Výpočet stability (odolnosti koryta)
|
|
- Eduard Mach
- před 6 lety
- Počet zobrazení:
Transkript
1 CVIČENÍ 5: VÝPOČET STABILITY KORYTA Výpočet stability (odolnosti koryta) Výpočtem stability se prokazuje, že koryto jako celek je pro nárhoé hydraulické zatížení stabilní. Nárhoé hydraulické zatížení pro stabilitu dna a pro stabilitu sahu se liší zhledem k zajištění ekonomické efektinosti ynaložených inestic při úpraě toku. Nárhoý průtok pro odolnost koryta se určí se zřetelem na pořizoací náklady a se zřetelem na praděpodobnou škodu, která by nastala případě porušení koryta (některé jeho části). Informatině lze uést tyto hodnoty: Nárhoý průtok pro odolnost dna Q 1 až Q 5 Nárhoý průtok pro odolnost sahů břehu a berem a) pro neopeněný břeh a berm b) pro openěný břeh a bermu Q 5 až Q 20 Q 20 až Q 100 Nárhoý průtok pro odolnost ochranných hrází Q 100 V upraoaném úseku Petrůky, tedy na toku upraeného charakteru zastaěné oblasti s nízkou hustotou zastaěnosti, bude olen nárhoý průtok pro odolnost dna Q kap=1-2 a pro odolnost noě zřizoaných openění sahů Q 20. METODA TEČNÝCH NAPĚTÍ A. Dno na Q NÁVRH přímé gr i [Pa] od d NÁVRH S R d d b *) 21 od s gde ;... číslo stability [-] s... měrná hmotnost splaenin [m 3 s -1 ] 1 Posouzení: stupeň bezpečnosti (z anglického safety factor) SF 1 *) Stanoení hydraulického poloměru dna R d pro stabilitu dna může prakticky ycházet z průřezoých charakteristik profilu při nárhoém průtoku Q NÁVRH 1-2 iz obr. ýše a zjednodušeně může být nahrazen odpoídající hloubkou proudění h 1-2 při témže průtoku.
2 2. oblouku od B R o z grafu 1 max 1 2 od R o... poloměr oblouku olit pro ýpočty průměr z menších použitých poloměrů... maximální tečné napětí na nějším oblouku u dna od max od... průměrné tečné napětí na dno 21 od max 1 ; SF 1 gd s e Pro určení odolnosti sahů koryta Petrůky je nutno stanoit polohu hladiny h 20 pro průtok Q 20. B.Sah na Q oblouku B (pro 4 0,75gh h 21 os s gde h20 tg 5,5 R o os 20 i... odchýlení ektoru rychlosti proudnici od směru tečny k ose oblouku témže místě h hloubka při nárhoém Q 20 R o... poloměr ose oblouku cos tg (7.67, 8.20) * 2sin sin tg * / číslo ronice e skriptech Úpray toků Mareš, číslo ronice učebnici Úpray toko Raplík, Výbora, Mareš... úhel pro ýpočet čísla stability na sahu... úhel sklonu sahu (naržený)... úhel nitřního tření pod odou Číslo stability na sahu 1 sin s 2 (7.71, 8.21)
3 cos tg SF tg sin cos s (obykle menší než 1) (7.48, 8.22) proto nárh openění sahu nárh pohozu tento ýpočet je pouze orientační pro posouzení elikosti odolné částice pokud se nepoužije pohoz. Nárh pohozu Nárh pohozu je předstaoán opakoaným ýpočtem pro změněná a d e již narženého materiálu pohozu a to tak dlouho, dokud není splněna podmínka SF>1 (max. 1,2). Výpočtem musí být zjištěna hodnota d e pohozu. Vztah mezi a d udáá záislost 7.30 na str.154 skript Obr. 1 Úhel nitřního tření pohozů Výpočet stability metoda neymílacích rychlostí Pro inženýra je často názornější předstaa o limitu neymílacích rychlostí, poronááme zde limitní spočítanou hodnotu neymílací rychlosti, při níž je zrno dané elikosti při aktuální hloubce schopno ještě zůstat klidu, se skutečnou rychlostí s, která odpoídá proudění pro posuzoaný průtok. V dalším bude použita následující indexoá konence. - neymílací rychlost, další indexy S a O znamenají hodnoty neymílací rychlosti na sahu a oblouku s sislicoá rychlost, další indexy O a max znamenají sislicoou rychlost oblouku a její maximální hodnotu.
4 A. Dno přímé na Q NÁVRH koryta tj. Q d 2 1 e určíme např. z ýpočtu 6 7,24 R 1 d d 6 R d... hydraulický poloměr dna d e, d jsou zrna z křiky zrnitosti pohozů 90 1 kde křika zrnitosti pohozů by měla být plynulá a doporučený relatiní tar e ztahu k zrnu d 50 d e by měl být e shodě s obr. 2. Obr. 2 Křika zrnitosti pohozů Hodnoty lze určit i tabelárně, např. z hodnot uedených e skriptech Tab. 8.2 od str. 183 dle druhu openění. Při parabolickém rozdělení sislicoých rychlostí korytě platí pro maximální sislicoou rychlost s,max a rychlost průřezoou (spočítanou z Chézyho ronice!!) ztah 0,945s, max s, max 0,945 B. Sahy (Q 20 ) přímé a oblouku Neymílací rychlost na sahu oblouku,so není stejná jako neymílací rychlost přímé. Projeuje se účinek prostoroého proudění odchylka proudoých láken u dna od podélného směru. Hodnotu je tedy třeba oprait o li sklonitosti sahu (SF m ) a roněž i li odchylky proudoých láken (). Posouzení pro dno přímé s,max cos 1 2 2, S O K 1 O SFm tg SFm *) kde tg tg SF m **)
5 *) Pokud se jedná o elikost neymílací rychlosti na sahu přímé,s, platí roněž ýše uedený ztah za předpokladu tg =0. **) Nelze samozřejmě připustit aby SF m < 1, neboť by se částice neudržela na sahu ani bez spolupůsobení proudící ody!!! Nyní je třeba ještě stanoit hodnotu maximální sislicoé rychlosti oblouku s,o max dle poznatků Rozoského o proudění zakřieném korytě. Prouděním kruhoě zakřieném korytě se rozíjí deformace rychlostního pole, kde maxima sislicoých rychlostí se přesouají k nějšímu okraji. Maximální deformace znikne při mezním úhlu Obr.3 Podmínky rozdělení sislicoých rychlostí oblouku (dle Rozoského) a mezní úhel C20 h 20 mezní úhel : 2,3 [rad] (graf 2) (pro graf 2 nutno přeést na!!!) g R o R o - poloměr oblouku, C 20 rychlostní součinitel dle Chézyho pro posuzoanou hloubku h 20 při posuzoaném průtoku Q 20 Z grafu 2 určit pro C a **) hodnotu přírůstek sislicoé rychlosti zakřiením s, O max s, max 1, kde s,o max je maximální sislicoá rychlost proudění oblouku a s, max je maximální sislicoá rychlost na sahu přímé. Posouzení pro patu sahu přímé, S s,max Posouzení pro patu sahu a oblouku (pokud neyjde, je třeba íce openit), S O s,o max **)!! Pozor, pokud je středoý úhel posuzoaného kružnicoého oblouku menší než hodnota, je třeba do grafu 2 použít místo tento středoý úhel!! Stanoení dosahu traních porostů na sahu. Pokud chceme určit úroeň, kam až mohou zasahoat traní porosty, je třeba stanoení založit na současném splnění jak podmínek mechanické odolnosti (neymílací rychlost traního porostu je ětší než odpoídající sislicoá rychlost k dané úroni břehu doporučení pro Q 20 ), tak i podmínek tolerance traního openění ůči zatápění.
6 Stanoení hranice mechanické odolnosti (h A), s, max,s kde, S je limit neymílací rychlosti pro jednotlié druhy openění na sahu přímé,, s, O max,so kde,so je limit neymílací rychlosti pro jednotlié druhy openění na sahu oblouku. Speciálně pro traní kryt na sahu oblouku tedy ychází rozhraní mechanické odolnosti za předpokladu Rozoského rozdělení rychlostí průtočném profilu takto 0,4 h A hmax s,o A s,o max,s tráy ha iz obr. 4 2,5 hmax s,o max,s O tráy!! Pozor, případě posouzení openění oblouku je třeba příslušnou hodnotu V,S O opět redukoat K O (iz. ýše)!! Obr.4 Hloubka h A určuje dosah openění traou pod hladinou při Q 20
7 Obr. 5 Výškoý rozsah použití train na sahu koryta Běžně použíané směsi mohou být yséány na plochách, kde nepřetržité zaplaení e egetačním období není delší než 14 až 21 dní a kde během egetačního období není celkoá doba, kdy je porost pod odou delší než 40 dnů. Je nutné počítat s tím, že požadoané odolnosti může dosáhnout traní porost při kalitní údržbě až od hladiny Q 180 d až Q 90 d průtoku (podle charakteru toku a složení osia). Pod touto hladinou je jeho odolnost menší a musí ji tedy postupně přezít jiný druh openění. Z obr. 5 plyne, že běžné traní směsi ( případě, že nejde o lhkomilné trainy) lze doporučit od uedené horní hranice (Q 90 d ) iz obr.6. Pak lze počítat s hodnotami odolnosti traního krytu uedenými tabulce 8.2. Pokud chceme tedy určit úroeň, kam až mohou zasahoat traní porosty, je třeba postupoat souladu s obrázkem 6. Obr. 6 Volba nejnižší úroně, kam až může traní kryt zasahoat
8 Část Tabulky 8.2
9 Graf 1
10 Graf 2
Výpočet stability (odolnosti koryta)
CVIČENÍ 5: VÝPOČET STABILITY KORYTA Výpočet stability (odolnosti koryta) Výpočtem stability se prokazuje, že koryto jako celek je pro nárhoé hydraulické zatížení stabilní. Nárhoé hydraulické zatížení pro
CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku
CVIČENÍ 5: Stabilita částice korytě prognóza ýmolu oblouku Výpočet stability (odolnosti koryta) metoda tečnýc napětí Výpočtem stability se prokazuje že koryto jako celek je pro nároé ydraulické zatížení
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny
Vypracoval: Pavel Šefl ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny Předmět: Ročník / obor Příloha č. Malé vodní toky 3. ročník BEKOL Název přílohy:
1141 HYA (Hydraulika)
ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených
CVIČENÍ 4: PODÉLNÝ PROFIL, NÁVRH NIVELETY, VÝPOČET PŘÍČNÉHO PROFILU.
CVIČENÍ 4: PODÉLNÝ PROFIL, NÁVRH NIVELETY, VÝPOČET PŘÍČNÉHO PROFILU. Podélný profil toku vystihuje sklonové poměry toku v podélném směru. Zajímají nás především sklon hladiny vody v korytě a její umístění
Vzorové příklady - 5.cvičení
Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude
1.8.9 Bernoulliho rovnice
89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její
Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí
Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ
Úvodní list. Prezentace pro interaktivní tabuli, pro projekci pomůcka pro výklad
Úvodní list Název školy Integrovaná střední škola stavební, České Budějovice, Nerudova 59 Číslo šablony/ číslo sady 32/09 Poř. číslo v sadě 18 Jméno autora Období vytvoření materiálu Název souboru Zařazení
Hydraulické výpočty spádových objektů (stupeň) zahrnují při známých geometrických parametrech přelivného tělesa stanovení měrné křivky objektu (Q-h
CVIČENÍ 8: HYDRAULICKÝ VÝPOČET OBJEKTŮ Hydraulické výpočty spádových objektů (stupeň) zahrnují při známých geometrických parametrech přelivného tělesa stanovení měrné křivky objektu (Q-h křivky) a určení
1141 HYA (Hydraulika)
ČVUT Praze, fakulta staební katedra hydrauliky a hydrologie (K) Přednáškoé slidy předmětu HYA (Hydraulika) erze: 0/0 K ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pdf souborů složených z přednáškoých
(Aplikace pro mosty, propustky) K141 HYAR Hydraulika objektů na vodních tocích
Hydraulika objektů na vodních tocích (Aplikace pro mosty, propustky) 0 Mostní pole provádějící vodní tok pod komunikací (při povodni v srpnu 2002) 14. století hydraulicky špatný návrh úzká pole, široké
silový účinek proudu, hydraulický ráz Proudění v potrubí
: siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá
Proudění s volnou hladinou (tj. v otevřených korytech)
(tj. v otevřených korytech) TYPY OTEVŘENÝCH KORYT PŘÍRODNÍ přirozená a upravená KORYTA - přirozená: nepravidelného geometrického průřezu - upravená: zhruba pravidel. průřezu (upravené většinou jen břehy,
Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí
Fakulta staební ČVUT Praze Katedra hydrauliky a hydroloie Předmět HYA K4 F ČVUT Hydraulika potrubí Doc. In. Aleš Halík, Cc., In. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ Rozdělení
Vzorové příklady - 7. cvičení
Voroé příklady - 7 cičení Voroý příklad 7 Nádobou na obráku protéká oda Nádoba je rodělena na tři ektory přepážkami otory Prní otor je čtercoý, o ploše S = cm, další da jou kruhoé, S = 5 cm, S = cm Otory
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
Revitalizace vodního toku. 2. cvičení
Revitalizace vodního toku 2. cvičení Projektování revitalizace toku Přípravné práce podklady, průzkumy Vlastní projekt Přípravné práce - historie záplav, škody - projektová dokumentace provedených a plánovaných
1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v
A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;
POHYB SPLAVENIN. 8 Přednáška
POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.
w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3
Sestate základní energetickou bilanci plnícího agregátu znětoého motoru LIAZ M638 (D/Z=30/50 mm, 4dobý, 6 álec) přeplňoaného turbodmychadlem K 36 377 V - 5. pulzačním praconím režimu. Proozní režim motoru:
VODNÍ HOSPODÁŘSTVÍ KRAJINY ZÁSADY ÚPRAV DROBNÝCH VODNÍCH TOKŮ
VODNÍ HOSPODÁŘSTVÍ KRAJINY ZÁSADY ÚPRAV DROBNÝCH VODNÍCH TOKŮ LITERATURA MAREŠ, K.: Úpravy toků navrhování koryt, ČVUT, Praha 1997 HAVLÍK, V. MAREŠOVÁ, I.: Hydraulika příklady, ČVUT, Praha 1993 KEMEL,
K Mechanika styku kolo vozovka
Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ. Katedra hydrauliky a hydrologie BAKALÁŘSKÁ PRÁCE. Úprava a zkapacitnění Lomnice
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Katedra hydrauliky a hydrologie BAKALÁŘSKÁ PRÁCE The Lomnice river training and increasing of river capacity Vedoucí bakalářské práce: Ing. Ivana Marešová,
p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země
Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,
Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)
Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do
MRATÍNSKÝ POTOK ELIMINACE POVODŇOVÝCH PRŮTOKŮ PŘÍRODĚ BLÍZKÝM ZPŮSOBEM
Úsek 06 (staničení 2134-2318 m) V současnosti je koryto zahloubené, napřímené, opevněné ve dně a březích betonovými panely. Ve svahu levého břehu vede velké množství inženýrských sítí. Pravý břeh je součástí
Dynamika vozidla Hnací a dynamická charakteristika vozidla
Dynamika ozidla Hnací a dynamická charakteristika ozidla Zpracoal: Pael BRABEC Pracoiště: VM Tento materiál znikl jako součást projektu In-TECH, který je spoluinancoán Eropským sociálním ondem a státním
tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému
III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického
CVIČENÍ 4: Podélný profil, návrh nivelety, výpočet příčného profilu
CVIČENÍ 4: Podélný profil, návrh nivelety, výpočet příčného profilu Podélný profil toku vystihuje sklonové poměry toku v podélném směru. Zajímají nás především sklon hladiny vody v korytě a její umístění
Průtoky. Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem za delší čas (den, měsíc, rok)
PRŮTOKY Průtoky Průtok Q (m 3 /s, l/s) objem vody, který proteče daným průtočným V profilem za jednotku doby (s) Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem
Proudění mostními objekty a propustky
Fakulta staební ČVUT Praze Katedra draulik a droloie Předmět HYV K141 FS ČVUT Proudění mostními objekt a propustk Doc. In. Aleš Halík, CSc., In. Tomáš Picek PD. MOSTY ýška a šířka mostnío otoru přeládá
Projekt 1 malé vodní nádrže 4. cvičení
4. cvičení Václav David K143 e-mail: vaclav.david@fsv.cvut.cz Konzultační hodiny: viz web Obsah cvičení Účel spodní výpusti Součásti spodní výpusti Typy objektů spodní výpusti Umístění spodní výpusti Napojení
Revitalizace vodního toku
Revitalizace vodního toku ČSN 01 3105 společně pro výkresy, velikosti, popisování, materiály, formáty a skládání výkresů, měřítka, čáry, kótování, ČSN 01 3402 popisové pole ČSN 01 3160 zásady oprav a změn
1.8.10 Proudění reálné tekutiny
.8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly
1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)
Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách
Konstrukční zásady. Na toku budou technicky řešeny tyto objekty: spádové objekty (stupně, prahy, skluzy)
CVIČENÍ 9: ZPRACOVÁNÍ TECHNICKÉHO ŘEŠENÍ OBJEKTŮ Na toku budou technicky řešeny tyto objekty: spádové objekty (stupně, prahy, skluzy) Konstrukční zásady Zásady řešení stupňů a jezů je vhodné volit v souladu
VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE
VLIV SLUNEČNÍHO ZÁŘENÍ N VĚTRNÉ STŘEŠNÍ KONSTRUKCE ZÁKLDNÍ PŘEDPOKLDY Konstrukce douplášťoých ětraných střech i fasád ke sé spráné funkci yžadují tralé ětrání, ale případě, že proedeme, zjistíme, že ne
Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět VIZP K141 FSv ČVUT. Vodní toky. Doc. Ing. Aleš Havlík, CSc.
Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie Předmět VIZP K141 FSv ČVUT Vodní toky Doc. Ing. Aleš Havlík, CSc. http://hydraulika.fsv.cvut.cz/vin/prednasky.htm Přirozené vodní toky K141
Splaveniny. = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti
SPLAVENINY Splaveniny = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti Vznik splavenin plošná eroze (voda, vítr) a geologické vlastnosti svahů (sklon, příp.
4 Brzdová zařízení kolejových vozidel
4 Brzdoá zařízení kolejoých ozidel 4. Součinnost brzdoých systémů Praidla součinnosti různých brzdoých systémů, které jsou současně instaloány na ozidle, musí být stanoena tak, aby byl maximálně yžitý
IDENTIFIKAČNÍ ÚDAJE AKCE...
Obsah 1. IDENTIFIKAČNÍ ÚDAJE AKCE... 2 2. ÚVOD... 2 3. POUŽITÉ PODKLADY... 2 3.1 Geodetické podklady... 2 3.2 Hydrologické podklady... 2 3.2.1 Odhad drsnosti... 3 3.3 Popis lokality... 3 3.4 Popis stavebních
VIZP Vodohospodářské inženýrství
VIZP Vodohospodářské inženýrství a životní prostředí Přednáška č.3 3 Vodní toky Přirozené évodní ítoky Účel úprav vodních toků, návrhové veličiny Opevnění upraveného koryta Ekologizace l i vodních toků
MRATÍNSKÝ POTOK ELIMINACE POVODŇOVÝCH PRŮTOKŮ PŘÍRODĚ BLÍZKÝM ZPŮSOBEM
Úsek 08 (staničení 2706-2847 m) Stávající úsek, opevněný betonovými panely, je částečně ve vzdutí dvou stupňů ve dně. Horní stupeň slouží k odběru vody do cukrovarského rybníka. Dolní stupeň, viz foto,
Hydraulická funkce mostních objektů a propustků Doc. Ing. Aleš Havlík, CSc. Ing. Tomáš Picek, Ph.D.
oc. In. Aleš Halík, CSc. In. Tomáš Picek, P.. PF tořeno zkušební erzí pdffactor www.fineprint.cz Most ýška a šířka mostnío otoru přeládá nad délkou, ýznamné eneretické ztrát: tokem, ýtokem Propustk délka
HYDROTECHNICKÝ VÝPOČET
Výstavba PZS Chrást u Plzně - Stupno v km 17,588, 17,904 a 18,397 SO 5.01.2 Rekonstrukce přejezdová konstrukce v km 17,904 Část objektu: Propustek v km 17,902 Hydrotechnický výpočet HYDROTECHNICKÝ VÝPOČET
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního
vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace
Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti
Zakládání staveb 5 cvičení
Zakládání staveb 5 cvičení Únosnost základové půdy Mezní stavy Mezní stav použitelnosti (.MS) Stlačitelnost Voda v zeminách MEZNÍ STAVY I. Skupina mezní stav únosnosti (zhroucení konstrukce, nepřípustné
Hydraulika a hydrologie
Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular
Příloha č. 1. Pevnostní výpočty
Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této
Tlumení energie 7. PŘEDNÁŠKA. BS053 Rybníky a účelové nádrže
Tlumení energie 7. PŘEDNÁŠKA BS053 Rybníky a účelové nádrže Tlumení energie Rozdělení podle způsobu vývarové (vodní skok, dimenzování) bezvývarové (umělá drsnost koryta) průběžná niveleta (max. 0,5 m převýšení)
Zásady křížení vodních toků a komunikací Doc. Ing. Aleš Havlík, CSc.
Zásady křížení vodních toků a Doc. Ing. Aleš Havlík, CSc. Respektování vodohospodářských zájmů Návrh křížení musí respektovat : Bezpečnost ochranných hrází. Splaveninový režim toku a stabilitu koryta toku.
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometrie RNDr. Yetta Bartákoá Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles koule, kuloá plocha a jejich části VY INOVACE_05 9_M Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles
Návrh opevnění. h s. h min. hmax. nános. r o r 2. výmol. Obr. 1 Definice koryta v oblouku z hlediska topografie dna. Vztah dle Apmanna B
Topografie dna v oblouku. Stanovení hloubky výmolu v konkávní části břehu a nánosu v konvexní části břehu. Výpočet se provádí pro stejný průtok, pro nějž byla stanovena odolnost břehů, tj. Q 20. Q 20 B
Vnitřní energie ideálního plynu podle kinetické teorie
Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau
Fluidace Úvod: Úkol: Teoretický úvod:
Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických
Stropní anemostaty. Série ADLR s kruhovou čelní částí. Série ADLR-Q se čtvercovou čelní částí 2/16/TCH/7
2/16/TCH/7 Stropní anemostaty Série ADLR s kruhoou čelní částí Série ADLR-Q se čtercoou čelní částí TROX GmbH Telefon +420 2 83 880 380 organizační složka Telefax +420 2 86 881 870 Ďáblická 2 e-mail trox@trox.cz
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu ýuky obecné fyziky MFF UK Praktikum I Mechanika a molekuloá fyzika Úloha č. XXI Náze: Měření tíhoého zrychlení Pracoal: Matyáš Řehák stud.sk.: 16 dne: 9.5.008
DOLNÍ LUKOVSKÝ RYBNÍK oprava hráze a bezpečnostního přelivu
DOLNÍ LUKOVSKÝ RYBNÍK oprava hráze a bezpečnostního přelivu v k.ú. Lukov u Zlína Dokumentace k realizaci stavby A. Průvodní zpráva B. Souhrnná technická zpráva Datum: 11/2012 Vypracoval: Ing. Marek Krčma
7. SEMINÁŘ Z MECHANIKY
- 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu
1. M ení místních ztrát na vodní trati
1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou
POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a
POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a délky na sebe navazujících úseků s konstantním podélným
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dě konstrukční úlohy dle části po. bodech a jedna úloha ýpočetní úloha dle části za bodů. Ústní část jedna
Základy hydrauliky vodních toků
Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly
Určete počáteční rázový zkratový proud při trojfázovém, dvoufázovém a jednofázovém zkratu v označeném místě schématu na Obr. 1.
AB5EN Nesmetrické zkrat Příklad č. Určete počáteční rázoý zkratoý proud při trojfázoém, doufázoém a jednofázoém zkratu označeném místě schématu na Obr.. G T 0,5/0 kv = MVA u k = % T3 0,5/0 kv = 80 MVA
Šířka ve dně. Navazující na přilehlé koryto Sklon svahů MRATÍNSKÝ POTOK ELIMINACE POVODŇOVÝCH PRŮTOKŮ PŘÍRODĚ BLÍZKÝM ZPŮSOBEM
Úsek 02 (staničení 459-732 m) V současnosti je koryto zahloubené, napřímené, opevněné ve dně a březích kamennou dlažbou / rovnaninou. Břehy jsou pokryty travním porostem, v horní části úseku se nacházejí
Revitalizace vodního toku. Petr Koudelka, HK: Út 9:30 11:30 B607,
Revitalizace vodního toku Petr Koudelka, HK: Út 9:30 11:30 B607, e-mail: koudelka@fsv.cvut.cz Náplň cvičení a podmínky zápočtu Odevzdat projekt DSP do 7.6. Účast: povolená jedna neomluvená absence + omluvenky
L.E.S. CR, spol. s r.o. Areál VÚLHM Jíloviště-Strnady, Praha 5 Zbraslav Tel.: ,
VIAQUA FOREST 120 Popis výrobku Ocelová svodnice vody VIAQUA FOREST 120 je určena pro příčné odvodňování dopravních staveb. Je určena pro instalaci odvodňování dopravních staveb. Je určena pro instalaci
VIAQUA FOREST 100B. Popis výrobku
VIAQUA FOREST 100B Popis výrobku Ocelová svodnice vody VIAQUA FOREST 100B je určena pro odvodňování dopravních staveb. Je vhodná pro instalaci v místech s nižší intenzitou zatížení (C 250 kn) a kde vyhovuje
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1
Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací
datum vyřizuje číslo jednací spisová značka 18. prosince 2014 Ing. Miroslava Janáčková KUZL 67049/2014 KUSP 67049/2014 ŽPZE-MJ
Odbor životního prostředí a zemědělství oddělení hodnocení ekologických rizik Dle rozdělovníku datum vyřizuje číslo jednací spisová značka 18. prosince 2014 Ing. Miroslava Janáčková KUZL 67049/2014 KUSP
Povrchové odvodnění stavební jámy. Cvičení č. 8
Povrchové odvodnění stavební jámy Cvičení č. 8 Příklad zadání Vypočtěte přítok vody do stavební jámy odvodněné povrchově. Jáma je hloubená v písčitém štěrku o mocnosti 8 m. Pod kterým je rozvětralá jílovitá
3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze
3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0
Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t
Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj
Kinetická teorie plynů
Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota
4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i
Opěrné zd i 4 Opěrné zdi 4.1 Druhy opěrných zdí Podle kapitoly 9 Opěrné konstrukce evropské normy ČSN EN 1997-1 se z hlediska návrhu opěrných konstrukcí rozlišují následující 3 typy: a) gravitační zdi,
Proudění podzemní vody
Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární
POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ
Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace
Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace
Inženýrský manuál č. 37 Aktualizace: 9/2017 Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Soubor: Demo_manual_37.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Konsolidace
Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)
říklad S1 Stanovte potřebný výkon spalovacího motoru siničního vozidla pro jízdu do stoupání 0 % rychlostí 50 km.h -1 za bezvětří. arametry silničního vozidla jsou: Tab S1.1: arametry zadání: G 9,8. 10
Vyztužení otvoru v plášti válcové nádoby zatížené vnějším přetlakem
Příka ZSPZ yztužení otoru pášti ácoé náoby zatížené nějším přetakem (poe ČSN 69000, čát. 4.) φ i 3 φ i Pášť náoby Hro ýztužný prtenec 3 3 Náčrt náoby hrem Zaané honoty: nější průměr náoby nitřní průměr
4. cvičení- vzorové příklady
Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci
Hydrodynamika. ustálené proudění. rychlost tekutiny se v žádném místě nemění. je statické vektorové pole
Hydrodynamika ustálené proudění rychlost tekutiny se žádném místě nemění je statické ektoroé pole proudnice čáry k nimž je rychlost neustále tečnou při ustáleném proudění jsou proudnice skutečné trajektorie
enýrství Hydraulika koryt s pohyblivým dnem I 141RIN 1
Říční inženýrstv enýrství Hydraulika koryt s pohyblivým dnem I 141RIN 1 Co očeko ekáváte, že e se dovíte?.... a co se chcete dozvědět t? 141RIN 2 Proč má smysl se pohyblivým dnem zabývat? Erozní činnost
Měřící žlaby FR Technické podmínky
Měřící žlaby FR 200-250-300-400-500 Technické podmínky TP 9-2012 MI FLOW s.r.o. Zahradnická 12, PSČ 603 00 Brno Tel./fax:+420 515 540 166 Tel.:+420 603 810 247 Email: info@miflow.cz Základní technické
Revitalizace vodního toku. Petr Koudelka, HK: St 11:30 14:00 B607,
Revitalizace vodního toku Petr Koudelka, HK: St 11:30 14:00 B607, e-mail: koudelka@fsv.cvut.cz Náplň cvičení a podmínky zápočtu Odevzdat projekt DSP do 2.6. Účast: povolená jedna neomluvená absence Zadání
Čestné prohlášení žadatele při podání Žádosti o poskytnutí dotace z Programu rozvoje venkova ČR
Příloha B Čestné prohlášení žadatele při podání Žádosti o poskytnutí dotace z Programu rozoje enkoa ČR - prohlašuji, že šechny informace uedené Žádosti o dotaci jsou pradié - prohlašuji, že mám k datu
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část JEZ CACOVICE - NÁVRH RYBÍHO PŘECHODU A VODÁCKÉ PROPUSTI SO 18.3.2 - TECHNICKÁ ZPRÁVA 1.1. NÁVRH UMÍSTĚNÍ RYBÍHO PŘECHODU...
5. Cvičení. Napětí v základové půdě
5. Cvičení Napětí v základové půdě Napětí v základové půdě - geostatické (původní) napětí - σ or - napětí od zatížení (od základu) - σz h σor σz Průběh napětí v zemině Na svislé ose: z h Pa Objemová tíha
4. VYTVÁŘENÍ KORYTA RELIÉFU. Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ. Práce vody v tocích: 3.
4. VYTVÁŘENÍ KORYTA Vnitřní horotvorné síly: vulkanické + seismické vytváření PRIMÁRNÍHO ZEMSKÉHO RELIÉFU Vnější síly: pohyb ledovců + tekoucí voda vytváření SEKUNDÁRNÍHO RELIÉFU: VZNIK POVODÍ Práce vody
Technologie výroby ozubení I.
Ústav Strojírenské technologie Speciální technologie Cvičení Technologie výroby ozubení I. č. zadání: Příklad č. 1 (parametry čelního ozubení) Pro zadané čelní ozubené kolo se šikmými zuby vypočtěte základní
STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu
IG staveb. inženýr STABILITA SVAHŮ - přirozené svahy - rotační, translační, creepové - svahy vzniklé inženýrskou činností (násypy, zemní hráze, sklon stavební jámy) Cílem stability svahů je řešit optimální
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený translační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Ronoměrný, ronoměrně zrychlený neronoměrně zrychlený trnslční pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hláč, Ph.D. Doc.
Vodohospodářské stavby BS001 Vodní toky a jejich úprava Hrazení bystřin
Vodohospodářské stavby BS001 Vodní toky a jejich úprava Hrazení bystřin CZ.1.07/2.2.00/15.0426 Posílení kvality bakalářského studijního programu Stavební Inženýrství Harmonogram přednášek 1. Úvod a základní
Výpočet prefabrikované zdi Vstupní data
Výpočet prefabrikované zdi Vstupní data Projekt Datum :.0.0 Nastavení (zadané pro aktuální úlohu) Materiály a normy Betonové konstrukce : ČSN 7 0 R Výpočet zdí Výpočet aktivního tlaku : Výpočet pasivního
Statický návrh a posouzení kotvení hydroizolace střechy
Statický návrh a posouzení kotvení hydroizolace střechy podle ČSN EN 1991-1-4 Stavba: Stavba Obsah: Statické schéma střechy...1 Statický výpočet...3 Střecha +10,000...3 Schéma kotvení střechy...9 Specifikace