PA054: Formální modely v systémové biologii

Rozměr: px
Začít zobrazení ze stránky:

Download "PA054: Formální modely v systémové biologii"

Transkript

1 PA054: Formální modely v systémové biologii David Šafránek

2 Obsah Algebraický přístup k modelování biochemických reakcí

3 Princip modelování Substráty molekuly populace interagujících molekul každou molekulu (proteinu) lze popsat stavově stav zachycuje konfiguraci vazebných míst volná vazebná místa vazebná místa obsazena jinou molekulou (dimerizující stavy) formalizace prostřednictvím sekvenčního procesu: MEK MEKp MEKpp

4 Princip modelování Substráty molekuly populace interagujících molekul každou molekulu (proteinu) lze popsat stavově stav zachycuje konfiguraci vazebných míst volná vazebná místa vazebná místa obsazena jinou molekulou (dimerizující stavy) formalizace prostřednictvím sekvenčního procesu:?p1 MEK?d1?p2 MEKp?d2 MEKpp

5 Princip modelování Substráty molekuly populace interagujících molekul každou molekulu (proteinu) lze popsat stavově stav zachycuje konfiguraci vazebných míst volná vazebná místa vazebná místa obsazena jinou molekulou (dimerizující stavy) formalizace prostřednictvím sekvenčního procesu: requires phosporylating enzyme?p1 MEKp?d1 MEK?p2?d2 MEKpp requires dephosporylating enzyme

6 Princip modelování Interakce proce procmek procpp Ef MEK?p1!p1?d1!d1?p2 Eb MEKp MEKpp?d2 PPf PPb paralelní chování procesů (molekul) binární synchronizace roztok lze modelovat jako populaci procesů: proc MEK proc MEK proc E proc E proc E proc PP proc PP

7 Princip modelování Interakce proce procmek procpp Ef MEK?p1!p1?d1!d1?p2 Eb MEKp MEKpp?d2 PPf PPb paralelní chování procesů (molekul) binární synchronizace roztok lze modelovat jako populaci procesů: proc MEK proc MEK proc E proc E proc E proc PP proc PP

8 Molekuly jako komunikující automaty individuální přechody a synchronizace lze modelovat stochasticky (provedení přechodu v čase t Exp(r i ))

9 Molekuly jako komunikující automaty

10 Elementární reakce jako komunikující automaty

11 Elementární kalkulus pro popis (bio)chemických systémů Syntax Andrew Phillips, Luca Cardelli, and Giuseppe Castagna, A Graphical Representation for Biological Processes in the Stochastic Pi-calculus, in Transactions in Computational Systems Biology, vol. 4230, pp , Springer, November 2006

12 Příklad

13 Elementární kalkulus pro popis (bio)chemických systémů Sémantika!x.P + M!x P?x.P + M?x P τ r.p r P P!x P Q?x Q P Q x P Q M α P π.p + M α P P α P Q α P Q X = P P α P X α P SOS pravidla definují fragment stochastického π-kalkulu

14 Rozšíření o předávání hodnot Syntax Andrew Phillips, Luca Cardelli, and Giuseppe Castagna, A Graphical Representation for Biological Processes in the Stochastic Pi-calculus, in Transactions in Computational Systems Biology, vol. 4230, pp , Springer, November 2006

15 Rozšíření o předávání hodnot Sémantika!x(n).P + M!x(n) P?x(m).P + M?x(m) P {n/m} τ r.p r P P!x(n) P Q?x(n) Q P Q x P Q M α P π.p + M α P P α P Q α P Q X (m) = P α P {n/m} P α X (n) P SOS pravidla definují fragment stochastického π-kalkulu

16 Příklad modelování genetické regulační sítě Gene(a, b) = τ t.(gene(a, b) Protein(b))+?a.Blocked(a, b) Blocked(a, b) = τ u.gene(a, b) Protein(b) =!b.protein(b) + τ d.0 Ralf Blossey, Luca Cardelli, and Andrew Phillips, A Compositional Approach to the Stochastic Dynamics of Gene Networks, in Transactions in Computational Systems Biology, vol. 3939, no. 3939, pp , Springer, January 2006

17 Příklad modelování genetické regulační sítě Gene(c, a) Gene(a, b) Gene(b, c)

18 High-level modelování C. elegance

19 High-level modelování C. elegance: vývoj vulvy

20 High-level modelování C. elegance: vývoj vulvy

21 High-level modelování C. elegance: možné varianty signálních drah LIN3... signál od řídící buňky (anchor cell, AC) LIN12... laterální mezibuněčný signál

22 High-level modelování interagující buňky Vývoj vulvy C. elegans Andrew Phillips, A Visual Process Calculus for Biology, in Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, 2010.

23 High-level modelování interagující buňky Vývoj vulvy C. elegans x... č. buňky, l, r... kanály laterálního signálu, k... vzdálenost od AC (frekvence interakce s AC) Andrew Phillips, A Visual Process Calculus for Biology, in Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, 2010.

24 High-level modelování interagující buňky Vývoj vulvy C. elegans Andrew Phillips, A Visual Process Calculus for Biology, in Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, 2010.

25 High-level modelování interagující buňky Vývoj vulvy C. elegans podrobný model Andrew Phillips, A Visual Process Calculus for Biology, in Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, 2010.

26 High-level modelování interagující buňky Vývoj vulvy C. elegans podrobný model Andrew Phillips, A Visual Process Calculus for Biology, in Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, 2010.

27 High-level modelování simulace Vývoj vulvy C. elegans

28 Kalkuly pro biologické systémy Stochastic π-calculus (SPiM, BioSPI) BioPEPA κ-calculus Brane-Calculus, BetaBinders, BlenX...

29 BioPEPA na rozdíl od π-based kalkulů je BioPEPA orientovaný bĺıže SBML rozlišení není až na úroveň molekul, ale na úroveň substrátů a reakcí proces není molekula, ale substrát výhodou je kompatibilita sémantik s SBML (srovnej s Petriho sítěmi) možnost plného modelování netriviální kinetiky (např. regulace, enzymová kinetika)

30 BioPEPA příklad 2S P; E S = (α, 2) S E = (α, 1) E P = (α, 1) P (S(I S0 ) α (E(I E0 )) α P(I P0 )) Sémantika dynamiky je definována pravidlem f α = v E S K+S 2.

31 BioPEPA syntax Algebra modelových komponent S ::= (α, k) op S S + S C op = P ::= P L P S(I ) L je množina reakcí I je iniciální podmínka

32 BioPEPA syntax Definice elementárních komponent substráty Každá komponenta C je charakterizována 5-ticí H, N, M 0, M, V, kde: H R + je rozlišení kvantity (velikost jedné úrovně koncentrace), N N je maximální hodnota kvantity, M 0 R + { } je iniciální koncentrace, M R + { } je maximální koncentrace, V označuje kompartment do něhož je komponenta přiřazena. Pozn. (1): značí nedefinovanou hodnotu Pozn. (2): M, M 0 jsou uvedeny pro kalibraci se spojitým modelem.

33 BioPEPA syntax Definice elementárních komponent substráty diskretizace koncentrace pomocí úrovní stejné délky (v počtu molekul) diskrétní sémantika tedy umožňuje kalibraci se spojitou (aproximace) počet úrovní pro komponentu C i je N i + 1, kde N i je max. úroveň platí: N j = M j H kde M j M, 0 j < N, reprezentuje hraniční koncentraci mezi levely N j, N j+1 pro aktuální úroveň 0 l j N j je koncentrace definována vztahem x j = l j H

34 BioPEPA definice biologického procesu BioPEPA systém je šestice V, N, K, F R, Comp, P kde: V... množina kompartmentů, N... množina kvantit popisujících substráty, K... množina definic parametrů, F R... množina definic dynamiky, Comp...definice komponent, P... komponenta popisující systém.

35 BioPEPA sémantika každá akce α má přiřazenu kinetickou funkci f α nad kvantitami substrátů kvantity substrátů jsou určeny z kontextu akce α kinetické funkce mohou obsahovat kinetické parametry, které musí být asociovány v K příklady typů kinetických funkcí: fma(k) = k n j i=1 (C i) κ i kde n j je počet reaktantů reakce α j a κ i je příslušný stechiometrický koeficient reaktantu C i fh(v, K, n) = v C n /(K + C n ) je Hillova kinetika

36 BioPEPA operační sémantika Předpokládáme C spočetná množina zahrnující všechny možné modelové komponenty. BioPEPA systém má asociovánu stochastickou sémantiku, která je definována prostřednictvím odvozující relace c C Ω C, kde θ Ω vyjadřuje kvantitativní informaci potřebnou k vyhodnocení kinetické funkce, θ := (α, w) kde w := [S : op(l, κ)] w@w, S C, l hodnota kvantity komponenty S, κ stechiometrický koeficient komponenty S v α. Relace c je definována jako minimální relace splňující pravidla na násl. slidu.

37 BioPEPA odvozující relace

38 BioPEPA stochastická sémantika Stochastická sémantika BioPEPA systému je určena relací: s P Γ P kde γ Γ, γ := (α, r α ), r α R + určuje parametr exponenciální distribuce události v čase (rate). Relace s je definována pomocí pravidla: kde r α [w, N, K] = f α[w, N, K] H H je velikost kroku f α [w, N, K] značí kin. funkci f α vypočítanou v přísl. kontextu

39 BioPEPA stochastická sémantika Evaluace f [w, N, K]: pro každou komponentu C i je odvozena koncentrace l i H volný výskyt C i je nahrazen (l i H) κ ij, kde κ ij je stechiometrický koeficient substrátu C i v reakci R j pozn.: pro H = 1 a vhodné omezení kinetických funkcí dostáváme přímou stochastickou sémantiku (relace s definuje CTMC, který bychom získali interpretací stochastické Petriho sítě odpovídající BioPEPA systému)

40 BioPEPA příklad Uvažujme reakci α : 2X + Y k 3Z. Kinetika je definována funkcí v = k X 2 Y. Definujeme komponenty BioPEPA: Reakční systém je definován: X (l X0 ) {α} Y (l Y0 ) {α} Z(l Z0 ) kde l X0, l Y0, l Z0 značí iniciální úrovně koncentrace, kin. funkce je definována f α = fma(k). Pro reakci bude odvozením stochastické sémantiky vypočítán rate r α = k (l X H) 2 (l Y H) H Reakce bude provedena pouze v situaci: N X je nejméně 3, N Z je nejméně 4.

41 κ-calculus Laneve, C. and Tarissan, F A Simple Calculus for Proteins and Cells. Electron. Notes Theor. Comput. Sci. 171, 2 (Jul. 2007),

42 κ-calculus vazebná místa 1,2 navázaná vazebná místa 3 skrytá vazebná místa 4 viditelná vazebná místa

43 κ-calculus interakce proteinů proteiny mohou vytvářet komplexy spojováním na vazebných místech kolekce proteinů a jejich komplexů tvoří roztok (solution)

44 κ-calculus příklady spojení

45 κ-calculus komplexace

46 κ-calculus požadavek monotonicity NEPOVOLENÁ OPERACE, nesplňuje monotonicitu updatu vazeb

47 κ-calculus syntax spočetná množina jmen proteinů P, zn. A, B,... P spočetná množina jmen hran E, zn. x, y,... E signatura, : P N (A) zn. počet vazeb proteinu A (A, i) značí i-té vazebné místo na A

48 κ-calculus rozhraní lib. paricální zobrazení N E {h, v} nazýváme rozhraní, zn. ρ, σ,... vazebné místo (A, i) nazýváme: viditelné, pokud ρ(i) = v skryté, pokud ρ(i) = h vázané, pokud ρ(i) E rozhraní reprezentuje stav roztoku

49 κ-calculus příklad rozhraní Předpokládejme A t.ž. (A) = 3, pak ρ(1) = v, ρ(2) = h, ρ(3) = x je rozhraní proteinu A, v němž místo 1 je viditelné, místo 2 skryté, a místo 3 vázané na jméno hrany x E. Symbolicky píšeme: ρ = x

50 κ-calculus syntax roztoku S := 0 prázdný roztok A(ρ) protein S, S skupina (νx)(s) vazba Pro množinu jmen x 1, x 2,..., x n používáme notaci x a vazbu rozšíříme na (ν x)(s).

51 κ-calculus syntax roztoku induktivně definujeme množinu volných jmen v roztoku S, zn. fn(s): výskyt x v S je vázaný pokud je zanořen pod operátorem νx roztok S je uzavřený pokud všechny výskyty jmen v S jsou vázané (zejména fn(s = ))

52 κ-calculus strukturní kongruence Definujeme relaci strukturní kongruence, zn., jako nejmenší ekvivalenci uzavřenou syntakticky asociativní a komutativní operací seskupení,, α-ekvivalencí (injektivní přejmenování vázaných jmen) a 0 chápanou jako neutrální prvek, dále splňující pravidla: 1. (νx)(νy)(s) (νy)(νx)(s), 2. (νx)(s S, pro x fn(s), 3. (νx)(s), S (νx)(s, S ), pro x fn(s ). Přejmenování Přejmenování r je konečná parciální injekce na množině E {h, v}, která je identitou na {h, v} a zobrazuje E E.

53 κ-calculus propojenost Definujeme propojený roztok strukturní indukcí: A(ρ) je propojený, je-li S propojený, pak i (νx)(s) je propojený, jsou-li S, S propojené a fn(s S ), pak S, S je propojený, je-li S propojený a S T, pak T je propojený.

54 κ-calculus vizuální omezenost Roztok je vizuálně omezený, pokud: výskyt lib. volného jména v S je max. dvojnásobný vazba (νx)(s) váže buď 0 nebo 2 výskyty x

55 κ-calculus příklad

56 κ-calculus příklad

57 κ-calculus příklad

58 κ-calculus relace růstu cílem je omezit prostor možných interakcí (reakcí) nástrojem bude monotonost updatů vazeb formálně zachycena relací růstu definovanou na parciálních rozhraních idea: ρ ρ odpovídá situaci ρ obsahuje více vazeb než ρ relace je parametrizována danou množinou jmen x reprezentující právě nové (přidané) hrany

59 κ-calculus relace růstu

60 κ-calculus relace růstu relace definována pouze pro rozhraní rozšíříme na skupiny proteinů Definice (Preprotein) Pro libovolný protein A a parciální rozhraní ρ nazveme A(ρ) preproteinem. Definice (Preroztok) Libovolnou skupinu preproteinů nazveme preroztokem.

61 κ-calculus relace růstu (rozšíření na preroztoky) interpretace x S S : nové vazby přidány (S zahrnuje více spojení) (SYNTH) povoluje vytváření nových proteinů s plnými rozhraními

62 κ-calculus reakce Nechť S, S jsou preroztoky. monotonní reakce r 1 : S (ν x)s je monotonní reakce pokud: x S S S a (ν x)s jsou vizuálně omezené S je propojený antimonotonní reakce r 2 : (ν x)s S je antimonotonní reakce pokud: reakce S (ν x)s je monotonní.

Modelov an ı biologick ych syst em u Radek Pel anek

Modelov an ı biologick ych syst em u Radek Pel anek Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 8.10.2008 Obsah Metody dynamické analýzy Obsah Metody dynamické analýzy Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce

Více

Modelování biochemických procesů: Deterministický model transkripční regulace

Modelování biochemických procesů: Deterministický model transkripční regulace Modelování biochemických procesů: Deterministický model transkripční regulace David Šafránek Seminář ParaDiSe 1.10.2007 Obsah Základní pojmy Spojitý deterministický model chemických reakcí Spojitý deterministický

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 29.10.2008 Obsah Spojitý deterministický model transkripční regulace Obsah Spojitý deterministický model transkripční regulace Schema transkripční regulace

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 3.12.2008 Obsah Obsah Robustnost chemotaxe opakování model chemotaxe bakterií nerozliseny stavy aktivity represoru aktivita = ligandy a konc. represoru

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 1.10.2008 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu Obsah Pojem modelu a simulace in silico Statická analýza

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

PB050: Modelování a predikce v systémové biologii

PB050: Modelování a predikce v systémové biologii PB050: Modelování a predikce v systémové biologii David Šafránek 21.10.2009 Obsah Pojem modelu a simulace in silico opakování Obsah Pojem modelu a simulace in silico opakování Workflow systémové biologie

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ), Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních

Více

KMA/MM. Chemické reakce.

KMA/MM. Chemické reakce. Zápočtová práce z předmětu Matematické modelování KMA/MM Chemické reakce Jméno a příjmení: Hana Markuzziová Studijní číslo: A06070 Email: hmarkuzz@students.zcu.cz Obsah 1 Úvod 3 2 Chemické rovnice 3 3

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

2.2 Sémantika predikátové logiky

2.2 Sémantika predikátové logiky 14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Dotazování v relačním modelu a SQL

Dotazování v relačním modelu a SQL Databázové systémy Dotazování v relačním modelu a SQL Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YDATA: Přednáška II. 14. říjen, 2016 1 / 35 Opakování Relační

Více

Simulace pohybu chodců pomocí celulárních modelů

Simulace pohybu chodců pomocí celulárních modelů Simulace pohybu chodců pomocí celulárních modelů Marek Bukáček výzkumná skupina GAMS při KM KIPL FJFI ČVUT v Praze 8. červen 2011 Obsah Úvod Celulární modely úprava Floor field modelu Proč modelovat Akademický

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Co je to univerzální algebra?

Co je to univerzální algebra? Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE

Více

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 24.9.2008 Obsah Modelové organismy Získávání biologických dat Modely a simulace in silico Obsah Modelové organismy Získávání biologických dat Modely a simulace

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

Varieta a její tečná struktura

Varieta a její tečná struktura verze.4 (203-2-09) 2.03,.2,.4,2.04,2.02,2.02,2.03,2.03,2.02,0,.03 Kapitola 2 Varieta a její tečná struktura Druhá kapitola v tuto chvíli obsahuje přehled značení týkající se variety a tečných tenzorů.

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Logika a regulární jazyky

Logika a regulární jazyky Logika a regulární jazyky Václav Brožek 10. listopad 2010 V. Brožek: Logika a regulární jazyky 1 Meta-poznámky dotazy a poznámky během přednášky vítány po přednášce rovněž vítány, např. na bleble@mail.muni.cz

Více

1 Připomenutí vybraných pojmů

1 Připomenutí vybraných pojmů 1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná

Více

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XIII Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1 Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Fakulta stavební GEOSTATISTIKA. Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová

Fakulta stavební GEOSTATISTIKA. Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová České Vysoké Učení Technické v Praze Fakulta stavební GEOSTATISTIKA Martin Dzurov, Kristýna Kitzbergerová, Lucie Šindelářová Studijní program: Geoinformatika Vedoucí projektu: Dr. RNDr. Jana Nosková Praha,

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Lineární algebra : Lineární (ne)závislost

Lineární algebra : Lineární (ne)závislost Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Úlohy k procvičování textu o svazech

Úlohy k procvičování textu o svazech Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít

Více

ALS1 Přednáška 1. Pravěpodobnost, náhodná proměnná, očekávaná hodnota náhodné proměnné, harmonická čísla

ALS1 Přednáška 1. Pravěpodobnost, náhodná proměnná, očekávaná hodnota náhodné proměnné, harmonická čísla ALS Přednáška Pravěpodobnost, náhodná proměnná, očekávaná hodnota náhodné proměnné, harmonická čísla Prostor elementárních jevů S je množina, jejíž prvky se nazývají elementární jev. Jev je podmnožina

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více