Příklady k přednášce 19 - Polynomiální metody

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 19 - Polynomiální metody"

Transkript

1 Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení

2 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo naopak racionální číla, racionální funkce, atp.) Obecně tedy není možné dělit polynomy beze zbytku Beze zbytku dělí každý polynom jen tzv. jednotky, což jou tu polynomy tupně 0, tedy nenulová reálná číla Někdy ale beze zbytku dělit jde: Pokud a() dělí c() beze zbytku, značíme to a () c () Pak exituje b() takové, že c () = ab ()() Pak také říkáme a() je dělitelem c(), a že c() je náobkem a() Pokud a() dělí c() i d(), pak je a() polečným dělitele c() i d() Největším polečným dělitelem je ten, který má nejvyšší tupeň Příklad Pro c ( ) = ( + 1)( 1) a () = + 1 d () = + je a () c () d () c () Michael Šebek Pr-ARI

3 Opakování: Největší polečný dělitel greatet (left) common divior = největší polečný dělitel Pro je ap () () + bq ()() = g () av ()() + bw () () = 0 a přitom matice je unimodulární (= její determinant je nenulová kontanta) ( a b) g ( ) = gcd (), () p () q () U() = v () w () >> pformat rootr >> a=(+1)^*(-1)*(+) a = (+)(^++1)(-1) >> b=(+1)*(-1)*(-) b = (+1)(-1)(-) >> g=grd(a,b) g = (+1)(-1) >> [g,u]=grd(a,b) g = (+1)(-1) U = ( ) -0.94(-) 0.94(+)(+1) >> U*[a; b] an = (+1)(-1) 0 Michael Šebek Pr-ARI

4 Euklide z Alexandrie ( ~ 300 před n.l. ) zavedl ještě dělení e zbytkem Pro dané polynomy a(), b()ǂ0 exitují polynomy q(), r() takové, že a = bq + r, deg r < deg b Opakování: Dělení e zbytkem podíl zbytek Proto polynomy tvoří tzv. euklidovký okruh >> a=prand(5,'int'),b=prand(3,'int') a = ^ - ^3 + 3^4 + 4^5 b = ^ - 6^3 >> [q,r] = rdiv(a,b) q = ^ r = ^ >> a-(b*q+r) an = 0 Michael Šebek Pr-ARI

5 Věta: Rovnice má řešení, právě když Nutná a potačující podmínka řešitelnoti ax ()() + by () () = c () gcd ( ab, ) c Důkaz Nutnot ( jen když ): Nechť ax ' + by ' = c a označme gcd( a, b) = g, a = ga, b = gb Pak g( ax ' + by ') = c a tudíž g c Potačitelnot ( když ) Nechť ( ab, ) c a označme ( a, b) = g, c = gc Pak vždy exituje p, q takové, že ap + bq = g Vynáobením c dotaneme a( pc ) + b( qc ) = c a tím jme zkontruovali řešení x = pc, y = qc Michael Šebek Pr-ARI

6 Příklady: řešitelnot >> c=(+1)*(+); >> a=(+1)^*(-1); b=(+1)*(-); >> g=gld(a,b) g = (+1) >> pol(c/g) an = (+.0000) >> [x,y]=axbyc(a,b,c) x = y = (+1.500) >> a*x+b*y-c an = 0 >> c=(-1)*(+) c = (+)(-1) >> c/g an = (+)(-1)/(+1) >> pol(c/g)??? Error uing ==> frac.pol Argument i not convertible to polynomial. Michael Šebek Pr-ARI

7 přeno bez krytých módu (bez krácení) 1 ( + 3) y () = u () ( 1)( + ) ( + 3) b () a ( ) = ( 1)( + )( + 3) y () = u () a () b ( ) = ( + 3) charakteritický polynom je ax ()() + by () () = ( 1)( + )( + 3)() x + ( + 3) y() = ( + 3) d () tedy žádný ZV regulátor nezmění neřiditelnou čát Obecné řešení 1 ( 1)( + ) Michael Šebek 7 u 1 ( + 3) >> pformat rootr >> a=(-1)*(+)*(+3),b=+3 a = ( )(+.0000)( ), b = (+3) >> x=prand();y=prand();c=a*x+b*y c = 0.877(+3.069)( )( )(^ ) >> x=prand();y=prand();c=a*x+b*y c = 0.758( )( )( )(^ ) >> x=prand();y=prand();c=a*x+b*y c = ( )(+.411)(+0.806)( )( ) y

8 Obecné řešení Věta: Obecné řešení Obecné řešení x = x bt kde t je libovolný rovnice má tvar y = y + at polynomiální parametr Důkaz: 1) Je to řešení pro každé t: Protě ho doadíme do rovnice ax + by = ax abt + by + bat = ax + by + ( ba ab ) t = c ) Neexituje žádné jiné řešení: pro libovolná řešení x, y a x,y platí ax + by = c, ax ' + by ' = c Odečtením ax ( x') + by ( y') = 0 a z toho ax ( x') = ( y y') b Přitom polynomy ab, definované dříve jou neoudělné a platí ab = ab Tudíž, takže pro nějaký polynom t platí b x x' a y y' x x ' = bt y y ' = at Libovolné řešení zíkáme tak, že necháme t probíhat množinu všech reálných polynomů Michael Šebek Pr-ARI

9 Příklad: Obecné řešení Nějaké řešení a=(+1)^*(-1) a = ^ + ^3 >> b=(+1)*(-) b = ^ >> c=(+1)*(+) c = ^ >> [x,y]=axbyc(a,b,c) x = y = >> [x,y,v,w]=axbyc(a,b,c) x = y = v = w = ^ Jiné řešení >> t=1- t = 1 >> xnew=x+v*t,ynew=y+w*t xnew = ^ ynew = ^ ^3 >> a*xnew+b*ynew-c an = 0 x () = x'() + rt ()() new y () = y'() + vt ()() new r () = b () v () = a () x () = x'() b()() t y () = y'() + at ()() Michael Šebek Pr-ARI

10 Vezmeme obecné řešení x = x ' bt y = y ' + at a algoritmem dělení redukujeme x' modulo b : Pak je x= r bt ( q) y = y ' + at Volbou t = q dotaneme řešení x, y minimálního tupně v x x= r deg x< deg b y = y ' + aq Podobně bychom dokázali exitenci a unicitu řešení minimálního tupně v y Tato dvě řešení jou obecně různá Řešení minimálního tupně x ' = bq + r deg r < deg b Michael Šebek Pr-ARI

11 Data Příklad: řešení minimálního tupně >> a=prand(3),b=prand(),c=prand(5) a = ^ ^3 b = ^ c = ^ + 1.8^ ^ ^5 >> [x,y,b_bar,a_bar]=axbyc(a,b,c); b_bar,a_bar b_bar = ^ a_bar = ^ ^3 Řešení min. tupně y Řešení min. tupně x >> [x,y]=axbyc(a,b,c) x = ^ y = ^ >> [x,y]=axbyc(a,b,c,'miny') x = ^ y = ^ >> [x,y]=axbyc(a,b,c,'minx') x = y = ^ ^3 Michael Šebek Pr-ARI

12 Koincidence Důležitý zvláštní případ natane, když deg c< deg a+ deg b Vyvětlení (předpokládáme neoudělná a, b ) x y c ax + by = c + = triktně ryzí, když platí b a ab triktně ryzí, když řeš. min deg x triktně ryzí, když řeš. min deg y Pravá trana triktně ryzí buď oba zlomky na levé traně jou triktně ryzí nebo žádný Pravá trana není triktně ryzí vždy pouze jeden zlomek na levé může být triktně ryzí když deg c< deg a+ deg b, pak obě řešení minimálních tupňů koincidují a exituje jediné řešení minimálního tupně (které je minimální v obou neznámých oučaně) když deg c deg a+ deg b, pak kutečně exitují dvě různá řešení minimálního tupně (jedno v x a druhé v y) Michael Šebek Pr-ARI

13 Příklad: koincidence Ano Obě jou tejná! Tedy exituje jediné řešení minimálního tupně (v obou oučaně) Ne Jou různá >> a=prand(3),b=prand(),c1=1, c=prand(6) a = ^ ^3 b = ^ c1 = 1 >> [x,y]=axbyc(a,b,c1,'minx') x = y = ^ >> [x,y]=axbyc(a,b,c1,'miny') x = y = ^ >> c=prand(6) c = ^+0.3^3-0.96^4-0.15^5+0.74^6 >> [x,y]=axbyc(a,b,c,'minx') x = y = ^ ^3-0.55^4 >> [x,y]=axbyc(a,b,c,'miny') x = ^ ^3 y = ^ Michael Šebek 13

14 Elementární operace na polynomiální matici Řádkové operace - 3 základní náobení řádku 1 nenulovou kontantou výměna dvou řádků 1 přičtení řádku náobeného 1 polynomem k jinému řádku 1. řádek 3 výměna řádků 1. řádek +.řád Sloupcové operace jou duální Elementární operace zachovávají až na náobení kontantou determinant odpovídají náobení unimodulární maticí (tj. maticí kontantním nenulovým determinantem) Michael Šebek Pr-ARI

15 Potup řešení polynomiálními redukcemi Řešení rovnice polynomiálními redukcemi Krok 1 Utvoř loženou matici Krok Redukuj ji elementárními řádkovými operacemi na tvar a () 1 0 b () 0 1 g () p () q () 0 v () w () Pak je pa ()() + qb ()() = g () va ()() + wb ()() = 0 kde ( a (), b ()) ( v (), w ()) gcd = g ( ) gcd = 1 Krok 3 Extrahuj g() z c() a dotaň Když to nejde, rovnice nemá řešení! c () = cg () () Michael Šebek Pr-ARI

16 Potup řešení polynomiálními redukcemi Výledek: jako řešení vezmi x () = cp () () y () = cq ()() Navíc, všechna řešení jou vyjádřena takto x () = cp () () + vt ()() y () = c()() q + wt ()() volný polynomiální parametr Potup výpočtu plyne z rovnoti p q a 1 0 g p q v w b 0 1 = 0 v w Michael Šebek Pr-ARI

17 Příklad: Řešení rovnice redukcemi ( ) ( ) + 1 x () + 1 y () = Krok 1 a Krok g () = 1 c() 1 ½ ½ = Krok 4 x () = y () = 1 x () = + t () 1+ y () = + t () Michael Šebek Pr-ARI

18 Potup řešení Sylvetrovou maticí Ukážeme na příkladu. tupně, kdy je dáno a() = a0 + a 1 + a a hledáme x() = x0 + x 1, y() = y0 + y b() = b b 1 + b c() = c0 + c 1 + c Krok1: Doadíme polynomy neurčitými koeficienty do rovnice, a + a+ a x + x + b + b+ b y + y = c + c+ c ( )( ) ( )( ) ax + by = c porovnáme koeficienty u tejných mocnin, ax + by + ax + by = c nebo maticově a ax + by + ax + by = c 0 a1 a 0 b ax 1+ by 1= 0 0 b1 b 0 [ x0 y0 x1 y1] = [ c0 c1 c 0] 0 a0 a1 a 0 b0 b1 b Vyřešíme tuto maticovou rovnici, čímž dotaneme x0, y0, x1, y1a z nich etavíme hledané x() = x + x, y() = y + y Michael Šebek Pr-ARI

19 ( ) ( ) + 1 x () + 1 y () = a () = 1+ b () = 1+ c () = x () = x y () = y Dotali jme řešení minimálního tupně (v obou neznámých), které je jiné než partikulární řešení zíkané dříve To z minulého příkladu dotaneme z obecného řešení volbou t() = 1 Příklad: Řešení Sylvetrovou maticí 0 0 [ x y ] = [ x y ] = [ 0 1] x () = + t () 1+ y () = + t () 1 1 x () =, y () = Michael Šebek Pr-ARI

20 Pozor na špatný odhad Pro rovnici hledáme i tady řešení tupňů 0 ( vědomím, že to ai je špatný odhad) a tak řešíme maticovou rovnice která ale nemá žádné řešení. Přeto polynomiální rovnice řešení má, ale vyšších tupňů, např. Toto je typický případ a = 1 +, b = (1 + ) = 1+ +, c = 1+ + [ x y ] = [ 1 ] x= 0.5 y, = >> a=1+^,b=(1+)^,c=a+b-1 a = 1 + ^ b = ^ c = ^ >> S=ylv([a;b],0),C=c{0:} S = C = 1 >> XY=C/S XY = >> XY*S==C an = >> [x,y]=axbyc(a,b,c) x = -0.5 y = Michael Šebek Pr-ARI

21 Příklad: přiřazení pólů Soutava motor přeno vtupního napětí Dříve navržený PI regulátor dává nulovou odchylku na kok ale ne dobrou dynamiku tak zkume lepší c b = a = ^ p = q = c1 = a*p + b*q c1 = ^ ^3 >> root(c1) an = i i i >> c=(+5)*(+1+j)*(+1-j) c = ^ + ^3 Michael Šebek Pr-ARI

22 řešením je obecný regulátor 1. řádu zajití dobrou dynamiku, ale >> [x1,y1]=axbyc(a,b,c) x = -1.7e e+0 y = 1.9e+0-3 nemá integrační charakter a tedy nezajití nulovou odchylku zkume tam tedy dát integrátor natvrdo (při řešení rovnice z něj uděláme čát outavy) dotaneme regulátor dobrou dynamikou a nulovou odchylkou ale je PID, což e dalo čekat Poučení: máme dobrou kontrolu nad dynamikou (vhodným výběrem CL pólů) dokážeme zajitit i další požadavky ale nemáme kontrolu nad řádem regulátoru ten protě vyjde pokračování >> [x,y]=axbyc(a*,b,c) x = y = 1.5e ^ >> p = x*, q =y p = 9.1e+0 q = 1.5e ^ Michael Šebek Pr-ARI

23 Příklad: Ryzot regulátoru Příklad: Pokud nemá pravá trana rovnice dotatečně vyoký tupeň ryzí regulátor exituje jen náhodou (není to generický případ) >> a=(-1)^,b=,c=(+1)^ a = ^ b = c = ^ >> [x,y]=axbyc(a,b,c) x = y = Jiný příklad: ryzí regulátor neexituje, to je generický případ >> c=prand(,'ta') c = ^ >> [x,y]=axbyc(a,b,c) x = y = Michael Šebek Pr-ARI

24 Všechny tabilizující regulátory Jak vypadá výledný charakteritický polynom? Pro t () = 0, d () = 1 q () y () = ap () () + bq ()() = ax ()() + by () () = c () p () x () Pro t () libovolné, d () libovolné tabilní (bez krácení ve reg. ) q () yd () () at ()() = p () xd () () + bt ()() ( ) ( ) ( ax ()() by () ()) d () ( ab ()() ba ()()) t () cd () () ap () () + bq ()() = a () xd () () + bt ()() + b () yd () () at ()() = + + = Je tam tedy vždy faktor c ()? To by přece nebyl obecný tabilní charakteritický polynom? Není: V některých případech dojde k jeho vykrácení už v regulátoru Michael Šebek Pr-ARI

25 Pokračování: Krácení Pro parametry takové, že dojde k vykrácení q () ( yd () () at ()()) c () = p () ( xd () () + bt ()()) c () ( yd () () at ()()) ( xd () () + bt ()()) ap () () + bq ()() = a () + b () c () c () ( + ) + ( ) ax ()() by () () d () ab ()() ba ()() t () cd () () = = = d () c () c () Tedy je výledný char. polynom opravdu libovolný tabilní Kdy k tomu dojde či jak to zařídit? Muí být + = = Řešíme jednu z rovnic =, + druhá vyjde = Výledný regulátor ( po vykrácení ) q () v () yd () () at ()() cv ()() xd () () bt ()() cw () () yd () () cv ()() at ()() xd () () cw () () bt ()() = p () w () Michael Šebek Pr-ARI

26 Soutavu b () a () = 1 Zřejmě tabilizuje regulátor y1() x1() = 1= výledných char. polynomem ax () 1() + by () 1() = + a také regulátor y() x() = 11= 1 výledných char. polynomem ax () () + by () () = + 1 Vyjděme třeba z prvního a napišme parametrizaci všech ve tvaru Teď volme parametry tak, aby e první char. Polynom vykrátil K tomu řešíme rovnici Po doazení vykrátíme a dotaneme kutečně q() d() t() = p () d () + t () y1 () d () = cv ()() + at ()() ( + 1) = ( + ) v() + t() v () = t () = 1 q () ( + 1) + 1 = = = p () ( ) Příklad Michael Šebek Pr-ARI

27 Příklad: Sledování DOF ( )( ) a () = 1+ 1 b () = + f() = f () = ( )( ) m () = + 1+ >> a=(1+)*(1-), b=+, f=^, m=(+)*(+1)^ >> [p,q]=axbyc(a,b,m,'miny') p = -, q = + >> [t,r]=axbyc(f,b,m,'miny'); r r = 1 + >> T=coprime(b*r/(a*p+b*q)) T = / ^ >> tep(tf(t/),tf(1/),5) ap () () + bq ()() = m () f ()() t + br ()() = m () p () = q () = + r () = 1+ Michael Šebek Pr-ARI

28 Sledování - 1DOF Navrhněme pro tejné zadání regulátor 1DOF, tedy řízení odchylkou Potup výběrem z DOF regulátorů p () = + w ()( + ) Z obecného řešení předchozí úlohy vybereme takové, aby q () = r () q () = + w ()(1 ) r () = 1+ v () ( ) ( ) Volbou w = 1 +, v = dotaneme nevyhovující p1 () = 0 q1() = 1+ + = r1() Jinou volbou u = 1, v = 1 dotaneme ( ) ( ) ( ) 4 p () = +, q () = 1+ + = r () Toto řešení ice není ryzí, ale jinak vyhovuje. Ryzí řešení tady neexituje. Podle očekávání obahuje jmenovatel 1DOF regulátoru faktor Michael Šebek Pr-ARI

29 1DOF regulátor můžeme navrhnout i přímo řešením rovnice a () f ()() x + bq ()() = m () a položením p () = f ()() x Protože řešení minimálního tupně x3() = p3() = 0 q () = tu opět nevyhovuje, muíme najít jiné pomocí obecného řešení x () = 0 + w ()( + ) q () = w ()(1 ) Pro w =1 dotáváme x4() = +, p4() = + 4 q () = Sledování - 1DOF >> [x3,q3]=axbyc(a*f,b,m), p3=x3*f x3 = 0 q3 = ^ p3 = 0 >> w=1;x4=x3+w*b; p4=x4*f,q4=q3-w*a*f p4 = ^ + ^3 q4 = ^4 ( ) Michael Šebek Pr-ARI

30 Porovnání ledování DOF a 1DOF Povšimněte i, že DOF regulátor vyšel ryzí ale 1DOF regulátor ryzí není To e projeví na CL přenoech v na odezvě na rampu q () + r () 1+ =, = p () p () q4() 1+ + = p () 4 ( + ) 4 >> TDOF= r*coprime(b/m) TDOF = 1 + / ^ >> T1DOF= q4*coprime(b/m) T1DOF = ^4 / ^ >> perdof=tf((tdof)/^); per1dof=tf(t1dof/^); impule(perdof,per1dof,tf(1/ ^),3) Michael Šebek Pr-ARI

31 Příklad: Model matching b ( ) ( + 1)( 1) a ( ) ( + )( ) Soutava = a požadovaný přeno Neoudělné faktory Volíme a řešíme rovnici t () = 1 b ( ) ( + 1)( 1) ( + 1) b( ) = = = g () ( 1) 1 g () g () 1 = f( ) ( + ) Řešení p ( ) 3( 1), q ( ) ( ). Feedforward je Tedy vychází regulátor Zkouška + p + + q = + + ( )( ) ( ) ( 1)( 1) ( ) ( ) ( 1) = + = + r () = 1 ( + ) 1 u = y+ u 3( + 1) 3( + 1) ( + 1)( 1) ( + 1)( 1) ( 1) = = 3( + )( )( + 1) + ( + 1)( 1)( + ) ( + ) ( + 1) ( + ) new Michael Šebek Pr-ARI

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

19 - Polynomiální metody

19 - Polynomiální metody 19 - Polynomiální metody Automatické řízení 218 16-4-18 Opakování - Vlastnosti polynomů Polynomy netvoří těleso, ale okruh - obecně jimi nelze dělit beze zbytku! Proto existuje: dělitel, násobek, společný

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

Příklady k přednášce 6 - Spojování a struktury

Příklady k přednášce 6 - Spojování a struktury Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení

Více

Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým

Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým Michael Šebek Automatické řízení 2013 21-4-13 Metody diskrétního návrhu Metody diskrétního návrhu, které jsou stejné (velmi

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Příklady k přednášce 16 - Pozorovatel a výstupní ZV

Příklady k přednášce 16 - Pozorovatel a výstupní ZV Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým

Více

24 - Diskrétní řízení

24 - Diskrétní řízení 24 - Diskrétní řízení Michael Šebek Automatické řízení 213 13-5-14 Metody návrhu diskrétního řízení Automatické řízení - Kybernetika a robotika Návrh pro čistě diskrétní systémy Mnohé metody jsou analogické

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

11 - Regulátory. Michael Šebek Automatické řízení

11 - Regulátory. Michael Šebek Automatické řízení - Regulátory Michael Šebe Automaticé řízení 7 6-3-7 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav

Více

Příklady k přednášce 24 Diskrétní řízení

Příklady k přednášce 24 Diskrétní řízení Příklady k přednášce 4 Diskrétní řízení Michael Šebek Automatické řízení 03 3-5-4 Automatické řízení - Kybernetika a robotika Vezměme opět dvojitý integrátor vzorkovaný s periodou h h h xk ( + ) 0 xk +

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. ) ( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

19 - Polynomiální metody

19 - Polynomiální metody 19 - Polynomiální metody Automatické řízení 215 19-4-15 Opakování - Vlastnosti polynomů Polynomy tvoří okruh, ne těleso. Obecně nelze polynomy dělit. Proto existují: dělitel, násobek, společný dělitel,

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je

Více

1 0 0 u 22 u 23 l 31. l u11

1 0 0 u 22 u 23 l 31. l u11 LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

10. Soustava lineárních rovnic - substituční metoda

10. Soustava lineárních rovnic - substituční metoda @112 10. Soustava lineárních rovnic - substituční metoda Jedna z metod, která se používá při řešení soustavy lineárních rovnic, se nazývá substituční. Nejlépe si metodu ukážeme na příkladech. Příklad:

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík

Podpora výuky předmětu Teorie automatického řízení I Petr Žajdlík Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více