Difrakce elektronů v polykrystalické mřížce (Debye-Scherrerova difrakce)
|
|
- Dominik Kubíček
- před 8 lety
- Počet zobrazení:
Transkript
1 ifrakce elektronů v polykrystalické mřížce (ebye-scerrerova difrakce) Teorie V roce 1924 Louis de Broglie navrl představu, že by částice moly mít kromě předpokládanýc částicovýc vlastností i vlnové vlastnosti. Předpokládal, že vlnová délka částice je nepřímo úměrná její ybnosti: λ = (I) kde λ je vlnová délka, Planckova konstanta a p ybnost částice. Jeo domněnka byla roku 1927 experimentálně potvrzena C. avissonem a L. Germerem při difrakci (oybu) elektronů na krystalické niklové struktuře. V současném experimentu, který provedeme v našem experimentu, je vlnový carakter elektronů demonstrován jejic difrakcí na polykrystalické grafitové mřížce (ebye Scerrerova difrakce). Na rozdíl od experimentu avissona a Germera, kde difrakce je pozorována při odrazu elektronů na mřížce, toto uspořádání používá uspořádání experimentu podobnéo typu, jako použil G. P. Tomson roku Z elektronů emitovanýc ze žavené katody je vybrán úzký paprsek elektronů clonou. Po průcodu skrz zaostřovací optický systém jsou elektrony ostře omezeny na monocromatický paprsek (elektrony mají tedy definovanou kinetickou energii a tedy vlnovou délku), který dopadá na polykrystalickou ulíkovou fólii. Atomy ulíku moou být považovány za prostorovou mřížku, která se cová jako difrakční mřížka pro elektrony. Po průcodu svazku elektronů difrakční ulíkovou mřížkou se na fluorescenčním stínítku objeví difrakční obrazce soustřednýc kroužků, jejicž středem je svazek elektronů jdoucíc přímo bez oybu na mřížce (Obr. 1). p Obrázek 1 Scematické znázornění difrakčníc kroužků pozorovanýc při oybu elektronů na polykrystalické ulíkové mřížce. va kroužky s průměry 1 a 2 jsou pozorovány odpovídající ke vzdálenostem rovin d 1 a d 2. Průměr soustřednýc kroužků se mění s vlnovou délkou λ elektronů, tedy s uryclujícím napětím U, kterým dodáváme elektronovému svazku energii. Pro kinetickou energii elektronů E získanou v elektrostatickém poli, při uryclujícím napětí U platí následující vzta:
2 2 1 p E = eu. = mv 2 = (II) 2 2m kde U je uryclující napětí, e náboj elektronu, m je klidová motnost elektronu a v je ryclost elektronů. Hybnost p může být pak vypočítána jako p = m. v = 2emU (III) osazením rovnice (III) do rovnice (I) dostáváme pro vlnovou délku vzta: λ = (IV) 2emU V roce 1913 si H.W. a W. L. Braggovi uvědomili, že pravidelné uspořádání atomů v monokrystalu může být cápáno jako prostorová mřížka, jejíž parametry jsou dány uspořádáním atomů v mřížce, tedy mřížková konstanta krystalu udává vzdálenosti mezi řadami atomů v rovinác. Když vystavíme takovou krystalickou síť monocromatickým rentgenovým paprskům nebo elektronům s definovanou energií, pak můžeme předpokládat platnost Huygensova principu pro oba druy vlnění, můžeme každý prvek v prostorové mřížce považovat za rozptylový bod, na kterém se vytváří elementární kulová vlna se stejnou vlnovou délkou, jako má dopadající záření. Superpozici těcto elementárníc vln pak vzniká výsledné rozptýlené vlnění. V případě pozorovanýc maxim, musí dojít k tzv. konstruktivní interferenci vln odraženýc v jednotlivýc rovinác mřížky, kdy dráový rozdíl těcto dvou vln, který je definován jako = = 2. d.sinθ viz Obr. 2, nabývá odnot celočíselnéo násobku vlnové délky dopadajícío vlnění λ 2. d.sinθ = nλ, n = 1,2,3... (V) kde d je vzdálenost krystalickýc rovin. Tato rovnice bývá nazývána Braggovou podmínkou a θ úel dopadu záření. Obrázek 2 Scematické znázornění Braggovy podmínky. Jako objekt, na kterém docází k oybu, je v tomto experimentu použit polykrystalický materiál. Polykrystalický materiál představuje velké množství malýc monokrystalů, které jsou nepravidelně uspořádány v prostoru. Následkem too je pro část krystalů splněná Braggova podmínka. Na fluorescenčním stínítku, které je kolmé k ose průcodu elektronovéo svazku, se objeví soustředné kroužky. Roviny polykrystalické mřížky, na kterýc docází k difrakci, jsou vzdáleny o parametry d 1 a d 2. Na obrázku 3 vidíme vyznačené
3 vzdálenosti krystalickýc rovin mezi uspořádanými atomy grafitu (označení použité specifické struktury (alotropu) ulíku, ulík má několik alotropů způsobů jak se uspořádává do mřížky, které mají významně rozdílné mecanické, optické a další vlastnosti). Obrázek 3 Krystalové roviny grafitu se vzdálenostmi d 1 a d 2 : Na obrázku 4 vidíme uspořádání experimentu vakuovou trubici a připojení žavení katody. Obrázek 4 Vlevo vidíme scéma experimentálnío zařízení, L = 13,5 cm (vzdálenost mezi mřížkou a stínítkem), je průměr difrakčnío kroužku pozorovanéo na stínítku Vpravo vidíme scéma zapojení pro pozorování elektronové difrakce na mřížce. F 1,F 2 : zásuvka pro záporný pól žavení, C: záporný pól, X: zaostřující elektroda, A: anoda. Z obr. 4 můžeme odvodit vzta mezi rozptylovým úlem θ a vzdáleností stínítka a mřížky L a průměrem difrakčníc kruů. tan 2θ = (VI) 2. L Pro malé rozptylové úly můžeme použít aproximaci vztau (VI) následující vzta: tan 2θ = sin2θ = 2sinθ získáme ze
4 osazením rovnice (VII) do (V) vede v prvním řádu difrakce (n = 1) k 2 sinθ = (VII) 2. L λ = d. (VIII) 2. L kde je průměr kruu, L vzdálenost mezi mřížkou a stínítkem a d je vzdálenost rovin ulíkovýc atomů v grafitové mřížce. Rovnice (IV) popisuje vzta vlnové délky elektronů λ a uryclujícío napětí U. Kombinací rovnice (IV) a rovnice (VIII) lze ukázat, že průměry 1 a 2 soustřednýc kroužků se mění s uryclujícím napětím U podle následujícío vztau: 1 = k. (IX) U kde k je dáno vztaem 2. L. k = (X) d. 2. m. e Měření průměrů difrakčníc kroužků 1 a 2 jako funkce uryclujícío napětí U tak dovoluje určit vzdálenosti d 1 a d 2 mezi rovinami ulíkovýc atomů v grafitové mřížce. Úkoly: 1) Měňte uryclující napětí U v rozsau 3 5kV, pro dané uryclující napětí změřte několikrát poloměry difrakčníc kroužků. Vyneste do grafu závislost poloměru difrakčníc kroužků 1 a 2 na uryclujícím napětí U a určete konstantu k vyrovnáním funkční závislosti dle vztau (IX). le vztau (X) pak určete parametry grafitové mřížky d 1 a d 2. 2) Určete vlnové délky elektronů λ pro jednotlivá uryclující napětí U s použitím vypočtenýc parametrů grafitové mřížky z úkolu 1. a ze vztau (VIII), uveďte ve formě tabulky. 3) Vyneste do grafu závislost vlnovýc délek elektronů λ z úkolu 2. na uryclujícím napětí U. Ověřte platnost de Broglieo rovnice (I) a využitím vztau (III) pro ybnost elektronů a vyrovnáním funkční závislosti λ~f(u). Experimentální uspořádání: Experimentální nastavení (scéma zapojení) je ukázané na obrázku Připojte zásuvky katodovéo žavení F 1 a F 2 na stojanu trubice k vývodům napájení na zadní straně vysokonapěťovéo zdroje 10 kv. 2. Připojte zásuvku C a X (zaostřovací elektroda) na stojanu trubice k zápornému pólu. 3. Připojte zásuvku A (anoda) ke kladnému pólu 5kV/2 ma zdroje vysokéo napětí 10 kv. 4. Uzemni kladný pól na vysokonapěťovém napájení 10 kv. Zásady bezpečnosti: Při uryclovacím napětí nad 5 kv se generuje rentgenové záření. - Neobsluujte elektronovou difrakční trubici při vysokém napětí nad 5 kev.
5 Nebezpečí imploze: elektronová difrakční trubice je vakuovaná trubice, která je zotovená z tenkéo skla. - Nevystavujte elektronovou difrakční trubici mecanickému tlaku a připoj ji, pouze pokud je namontovaná do stojanu. - Nakládejte s kontakty v patici a kontaktními kolíky opatrně, neoýbejte je a provádějte opatrně manipulaci vkládání trubice do stojanu. Elektronová difrakční trubice může být zničena napětím nebo příliš vysokými proudy: - održuj provozní parametry udané v části o tecnickýc údajíc.
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
Určení Planckovy konstanty pomocí fotoelektrického jevu
Určení Planckovy konstanty pomocí fotoelektrickéo jevu Související témata: Externí fotoelektrický jev, výstupní práce elektronu z kovu, absorpce, energie fotonu Princip a úkol: Fotocitlivý prvek - fotonka
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
RTG difraktometrie 1.
RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Úloha 5: Studium rentgenových spekter Mo a Cu anody
Úloha 5: Studium rentgenových spekter Mo a Cu anody FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 22.2.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník:
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
Teorie rentgenové difrakce
Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární
2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Elektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
MĚŘENÍ PLANCKOVY KONSTANTY
Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf
Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]
Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla
VLNOVÁ OPTIKA - studium jevů založených na vlnové povaze světla: - interference (jev podmíněný skládáním vlnění) - polarizace - difrakce (ohyb) - disperze (jev související se závislostí n n ) - studium
9. Fyzika mikrosvěta
Elektromagnetické spektrum 9.1.1 Druy elektromagnetickéo záření 9. Fyzika mikrosvěta Vlnění různýc vlnovýc délek mají velmi odlišné fyzikální vlastnosti. Různé druy elektromagnetickéo záření se liší zejména
Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.
Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ
Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového
Úloha 21: Studium rentgenových spekter
Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Fyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK
Optika Co je světlo? Laser vlastnosti a využití Josef Štěpánek Fyzikální ústav MFF UK Optika Vědecká disciplína zabývající se světlem a zářením obdobných vlastností (optické záření) z hlediska jeho vzniku,
Zeemanův jev. Michael Jirásek; Jan Vejmola Gymnázium Český Brod, Vítězná 616 SPŠE V Úžlabině 320, Praha 10
Zeemanův jev Michael Jirásek; Jan Vejmola Gymnázium Český rod, Vítězná 616 SPŠE V Úžlabině 320, Praha 10 m.jirasek@seznam.cz; vejmola.jan@seznam.cz Abstrakt: Zeemanův jev je významný yzikální jev, který
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
Studium fotoelektrického jevu
Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)
Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném
Náboj a hmotnost elektronu
1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Praktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů
E e = hf -W. Kvantové vysvětlení fotoelektrického jevu. Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové
Kvantové vysvětlení fotoelektrického jevu Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové hypotézy Fotoelektrický jev : Světlo vyráží z povrchu kovů elektrony. Jedno kvantum světla může
27. Vlnové vlastnosti světla
27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla
Úloha 10: Interference a ohyb světla
Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán
Fyzika pro chemiky II
Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Youngův dvouštěrbinový experiment
Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních
5 Studium rentgenových spekter Mo a Cu anody
5 Studium rentgenových spekter Mo a Cu anody 9. května 2010 Fyzikální praktikum FJFI ČVUT v Praze Jméno: Vojtěch Horný Datum měření: 15.března 2010 Pracovní skupina: 2 Ročník a kroužek: 2. ročník, pondělí
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25. 3. 2013 8.4.2013 Příprava Opravy Učitel
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. XI Název: Charakteristiky diod Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17.10.2008 Odevzdal
r(t) =0 t = a3 0 4cre
Řešením této rovnice (integrací) dostaneme r(t) 3 = C(t =0) 4cr 2 et, (1.40) kde C(t =0)je třetí mocnina poloměru dráhy v čase t =0s, ale to je zadaný poloměr a 0 =52,9 pm. Doba života atomu v Rutherfordově
Vlnově částicová dualita
Vlnově částicová dualita Karel Smolek Ústav technické a experimentální fyziky, ČVUT Vlnění Vlněním rozumíme šíření změny nějaké veličiny prostorem. Příklady: Vlny na moři šíření změny výšky hladiny Zvukové
Charakteristické a brzdné rentgenové záření
Charakteristické a brzdné rentgenové záření Úkol: Zjištění vlnových délek charakteristického záření Cu anody, ověření Duane Hunteova zákona a výpočet Planckovy konstanty. Potřeby: Podle seznamu na pracovišti
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
Úloha č. 1: CD spektroskopie
Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: A 16 Název: Měření resonančního a ionizačního potenciálu rtuti, Franckův-Hertzův pokus Vypracoval: Martin Dlask
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
Jednoduchý elektrický obvod
21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod
Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali
Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali
ÈÁST VII - K V A N T O V Á F Y Z I K A
Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Úvod do fyziky tenkých vrstev a povrchů. Typy interakcí, základy elektronové difrakce, metody LEED a RHEED
Úvod do fyziky tenkých vrstev a povrchů Typy interakcí, základy elektronové difrakce, metody LEED a RHEED \ Signál Sonda \ Svazek elektron Elektrony Ionty Elektromagnetické zá ení AES (SAM) TEM, SEM LEED,
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Dvojštěrbina to není jen dvakrát tolik štěrbin
Dvojštěrbina to není jen dvakrát tolik štěrbin Začneme s vodou 1.) Nejprve pozorujte vlnění na vodě (reálně nebo pomocí appletu dle vašeho výběru), které vytváří jeden zdroj. Popište toto vlnění slovy
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
24 Fotoelektrický jev a Planckova konstanta
24 Fotoelektrický jev a Planckova konstanta ÚKOL 1. Stanovte Planckovu konstantu z měření vnějšího fotoelektrického jevu. 2. Určete výstupní práci použité fotonky. TEORIE Planckova konstanta Světlo je
Počátky kvantové mechaniky. Petr Beneš ÚTEF
Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl
Fourierovské metody v teorii difrakce a ve strukturní analýze
Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze
30 VLNOVÉ VLASTNOSTI ČÁSTIC. Materiální vlny Difrakce částic
269 30 VLNOVÉ VLASTNOSTI ČÁSTIC Materiální vlny Difrakce částic Planckův postulát a další objevy v oblasti částicových vlastností elektromagnetických vln porušily určitou symetrii přírody - částice měly
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie
Princip práškové metody Prášková metoda slouží k určení hodnot mřížkových parametrů krystalické mřížky dané krystalické látky.
Vyhodnocování rentgenogramu určení mřížové konstanty Úkol: 1) Seznamte se podrobně s Debye-Scherrerovou komůrkou a jejími funkčními prvky. 2) Analyzujte debyegram práškového ZnS proměřte polohy linií a
Elektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:
Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru
11 Termická emise elektronů
11 Termická emise elektronů 1. května 2010 Fyzikální praktikum FJFI ČVUT v Praze Jméno: Vojtěch Horný Datum měření: 26.dubna 2010 Pracovní skupina: 2 Ročník a kroužek: 2. ročník, pondělí 13:30 Spolupracoval