PB050: Modelování a predikce v systémové biologii
|
|
- Zdenka Matějková
- před 6 lety
- Počet zobrazení:
Transkript
1 PB050: Modelování a predikce v systémové biologii David Šafránek
2 Obsah Pojem modelu a simulace in silico opakování
3 Obsah Pojem modelu a simulace in silico opakování
4 Workflow systémové biologie rekonstrukce sítí databáze biol. znalostí + literatura biologická sít specifikace modelu SBML, diferenciální rovnice, boolovská sít, Petriho sít,... hypotézy validace modelu genové reportéry, DNA microarray, hmotnostní spektrometrie,... objevené vlastnosti analýza modelu statická analýza, numerická simulace, analytické metody, model checking dotazy na model verifikace hypotéz, detekce vlastností vyvození nových hypotéz
5 Proč dělat model in silico? omezené možnosti in vivo/in vitro experimentů náročnost experimentů na laboratorní prostředí nelze nastavit libovolné externí/výchozí podmínky experimenty náročné na čas vysoké náklady na biologický materiál, zařízení a zabezpečení experimentů
6 Co očekávat od modelu? nestačí jen znalost o chemických substancích nutné evidovat jednotlivé interakce mezi substancemi důležité je pochopení jejich významu funkce komplex chemických reakcí a jejich regulací zkoumání emergentních vlastností statická analýza modelu topologické vlastnosti, přímá vazba na evoluční selekci dynamická analýza modelu simulace chování při daných iniciálních podmínkách a prostředí predikce chování (emergentní vlastnosti) inspirace pro experimenty in vivo/in vitro tvorba/ověřování hypotéz na základě in silico modelu
7 In silico model abstraktní model teoretický (idealizovaný) obraz skutečného organismu specifikace modelu množina proměnných (chemické substance) množina interakcí (vztahy mezi proměnnými) proměnná zachycuje množství susbtance v daném okamžiku molární koncentrace, počet molekul interakce popisují logické i funkční vztahy komplexace, rychlost reakce simulace umožňuje sledovat vývoj proměnných v čase s ohledem na projev interakcí
8 Reprezentace modelu biologická síť komplexní systémový popis organismu neexistuje jednoznačná definice orientovaný nebo neorientovaný graf uzly představují typicky proměnné hrany představují typicky (funkční) relace mezi proměnnými k uzlům a relacím jsou přiřazeny kvalitativní i kvantitativní informace potřebné k simulaci (dynamická analýza) biologické sítě lze strukturně zkoumat statická analýza srovnávání sítí různých organismů vyhledávání alternativních cest zkoumání měřitelných vlastností sítí zkoumání změn v sítích při evoluční selekci
9 Obsah Pojem modelu a simulace in silico opakování
10 Dráhy vs. sítě dráhy jsou podsítě lineárního tvaru sekvence metabolických reakcí specifické zaměření na určité proměnné analyzované problémy: délka dráhy, existence alternativních drah sítě reprezentují komplexní data (zohledňují širokou množinu proměnných a všech relevantních interakcí) sítě interakcí určitého charakteru (transkripce, metabolismus, protein-protein,...) analyzované jevy: stupeň větvení, délka nejkratší dráhy, modularita, motivy,...
11 Vyhledávání alternativních drah E. coli
12 Vyhledávání alternativních drah S. cerevisiae
13 Alternativní dráhy
14 Alternativní dráhy význam v genetice a genomice modifikace drah souvisí přímo s vývojem genomu (evoluce) identifikace neznámých genů význam v biotechnologii identifikace a implementace alternativních variant význam ve farmakologii laterální náhrada genu metabolicky-specifické medikamenty
15 Biologické sítě různé typy sítí: regulatorní sítě (popis transkripční regulace) proteinové sítě (popis interakce proteinů) metabolické sítě (popis metabolismu) signální sítě (popis aktivačních/deaktivačních kaskád) další typy (např. neuronové sítě)
16 Biologická síť jako graf Definition Nechť V je konečná množina uzlů a E V V relace. Biologickou sítí nazveme graf G reprezentovaný uspořádanou dvojicí G (V, E). Pokud a, b E. a, b E b, a E, G nazýváme neorientovaný. V ostatních případech hovoříme o orientovaném grafu. typ sítě V E G genová regulační geny (resp. proteiny) regulace exprese or. proteinová proteiny proteinové interakce neor. metabolická metabolity, enzymy enzymové reakce or. signální molekuly aktivace/deaktivace or.
17 Cesty a kružnice cesta v grafu je libovolná sekvence uzlů [a 1, a 2,..., a n ] t.ž. i {1,..., n 1}. a i, a i+1 E, číslo n 1 nazýváme délkou cesty (počet hran) cestu nazveme elementární pokud se na ní každý vrchol vyskytuje právě jednou kružnice v grafu je libovolná elementární cesta [a 1, a 2,..., a n ] t.ž. a 1 = a n smyčkou nazýváme libovolnou kružnici délky 1
18 Cesty a kružnice
19 Cesty a kružnice kolik kružnic...
20 Cesty a kružnice kolik kružnic... 4 kolik cest z a do d...
21 Cesty a kružnice kolik kružnic... 4 kolik cest z a do d... 2 délka nejkratší cesty z d do c...
22 Cesty a kružnice kolik kružnic... 4 kolik cest z a do d... 2 délka nejkratší cesty z d do c... d(d, c) = 2
23 Vlastnosti grafu délku nejkratší cesty z a do b značíme d(a, b) charakteristickou délku cesty grafu G (V, E) značíme L G a definujeme: L G = 2 V ( V 1) a,b V d(a, b) množinu sousedních uzlů uzlu a značíme N a a definujeme N a = {b V a, b E b, a E} stupeň uzlu a značíme k a a definujeme jako počet všech sousedních uzlů uzlu a, tedy k a = N a koeficient seskupení uzlu (clustering coefficient [Watts, Strogatz]) a značíme C a a definujeme: C a = { c, d E c N a d N a } k a (k a 1)
24 Vlastnosti grafu koeficient seskupení grafu G je značen C G a definován jako průměr klastrovacích koeficientů všech uzlů: C G = 1 V a V C a
25 Vlastnosti grafu
26 Vlastnosti grafu C a =
27 Vlastnosti grafu C a = 2 2 = 1
28 Vlastnosti grafu C a = 2 2 = 1 C b =
29 Vlastnosti grafu C a = 2 2 = 1 C b = 2 6 = 1 3
30 Vlastnosti grafu C a = 2 2 = 1 C b = 2 6 = 1 3 C G =
31 Vlastnosti grafu C a = 2 2 = 1 C b = 2 6 = 1 3 C G = 1 4 ( ) = 0.65
32 Náhodný graf náhodný graf je definován pevným počtem uzlů a pravděpodobností p existence hrany mezi libovolnými dvěma uzly alternativní definice: zvolíme množinu vrcholů V a počet hran n, z množiny všech možných hran ( V 2) vybereme náhodně n hran pravděpodobnost, že v náhodném grafu má daný uzel stupeň k, je charakterizována Poissonovým rozložením (s konst. λ): f (k λ) = e λ λ k [Erdös, Rényi, On the evolution of random graphs ] k!
33 Poissonovo rozložení
34 Náhodný graf Poissonovo rozložení stupně uzlů
35 Vlastnosti náhodných grafů typ grafu C G L G svaz vysoké dlouhé náhodný graf nízké krátké small-world vysoké krátké
36 Small-world sítě zavedeny Wattsem a Strogatzem, Collective dynamics of small-world networks, Nature 393, 1998 klíčem jsou lokální a globální metriky seskupení uzlů a metrika charakteristické délky cesty identifikovány jako grafy s vysokým koeficientem seskupení ale krátkou charakteristickou délkou cesty bylo prokázáno, že mnoho reálných sítí má tento charakter např. graf filmových herců propojených dle společného účinkování neuronové sítě v C. elegans výrazný posun v porozumění chování rozsáhlých dynamických systémů zavedení pojmu real-world graphs
37 Scale-free sítě zavedl Barabási a Albert, Emergence of Scaling in Random Networks, Science 286, 1999
38 Scale-free sítě reálné sítě nejsou statické (nemají pevný počet uzlů), ale vyvíjejí se dynamicky v čase, tzv. rostou nové uzly se napojují nejvíce k těm uzlům, které jsou se zbytkem sítě již dobře propojeny např. metabolické sítě E. coli jsou scale-free [Wagner, Fell, 2001] označíme-li P(k) pravděpodobnost, že libovolný uzel má stupeň k, pak pro scale-free sítě platí následující ůměra (Power law pro konst. λ): P(k) k λ
39 Scale-free sítě
40 Motivy ve scale-free sítích ve scale-free sítích se vyskytují specifické uzly, tzv. huby uzly s vysokým stupněm propojení na kostru síťové struktury ostatní uzly jsou lokálně napojeny k hubům objeveno např. při studiu proteinové sítě kvasinky pivovarské (Saccharomyces cerevisiae) [Jeong, Mason, 2001] díky hubům jsou sítě robustní proti náhodnému vyjmutí uzlu, ale naopak vyjmutí hubu znamená výrazné porušení sítě tato struktura vede k hierarchičnosti a modulárnímu charakteru jako moduly jsou identifikovány často opakující se výrazné podsítě (motivy) [Alon et.al., Network Motifs: Simple Building Blocks of Complex Networks, 2002] http: //
41 Motivy
42 Reprezentace grafů maticí sousednosti matice rozměru V V M[a, b] = 1, pokud a, b E; M[a, b] = 0, jinak. maticí incidence matice rozměru V E M[a, e] = 1, pokud b V.e a, b E; M[a, e] = 1, pokud b V.e b, a E; M[a, e] = 0, jinak. nároky na paměť O( V 2 ) reprezentace efektivní pro malé grafy pro větší nutno použít seznam sousedů
43 Reprezentace grafů matice sousednosti
44 Metody statické analýzy cílem je zkoumat vlastnosti individuální biologické sítě nebo vzájemné porovnání biologických sítí vyhledávání v grafu do šířky (breadth-first search BFS) do hloubky (depth-first search DFS) iterativní zanořování (kombinace DFS a BFS) vyhledávání kružnic vyhledávání nejkratších cest vyhledávání cest incidujících s danou množinou uzlů vyhledávání a identifikace motivů
45 Nástroje pro statickou analýzu uplatnění tradičních grafových algoritmů vizualizace grafů Cytoscape layouting porovnání s náhodnými grafy identifikace motivů NetMatch (Cytoscape plugin) FANMOD ~wernicke/motifs/index.html mfinder/mdraw UriAlon/groupNetworkMotifSW.html
46 Nástroje pro statickou analýzu Pathway Hunter Tool analýza nejkratších cest v metabolických drahách identifikace uzlů enzymy v EC notaci možnost porovnání metabolických drah v různých organismech statistická analýza metabolických drah vyhledávání metabolických cest v databázi KEGG KEGG databáze metabolických drah vyhledávání dle enzymových čísel umožňuje nalézt cesty incidující s danou množinou enzymů podporuje grafické vyobrazení metabolických drah (staticky předdefinovaná schémata)
47 Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce jsou omezeny základními zákony chemie ale i evolučním vývojem syntaxí organismu-systému je síť komponent sémantikou organismu-systému je jeho funkce (dynamika) nad sítěmi lze provádět statickou analýzu charakterizace vlastností sítě (metriky) statistické srovnání s náhodnými grafy identifikace motivů statické vlastnosti determinovány evolučním vývojem
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 1.10.2008 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu Obsah Pojem modelu a simulace in silico Statická analýza
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 8.10.2008 Obsah Metody dynamické analýzy Obsah Metody dynamické analýzy Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Metody analýzy dat I. Míry a metriky - pokračování
Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:
Modelov an ı biologick ych syst em u Radek Pel anek
Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 24.9.2008 Obsah Modelové organismy Získávání biologických dat Modely a simulace in silico Obsah Modelové organismy Získávání biologických dat Modely a simulace
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
Moderní aplikace statistické fyziky II - TMF050
Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Modelování biochemických procesů: Deterministický model transkripční regulace
Modelování biochemických procesů: Deterministický model transkripční regulace David Šafránek Seminář ParaDiSe 1.10.2007 Obsah Základní pojmy Spojitý deterministický model chemických reakcí Spojitý deterministický
Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy
Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [235-270] Zaki, M. J., Meira Jr, W.
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Albert-László Barabási. Network Science http://barabasi.com/networksciencebook/ kapitoly 1 a 2 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
PB051: Výpočetní metody v bioinformatice a
PB051: Výpočetní metody v bioinformatice a systémové biologii David Šafránek 6.4.2012 Obsah Obsah Průběh výzkumu v systémové biologii rekonstrukce sítí databáze biol. znalostí + literatura biologická sít
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Simulační modely. Kdy použít simulaci?
Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Teorie systémů TES 1. Úvod
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 29.10.2008 Obsah Spojitý deterministický model transkripční regulace Obsah Spojitý deterministický model transkripční regulace Schema transkripční regulace
Jan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
Objektově orientované technologie Diagram komponent Implementační náhled (Diagram rozmístění) Pavel Děrgel, Daniela Szturcová
Objektově orientované technologie Diagram komponent Implementační náhled (Diagram rozmístění) Pavel Děrgel, Daniela Szturcová Osnova K čemu slouží diagram komponent obsah komponent závislosti rozhraní
Aplikovaná bioinformatika
Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Trocha terminologie z teorie systémů. Algoritmy prostorových analýz Karel Jedlička Pouze podkladové texty k přednáškám
Trocha terminologie z teorie systémů Algoritmy prostorových analýz Karel Jedlička Pouze podkladové texty k přednáškám Vznik materiálu byl podpořen z projektu FRVŠ č. 584/2011 Stránky předmětu: O předmětu
Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.
Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Detekce kartografického zobrazení z množiny
Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Teorie grafů. Teoretická informatika Tomáš Foltýnek
Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými
PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19
Předmluva 13 O autorovi 15 Poděkování 16 O odborných korektorech 17 Úvod 19 Co kniha popisuje 19 Co budete potřebovat 20 Komu je kniha určena 20 Styly 21 Zpětná vazba od čtenářů 22 Errata 22 KAPITOLA 1
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Vícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
Využití strojového učení k identifikaci protein-ligand aktivních míst
Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
01 Teoretické disciplíny systémové vědy
01 Teoretické disciplíny systémové vědy (systémový přístup, obecná teorie systému, systémová statika a dynamika, úlohy na statických a dynamických systémech, kybernetika) Systémová věda je vědní disciplínou
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
2. přednáška z předmětu GIS1 Data a datové modely
2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.
Generování sítě konečných prvků
Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností
Metody in silico. stanovení výpočtem
Metody in silico stanovení výpočtem Inovace a rozšíření výuky zaměřené na problematiku životního prostředí na PřF MU (CZ.1.07/2.2.00/15.0213) spolufinancován Evropským sociálním fondem a státním rozpočtem
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Principy počítačů I Netradiční stroje
Principy počítačů I Netradiční stroje snímek 1 Principy počítačů Část X Netradiční stroje VJJ 1 snímek 2 Netradiční procesory architektury a organizace počítačů, které se vymykají struktuře popsané Johnem
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 3.12.2008 Obsah Obsah Robustnost chemotaxe opakování model chemotaxe bakterií nerozliseny stavy aktivity represoru aktivita = ligandy a konc. represoru
Teorie náhodných matic aneb tak trochu jiná statistika
Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava