1. Mutace 2. Rekombinace 3. Transpozice
|
|
- Bohumír Kadlec
- před 7 lety
- Počet zobrazení:
Transkript
1 Mechanismy navozující změny genetické informace 1. Mutace 2. Rekombinace 3. Transpozice Význam změn genetické informace: - adaptace na prostředí, evoluce druhů - využití ve výzkumu (identifikace genů, regulace exprese aj)
2 Mutace = dědičná změna genotypu, jejíž molekulární podstatou je nukleotidová substituce, delece, inzerce nebo inverze Změna primární struktury nukleové kyseliny Změny ve fenotypu organismů mohou mít i další příčiny
3 Standardní typ x mutanta Standardní alela (alela divokého typu, wild-type allele) - standardní fenotyp Mutantní alela - mutantní fenotyp (většinou recesivní) Směr mutací - původní (přímá) mutace - zpětná mutace - úplná nebo částečná obnova funkce (reverze fenotypu)
4 Klasifikace mutací 1. Podle úrovně, na níž působí a) Genové (bodové) mutace změna bází nebo sekvence bází na úrovni genu b) Chromozomové mutace změna sekvence na úrovni chromozomu c) Genomové mutace změna počtu chromozomů (plazmidů) 2. Podle typu zasažené buňky a) Genetické (gametické) mutace vznikají v gametách, přenášejí se na potomstvo b) Somatické mutace vznikají v somatických buňkách 3. Podle vlivu na životaschopnost organismu a) Vitální mutace slučitelné s přežitím organismu b) Letální mutace neslučitelné s přežitím organismu c) Podmíněně (kondicionálně) letální mutace slučitelné s přežitím za určitých podmínek (ts, sus - supresorsenzitivní x supresorové mutace) 4. Podle stupně fenotypového projevu (u diploidních organismů) a) Dominantní mutace projevují se plně i v heterozygotním stavu b) Recesívní mutace projevuje se plně v homozygotním stavu, projev je maskován dominantní alelou (recesivní mutací obvykle vzniká nefunkční produkt) - neúplné (leaky) mutace: funkce genu se částečně zachovává - nulová (null) mutace: úplná ztráta funkce genu (často delece genu nebo jeho části) - posunová mutace: mění se čtecí rámec (obvykle delece nebo inzerce) - polární mutace: mutace ovlivňující expresi sousedních genů (např. v operonech) 5. Podle vzniku a) Spontánní mutace vzniká bez zjevné vnější příčiny b) Indukovaná mutace vzniká po vystavení organismu/buněk mutagenům
5 Posunové mutace
6 Vznik mutace ve strukturním genu - tiché mutace - nesmyslné mutace (stop kodon)
7 Tautomerní formy bází v DNA
8 Vznik spontánních mutací - substituce párování bází v nestabilních tautomerních formách
9 Vznik spontánní mutace po začlenění tautomerní formy báze do DNA při replikaci Výsledek: GC AT
10 Důsledky spontánní deaminace bází GC AT U je odstraňován uracil-dna glykozylázou 5-metylcytozin Horká místa mutací C T uniká reparaci
11 Posunová mutace vede k posunu čtecího rámce
12 Vznik inzercí a delecí - horká místa (Hot-spots) - oblasti repeticí
13 Vznik inzercí a delecí sklouzáváním řetězců při replikaci replication slippage polymerase slippage Expanze trinukleotidů: dědičné neurologické choroby
14 Syndromy způsobené expanzí trinukleotidových repetic Huntingtonova chorea 5 konec genu repetice CAG normálně opakování postižení mají kopií Myotonická dystrofie za 3 koncem genu repetice tripletu CTG postižení mají 50 repetic a více Friedreichova ataxie GAA opakování v intronu genu Syndrom fragilního X (frax) Amplifikace tripletů CCG v genu FMR1 v regionu FRAXA (fragilní místo), který se nachází na dlouhých raménkách chromozomu X. Do 50 repetic normální alela repetic premutace, zpravidla bez fenotypového projevu repetic plná mutace
15
16 Specificita mutagenů - distribuce mutací různého typu vyvolaných různými mutageny v genu laci EMS UV-záření
17 Mutageneze pomocí 5-BU Začlenění vzácnější enolformy BU proti G Začlenění běžnější ketoformy BU proti A přechod enolformy BU na ketoformu a párování s A přechod ketoformy BU na enolformu a párování s G Výsledek: transice oběma směry
18 Mutageneze pomocí 5-BU (analog tyminu) transice v obou směrech: 5-BU(keto) - A 5-BU(enol, ioniz) - G
19 Působení alkylačních činidel
20 Působení hydroxylaminu: specifické transice GC AT (preferenční hydroxylace N na C-4 cytozinu)
21 Indukce mutací kyselinou dusitou oxidativní deaminace bází AT GC GC AT xantin není mutagenní
22 Interkalační činidla Vytváření posunových mutací etidium bromid Inst.Cancer.Res. (akridinový derivát)
23 Typy reverzí (záměny bází ve stejné pozici kodonu) synonymní kodon Arginin, lysin = zásadité aminokyseliny Treonin = neutrální s polárním postranním řetězem
24 Supresorová mutace Definice: mutace, která částečně nebo úplně ruší účinek jiné mutace (supresorsenzitivní mutace) a) intragenová: vzniká uvnitř téhož genu b) intergenová: vzniká v jiném genu Na rozdíl od reverzí, mutace proběhne v jiném místě DNA
25 Intragenová supresorová mutace (I) Supresorsenzitivní mutace Supresorová mutace ATC CTC CCT TTC Inzerce T ATC TCT CCC TTT ATC TCT CCC TTT Delece C ATC TCT CCT TT Posunová mutace (posun čtecího rámce) Obnova původního čtecího rámce
26 Intragenová supresorová mutace (II) TCA původní kodon Supresorsenzitivní mutace (první mutace) TAA TAT stop kodon, ztráta funkce produktu Supresorová mutace (druhá mutace) kodon pro jinou aminokyselinu, obnova funkce produktu
27
28 Intergenová supresorová mutace v genu pro trna Standardní gen TTC CCA ACA GCT TTA Supresorsenzitivní mutace TTC CCA ACA GCT TAA Přepis do mrna UUC CCA ACA GCU UAA STOP Předčasné zakončení translace gen pro trna Leu XYZXYZXYZ-AAT-XYZ Supresorová mutace Gen - supresor XYZXYZXYZ-ATT-XYZ Sekvence přepisovaná do antikodonu Přepis do trna s antikodonem AUU, který se bude párovat s terminačním kodonem UAA syntéza proteinu pokračuje
29 Mechanismus intergenové supresorové mutace Nově vytvořený STOP kodon Původní STOP kodon Zkrácený nefunkční protein Vytvoření mutantní trna funkční protein o úplné délce
30 Proteiny cytochromového systému P-450 vyznačující se oxygenázovou aktivitou (detoxikace nepolárních látek), + řada dalších enzymů
31 Amesův test na mutagenitu Zajištění metabolické aktivace Promutagen není přítomen His- reverze His+ Kmeny obsahují různé typy mutací, jsou reparačně deficientní a mají změny lipopolysacharidů usnadňujících příjem látek
32 REPARACE MUTAČNĚ POŠKOZENÉ DNA A. Přímé reparace 1. fotoreaktivace 2. dealkylace B. Nepřímé reaparace 1. Excizní reparace bázová nukleotidová řízená metylací 2. rekombinační /postreplikační/ 3. reaparace kroslinků Genetický aparát pro reparaci DNA - velmi konzervativní - asi 100 genů - distinktní dráhy, které se mohou prolínat C. Inducibilní reparace 1. SOS-odpověď 2. adaptivní odpovědi na alkylační poškození na environmentální stres
33 TYPY REPAROVATELNÝCH POŠKOZENÍ NA DNA AP-místo Chybná báze Tyminový dimer Vznik AP míst = nejčastější spontánní mutace (depurinace je 100x častější než depyrimidinace)
34
35 FOTOREAKTIVACE DNA obsahující dimer fotolýza Vazba fotolyázy v místě dimeru (6-7 bp) Monomerizace dimeru za přítomnosti světla ( nm) FADH2 Folát/deazaflavin uvolnění fotolyázy Zachycení světla
36 Alkyltransferáza: 6 O-Metylguanin-DNA-metyltransferáza ( 6 O-MGT= Ada-protein) nemetylovaná forma metylovaná forma Transkripční aktivátor
37 Dvojí úloha proteinu Ada při reparaci alkylované DNA Aktivace genů zodpovědných za reparaci
38 Bázová excizní oprava 1. Abnormální báze v DNA 2. Rozpoznání specifickou glykozylázou 3. Vyštěpení abnormální báze 4. Odstranění cukrfosfátového zbytku 5. Zacelení mezery
39 BÁZOVÁ EXCIZNÍ REPARACE Vyštěpení chybné báze Rozpoznání chybné báze glykozylázou, vznik AP-místa Přerušení cukrfosfátových vazeb AP-endonukleázami Odstranění dr s chybějící bází Resyntéza chybějícího úseku, spojení mezery DNAligázou
40 DNA-GLYKOZYLÁZY PŮSOBÍCÍ NA POŠKOZENÉ DNA
41 NUKLEOTIDOVÁ EXCIZNÍ REPARACE (SHORT PATCH REPAIR) DNA obsahující poškození (T-T, chybný pár bazí aj) Vazba UvrA2B1 disociace UvrA SOS vytvořeni preincizního komplexu UvrABC excinukleáza 4-5b -x-- 8b vazba UvrC vytvoření incizního komplexu štěpení cukr-fosfátové kostry vyštěpení krátkého oligonukleotidu o délce b DNA-polI resyntéza chybějícího úseku DNA - jako templát slouží řetězec bez poškození spojení mezery DNA-ligázou
42 Nukleotidová excizní oprava
43 Metylace DNA místně-specifickými metylázami Rodičovská molekula Dceřiné molekuly DNA krátce po replikaci Plně metylované dceřiné molekuly DNA
44 REPARACE ŘÍZENÁ METYLACÍ (REPARACE NA DLOUHOU VZDÁLENOST, mismatch repair) A C Chybně začleněná báze UvrD MutS rozpozná chybnou bázi a vytvoří smyčku na DNA, na kterou se váže MutL, což umožní navázání a aktivaci MutH, která štěpí G v GATC - poté DNA-helikáza odmotá jednořetězec a ten je nahrazen reparační syntézou A-C A-T DNA polymeráza
45 POSTREPLIKAČNÍ REKOMBINAČNÍ REPARACE Vznik mezery při syntéze DNA vazba proteinu RecA navození homologního párování neporušeného a porušeného řetězce reparační syntéza DNA podle sesterského řetězce rekombinace homologních řetězců poškození zůstává v jedné z molekul a je opraveno později
46 SOS-ODPOVĚĎ geny din = damage induced, SOS-genes (31 genů u E. coli) 1. Indukce SOS mutageneze vznik adaptivních mutací (mutageneze adaptivní fáze) 2. Excizní reparace dlouhých úseků 3. Zvýšená schopnost reparace ds zlomů 4. Indukce profágů (lambda, P22, f80) 5. Indukce tvorby kolicinů 6. Zmírnění restrikce 7. Inhibice buněčného dělení
47 DNA bez poškození PRŮBĚH SOS-REPARACE LexA O = operátor RecA Slabá exprese všech genů RecA* Silná exprese všech genů Poškození DNA LexA = dimer, podrobující se autokatalytickému štěpení za účasti RecA* (koproteáza) helikální filament RecA-DNA
48 Změny růstových vlastností buněk navozené mutacemi regulačních genů mutace
49 (p53, Rb-protein)
50 Obecné rysy onkoproteinů - vytváří se v buňce, kde se normálně netvoří - vytváří se v nadměrném množství - vytváří se ve formě, která není regulovatelná Porucha regulace buněčného cyklu
51 Způsoby konverze protoonkogenu na onkogen protoonkogen Delece nebo bodová mutace v kódující sekvenci Mutace v regulaci Amplifikace genu Přeskupení chromozomu Hyperaktivní protein vytvářený v normálním množství Nadprodukce normálního proteinu Nadprodukce normálního proteinu Nadprodukce normálního produktu řízená sousedící regulační sekvencí Fúze k silně transkribovanému genu vytváří hyperaktivní fúzní protein
52
53 Nádorové supresorové geny (programovaná buněčná smrt)
54 Funkce proteinu p53 při zástavě buněčného cyklu TP 53, tumor protein 53 p53 podporuje expresi genu p21, který je inhibitorem kináz regulujících buněčný cyklus (cyklin dependentní kinázy) Zástava buněčného cyklu (vstupu do S- fáze) proteinem p21 Reparace poškození na DNA
55 Model stimulace proliferace buněk růstovými faktory a účast Rb-proteinu Mutace genu pro Rb Za nepřítomnosti růstových faktorů se buňka nedělí V přítomnosti růstových faktorů
56 Vznik retrovirů přenášejících onkogeny retrovirus
57 Akutně a pomalu transformující retroviry Transdukce onkogenu akutně transformujícími retroviry nádor Inzerční aktivace protoonkogenu pomalu transformujícími retroviry nádor
58 Rekombinace - proces vzniku nové kombinace genů - obecná (homologická, RecA-závislá) vyžaduje dlouhé úseky DNA s vysokým stupněm sekvenční homologie - místně-specifická, nehomologická, (ilegitimní) probíhá mezi molekulami DNA, které obsahují jen krátké specifické sekvence rozpoznávané místně-specifickými rekombinázami, nikoliv RecA-proteinem
59
60 Průběh homologní rekombinace Homologické molekuly dsdna (dsdna x ssdna) Vznik náhodných zlomů Bod překřížení Spojení řetězců Hollidayovo spojení (Hollidayova struktura) Posun bodu překřížení Dva možné výsledky
61 Počáteční fáze procesu homologní rekombinace RecBCD protein - helikázová a nukleázová aktivita Vazba RecBCD kompelxu na konce DNA Pohyb RecBCD komplexu po DNA a vyhledání specifických sekvencí chi Vytvoření jednořetězcového vlákna vyčnívajícího z DNA RecA Párování jednořetězce s homologickou sekvencí DNA
62 Schematické znázornění RecBCD komplexu s vyznačením funkcí jednotlivých podjednotek Enzymové aktivity: - helikázová - endonukleázová - exonukleázová Směr pohybu enzymu
63 Rozložení Hollidayova spojení I. regenerace původních molekul DNA obsahujících krátkou heteroduplexní oblast Resolvázy (endonukleázy) RuvC a RuvG Konformace I a II se neliší II. vytvoření hybridních molekul DNA obsahujících krátkou heteroduplexní oblast a zaměněné krajní úseky
64 Model působení RuvABC proteinů při rekombinaci Na Hollidayovo spojení se váže jeden nebo dva tertramery RuvA a udržují ho v planární rovině Na komplex s RuvA se vážou dva hexamery proteinu RuvB, z nichž každý tvoří kruh okolo řetězce DNA Na komplex se váže RuvC a štěpí dva z řetezců. Hollidayovo spojení se rozloží na jednu z možných konfigurací podle toho, které řetězce budou štěpeny.
65 (a) Párování homologických chromozomů. A a homolog 1 homolog 2 B b a A B b (j) Rekombinované chromozomy. endonukleáza a DNA-ligáza, předcházená pravděpodobně exonukleázou a DNA-polymerázou B (b) Vznik jednořetězcových zlomů. A a zlomy B b A b (i) Dvourozměrný pohled. B helikáza a protein vázající se na jednořetězce A A B (h) Rušení jednořetězcového můstku. (c) Vzájemné prostupování řetězců. a b b a endonukleáza proteiny typu Rec A B (d) Výměna řetězců. A B A (g) Ekvivalentní 3-D struktura. a b a DNA-ligáza, předcházená pravděpodobně exonukleázou a DNA-polymerázou b rotace nižších konců 180 B (e) Vznik kovalentního jednořetězcového můstku. A B A (f) Trojrozměrná struktura. a b a b
66 Genová konverze následující po crossing-overu rekombinující alely R a r vytvoření krátké heteroduplexní oblasti v místě Hollidayova spojení Reparace vede k záměně R za r Opravná syntéza DNA po crossingoveru
67 Začlenění fágového genomu do chromozomu hostitelské buňky procesem místně-specifické rekombinace Krátké homologické sekvence Integráza, integrační faktor hostitele, excizionáza Jednoduchý crossing-over
68 Začlenění DNA bakteriofága lambda do chromozomu E. coli Vytvoření posunutých zlomů Spojení molekul Spojení molekul v místě rekombinace DNA profága
69
1. Mutace 2. Rekombinace 3. Transpozice
Mechanismy navozující změny genetické informace 1. Mutace 2. Rekombinace 3. Transpozice Význam změn genetické informace: - adaptace na prostředí, evoluce druhů - využití ve výzkumu (identifikace genů,
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Proměnlivost organismu. Mgr. Aleš RUDA
Proměnlivost organismu Mgr. Aleš RUDA Faktory variability organismů Vnitřní = faktory vedoucí k proměnlivosti genotypu Vnější = faktory prostředí Příčiny proměnlivosti děje probíhající při meioze segregace
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. Z.1.07/2.2.00/07.0354 Předmět: KBB/OPSB íl přednášky: Dokončení problematiky Molekulární podstaty genetické informace, objasnění principu replikace
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
ZÁKLADY BAKTERIÁLNÍ GENETIKY
Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy)
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy) Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
MUTACE A REPARACE DNA. Lekce 6 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MUTACE A REPARACE DNA Lekce 6 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. MUTACEse dělína: i) genomové změna počtu chromozómů ii) chromozómové změna struktury chromozómů iii) genové změny DNA v rámci
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Mutace jako změna genetické informace a zdroj genetické variability
Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA po jednom cyklu Kmeny E. coli K a K(P1) + mají vzájemně odlišnou hostitelskou specifitu (K a P1) = obsahují odlišné RM-systémy Experimentální důkaz přítomnosti a působení
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Výuka genetiky na PřF OU K. MALACHOVÁ
Výuka genetiky na PřF OU K. MALACHOVÁ KATEDRA BIOLOGIE A EKOLOGIE BAKALÁŘSKÉ STUDIJNÍ PROGRAMY Experimentální Systematická Aplikovaná (prezenční, kombinovaná) Jednooborová Dvouoborová KATEDRA BIOLOGIE
Přijímací test navazující magisterské studium Molekulární a buněčná biologie
Přijímací test navazující magisterské studium Molekulární a buněčná biologie 14. června 2016 Číslo uchazeče: Poznámky k řešení testu: Doba řešení: 60 min Správná je jen 1 odpověď, která je hodnocena 1
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.
Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Mutační změny genotypu
Mutační změny genotypu - změny genotypu: segregace, kombinace + MUTACE - náhodné změny Mutace - genové - spontánní - chromozómové - indukované (uměle vyvolané) - genomové A) Genové mutace - změna (ztráta)
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Enzymy používané v molekulární biologii
Enzymy používané v molekulární biologii Rozdělení enzymů 1. Podle substrátové specifity: většina metod molekulární biologie je závislá na použití enzymů, jejichž substrátem jsou nukleové kyseliny. Tyto
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Klasifikace mutací. Z hlediska lokalizace mutací v genotypu. Genové mutace. Chromozomální mutace. Genomové mutace
Mutace Klasifikace mutací Z hlediska lokalizace mutací v genotypu Genové mutace Chromozomální mutace Genomové mutace Vznik genových mutací Tranzice pyrim. za pyrim. C na T T na C purin za purin A na G
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
ONKOGENETIKA. Spojuje: - lékařskou genetiku. - buněčnou biologii. - molekulární biologii. - cytogenetiku. - virologii
ONKOGENETIKA Spojuje: - lékařskou genetiku - buněčnou biologii - molekulární biologii - cytogenetiku - virologii Důležitost spolupráce různých specialistů při detekci hereditárních forem nádorů - (onkologů,internistů,chirurgů,kožních
Enzymy používané v molekulární biologii
Enzymy používané v molekulární biologii Rozdělení enzymů 1. Podle substrátové specifity: většina metod molekulární biologie je závislá na použití enzymů, jejichž substrátem jsou nukleové kyseliny. Tyto
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Souhrnný test - genetika
Souhrnný test - genetika 1. Molekuly DNA a RNA se shodují v tom, že a) jsou nositelé genetické informace, b) jsou tvořeny dvěma polynukleotidovými řetězci,, c) jsou tvořeny řetězci vzájemně spojených nukleotidů,
Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek
Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
-zakladatelem je Johan Gregor Mendel ( ), který se narodil v Hynčicích na Moravě
Otázka: Genetika I Předmět: Biologie Přidal(a): Paris -věda, která se zabývá dědičností a proměnlivostí -zakladatelem je Johan Gregor Mendel (1822 1884), který se narodil v Hynčicích na Moravě 1. MOLEKULÁRNÍ
Mutace a jejich význam pro evoluci
Mutace a jejich význam pro evoluci Ivana Doležalová Osnova přednášky: Definice mutace Mutacionalismus Mutace spontánní a idukované Mutace selekčně pozitivní, negativní a neutrální Mutage genové, chromozomové
A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům
Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového
Obsah. Vědní obor genetika 1 Osobní genom 1 Úvodem 2 Tři velké milníky genetiky 2
Obsah KAPITOLA 1 Vědní obor genetika 1 Osobní genom 1 Úvodem 2 Tři velké milníky genetiky 2 MENDEL: GENY A PRAVIDLA DĚDIČNOSTI 2 WATSON A CRICK: STRUKTURA DNA 3 PROJEKT LIDSKÉHO GENOMU: SEKVENOVÁNÍ DNA
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Genetika - maturitní otázka z biologie (2)
Genetika - maturitní otázka z biologie (2) by jx.mail@centrum.cz - Ned?le, B?ezen 01, 2015 http://biologie-chemie.cz/genetika-maturitni-otazka-z-biologie-2/ Otázka: Genetika I P?edm?t: Biologie P?idal(a):
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
Molekulární genetika, mutace. Mendelismus
Molekulární genetika, mutace 1) Napište komplementární řetězec k uvedenému řetězci DNA: 5 CGTACGGTTCGATGCACTGTACTGC 3. 2) Napište sekvenci vlákna mrna vzniklé transkripcí molekuly DNA, pokud templátem
Nauka o dědičnosti a proměnlivosti
Nauka o dědičnosti a proměnlivosti Genetika Dědičnost na úrovni nukleových kyselin molekulární buněk organismů populací Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci Dědičnost znaků
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Mendelistická genetika
Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Molekulární genetika IV zimní semestr 6. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika IV zimní semestr 6. výukový týden (5.11. 9.11.2007) Nondisjunkce u Downova syndromu 2 Tři rodokmeny rodin s dětmi postiženými
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v