rát o 8 m;. 1 m/h 09 m R a b T n Pozn.: Řešení říadu, dy se ružnice m a n dotýají obou zadaných ružnic. P. rovnoramenný trojúhelní Q N;. NO; 3. NO 1 1. NO;. N; 3. NO 13 ) 14 ) (nebude vyčerán nidy) 15 ) );. ); 3. F) arie a nna / nna;. ucie/natálie ÍČ vičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis
11 idaticý test 8 s ; ; y - 11y - 7;. ( 6 y 1) ( y x), ří. 6y -6xy + x - y 05 Platí ro všechna y let;. za 18 let; 3. 6 : m 3 ;. 30 minut; 3. 0 s : 3 : 3; m Řešením je jeden ze dvou rovnoběžníů. v. 360 P Q N;. NO; 3. N 1 1. NO;. NO; 3. N 13 ) 14 ) 15 ) );. ); 3. F) 17 1.,5rát;. *** = vyšší/nejvyšší/vysoošolsé idaticý test 9 s ,6; ; y - 1y + 4; y 0;. x + ; x ± 05 x = 7,4 x cm 0 cm 30 cm;. 7 dm ; 3. zmenší se o :46:40;. 6 s; m m 3 ;. 1 cm ÍČ vičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis 016
12 09 Řešením je Thaletova ružnice nad úsečou T (Jedno z možných řešení.) (Pro jiný z výchozích trojúhelníů je ostu onstruce analogicý.) N;. NO; 3. NO 1 1. NO;. N; 3. N 13 ) 14 ) 15 ) );. F); 3. ) ,5 lasifiačního stuně;. u chlaců, teří mají doma více než 500 nih idaticý test 10 s ; ; x - y + xy - 5; x R ; y R ;. x ; x 0; x 4 05 y = m;. o 50 s; m balení; rabic; m m 3 ;. 14 m 9 09 Řešením jsou 4 body W, teré jsou růsečíem ružnice se středem a s oloměrem 3 cm a os úhlů, teré jsou svírány římami a. ÍČ vičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis
13 W NO;. N; 3. N 1 1. N;. NO; 3. NO 13 ) 14 ) 15 ) );. F); 3. ) Pavel; ÍČ vičné didaticé testy Testy 017 z matematiy ro žáy 9. tříd ZŠ idatis 016
Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU
Konstruční úlohy metodicá řada ro onstruci trojúhelníu Irena udínová Pedagogicá faulta MU irena.budinova@seznam.cz Konstruční úlohy tvoří jednu z důležitých součástí geometrie, neboť obsahují mnoho rozvíjejících
Více3.3.4 Thaletova věta. Předpoklady:
3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální
VíceKonstrukce kružnic
3.4.10 Konstruce ružnic Předolady: 3404 Př. 1: Jsou dány body K, L a M. Narýsuj všechny ružnice, teré rochází těmito třemi body. Kružnice - množina bodů, teré mají stejnou vzdálenost od středu ružnice
Více3.4.9 Konstrukce čtyřúhelníků
3.4.9 Konstruce čtyřúhelníů Předpoldy: 030408 Trojúhelníy byly určeny třemi prvy. Př. 1: Obecný čtyřúhelní je dán délmi všech svých čtyř strn. Rozhodni, zd je určen nebo ne. Nejjednodušší je vzít čtyři
Více{ } Konstrukce trojúhelníků I. Předpoklady: 3404
3.4.5 Konstrue trojúhelníů I Předolady: 3404 U onstručníh úloh rozeznáváme dva záladní tyy: olohové úlohy: jejih zadání většinou začíná slovy Je dána.. Tato věta znamená, že onstrui musíme začít rvem,
VícePLANIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE
Předmět: Roční: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr Tomáš MŇÁK 17 větna 2012 Název zpracovaného celu: PLNIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE Kružnice je množina všech bodů X v rovině, teré mají od daného
VíceÚlohy domácího kola kategorie B
54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny
VíceROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ:
ROVIÁ GEOETRIE.. Vypočítej veliosti všech vnitřních úhlů tětivového čtyřúhelníu a veliosti úhlů sevřených jeho úhlopříčami. Vrcholy čtyřúhelníu leží v bodech, teré na obvodu ciferníu hodin znázorňují údaje,,,.
VíceZ AKLADY GEOMETRIE Jiˇ r ı Doleˇ zal
ZÁKLDY GEOMETIE Jiří Doležal Obsah Obsah Obsah 3 Úvod 4 1 Planimetrie 5 1. Konstruční lanimetricé úlohy............................. 5 2. olloniovy a Paovy úlohy............................... 6 3. Množiny
Více3.6.3 Prvky trojúhelníků
3.6.3 Prvy trojúhelníů Předpolady: 030602 Př. 1: Narýsuj trojúhelní, je-li dáno: = 5m, β = 110, a = 6m. Změř veliosti vnitřníh úhlů a strany b. Zontroluj, zda platí vzore pro součet úhlů v trojúhelníu.
Více3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
VíceKonstrukce trojúhelníků II
.7.0 Konstruce trojúhelníů II Předpolady: 00709 Minulá hodina: Tři věty o shodnosti (odpovídají jednoznačným postupům pro onstruci trojúhelníu): Věta sss: Shodují-li se dva trojúhelníy ve všech třech stranách,
VíceOpakování k maturitě matematika 4. roč. STR 2 <
8.. Otáza číslo Mocniny a odmocniny. b.) Zjednodušte: b. b Opaování maturitě matematia. roč. STR :.) Zjednodušte:.) Vypočtěte: a. y : ( a. y ) =.) Umocněte: 7 7.. Otáza číslo Lineární a vadraticé rovnice.)
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceMocnost bodu ke kružnici
3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti
VíceMocnost bodu ke kružnici
3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ
VíceSčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
VíceMATEMATIKA III. Program - Křivkový integrál
Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a
VíceGeometrická zobrazení
Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších
VíceZÁKLADY GEOMETRIE. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ / /0016. základu studia.
VYOKÁ ŠKOL ÁŇKÁ TECHNICKÁ UNIVERZIT OTRV ZÁKLDY GEOMETRIE Jiří Doležal Vytvořeno v rámci rojetu Oeračního rogramu Rozvoje lidsých zdrojů CZ.04.1.03/3.2.15.1/0016 tudijní oory s řevažujícími distančními
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceMatematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
Více2 HODINY. ? Na kolik trojúhelník Ti úhlopíka rozdlí AC lichobžník ABCD? Na dva trojúhelníky ABC, ACD
K O N S T R U K E L I H O B Ž N Í K U 2 HOINY Než istouíš samotným onstrucím, zoauj si nejdíve vše, co víš o lichobžnících co to vlastn lichobžní je, záladní druhy lichobžní a jejich vlastnosti. ále si
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
VíceMatematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
VíceZákladní stereometrické pojmy
ákladní stereometrické ojmy (ákladní ojmy a jejich modely) uer dvojče 01 a) hrací kostka, krabice; cihla, akvárium; c) trám, komín; d) střecha kostelní věže, svíčka (vhodného tvaru) e) střecha nad válcovou
VíceTest z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
VíceAnalytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
Více( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)
3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (
Více11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení
Sbíra úloh z matematia 11 Křivový integrál 11 KŘIVKOVÝ INTEGRÁL 115 111 Křivový integrál I druhu 115 Úloh samostatnému řešení 115 11 Křivový integrál II druhu 116 Úloh samostatnému řešení 116 11 Greenova
VíceSTEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Více3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Více2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
Více( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VíceÚvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
VíceObsah A R IT M E T IK A...
Obsah з A R IT M E T IK A... P řiro zená čísla a číslo n u la... Zápis přirozených č ís e l... Řím ské č íslice... Arabské číslice a desítková soustava... Šedesátková soustava... Porovnávání přirozených
VíceMatematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
VíceCvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
Více2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Více3.4.8 Konstrukce trojúhelníků IV
348 Konstrue trojúhelníů IV Předpoldy: 346 Př : estroj trojúhelní, je-li dáno t = 5m, t b = 6m, t = 4m t t t b Úloh je nepolohová Problém: tejný problém jo v minulé hodině - známe tři vzdálenosti, teré
VíceMATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu
MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceVzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceTEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV
Školní rok_2014/2015 vyučující: Lenka Šťovíčková Září Opakuje početní výkony a uplatňuje komutativní, asociativní a distributivní zákon v praxi. G.:narýsuje přímku, polopřímku, kolmici, rovnoběžky, různoběžky.
VíceTéma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
VíceZákladní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
VíceI. kolo kategorie Z7
66. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Čtverec se stranou 4 cm je rozdělen na čtverečky se stranou 1 cm jako na obrázku. Rozdělte čtverec podél vyznačených čar na dva útvary s obvodem
VíceTest Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
VíceMATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)
MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
VíceŘešení najdete na konci ukázky
Řešení najdete na konci ukázky. Posloupnost ( 3n + ) n je totožná s posloupností: = (A) a =, an+ = 3 a a =, a n+ an = 3 3 a =, an+ = a a = 3, an+ = an + an+ a = 3, = a n n n. David hraje každý všední den
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
VíceMatematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:
Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,
Více3.1.1 Přímka a její části
3.1.1 Přímka a její části Předoklady: Pedagogická oznámka: Úvod do geometrie atří z hlediska výuky mezi nejroblematičtější části středoškolské matematiky. Několik rvních hodin obsahuje oakování ojmů a
VíceVzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
Více1.3.3 Přímky a polopřímky
1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím
Více1. série. Různá čísla < 1 44.
série Téma: Termínodeslání: Různá čísla ½ º Ò ½ ½º ÐÓ je řirozené q9+9 q 6+ 9 9 6 ¾º ÐÓ `5+ 6 998 není řirozené º ÐÓ Nechť c je řirozené číslo Rozhodněte, které z čísel c+ c a c c je větší a své tvrzení
VíceUžití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)
Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září
VíceMatematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
VíceAproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
VíceCVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
VíceMATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.
MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N
VíceM - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl
6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,
Více3.4.7 Konstrukce trojúhelníků III (doplňování)
3.4.7 Konstrue trojúhelníů III (dolňování) Předoldy: 3406 Shrnutí dvou ředešlýh hodin: oážeme sestrojit trojúhelníy, u terýh známe tři strny, dvě strny úhel neo strnu dv úhly. Poud zdání neumožňuje tímto
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Více16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013
16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceČíslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
Více- zvládá orientaci na číselné ose
Příklady možné konkretizace minimální doporučené úrovně pro úpravy očekávaných výstupů v rámci podpůrných opatření pro využití v IVP předmětu Matematika Ukázka zpracována s využitím školního vzdělávacího
VíceKonstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
Více(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m
. Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,
VíceSyntetická geometrie. Josef Tkadlec. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.
Synteticá geometrie Josef Tadlec Kurz vznil v rámci projetu Rozvoj systému vzdělávacích příležitostí pro nadané žáy a studenty v přírodních vědách a matematice s využitím online prostředí, Operační program
VícePřijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
VíceCVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
VíceVzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost
Víceβ 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
VíceTematický plán Matematika pro 4. ročník
Tematický plán Matematika pro 4. ročník Vyučující: Klára Dolanová Hodinová dotace: 4 hodiny týdně Školní rok: 2015/2016 ZÁŘÍ 1. a UČ/str. 3 9 A: Opakování osvojené matematické operace, vlastnosti sčítání
VíceMěsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání
VícePřípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
VíceMATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5
MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M
VíceM - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceVyučovací předmět / ročník: Matematika / 4. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
VíceTEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
VíceNěkolik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
Více19. žákvyužívápojemmnožinavšechbodůdanévlastnosti
OČEKÁVNÝ VÝTUP PODLE RVP ZV 19. žávyužívápojemmnožinavšechbodůdanévlastnosti charateristice útvaru a řešení polohových a nepolohových onstručních úloh Úloha 1 ody imajíodpřímy pvzdálenost2cm. 1.1estrojtedalšíbod
VíceCVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
VíceRůznostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
Více