IV117: Úvod do systémové biologie
|
|
- Dalibor Švec
- před 6 lety
- Počet zobrazení:
Transkript
1 IV117: Úvod do systémové biologie David Šafránek
2 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu
3 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu
4 Workflow systémové biologie experimentalni analyza overeni/zamitnuti biologicka data ziskavani znalosti modelovani experimenty in vivo/in vitro in silico model vyvoj technologie hypotezy simulace analyza
5 Proč dělat model in silico? omezené možnosti in vivo/in vitro experimentů náročnost experimentů na laboratorní prostředí nelze nastavit libovolné iniciální podmínky experimenty náročné na čas vysoké náklady na biologický materiál, zařízení a zabezpečení experimentů
6 Co očekávat od modelu? nestačí jen znalost o chemických látkách a genech důležité je pochopení jejich významu funkce chemické reakce a jejich interakce statická analýza modelu konstrukce sítí dynamická analýza modelu simulace chování při daných iniciálních podmínkách a prostředí predikce chování inspirace pro experimenty in vivo/in vitro tvorba hypotéz na základě in silico modelu detailní analýza důvodů (ne)platnosti hypotézy
7 In silico model abstraktní model teoretický (idealizovaný) obraz skutečného organismu sestává z množiny proměnných a množiny relací mezi proměnnými relace popisují logické i funkční vztahy (interakce proměnných) relace mohou obsahovat kvalitativní i kvantitativní informace umožňuje simulovat funkční stavy organismu za určitých podmínek
8 Reprezentace modelu biologická síť komplexní systémový popis organismu neexistuje jednoznačná definice orientovaný nebo neorientovaný graf uzly představují typicky proměnné hrany představují typicky (funkční) relace mezi proměnnými k uzlům a relacím jsou přiřazeny kvalitativní i kvantitativní informace potřebné k simulaci (dynamická analýza) biologické sítě lze přímo zkoumat statická analýza vyhledávání alternativních cest srovnávání sítí různých organismů zkoumání měřitelných vlastností sítí
9 Simulace modelu simulace představuje spuštění modelu pro dané výchozí nastavení proměnných v daném prostředí simulace imituje skutečné chování modelovaného objektu na určité úrovni abstrakce simulace umožňuje predikci hypotéz simulace zobecňuje a doplňuje in vivo/in vitro experimenty predikce má smysl pouze pro validovaný model!
10 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu
11 Dráhy vs. sítě dráhy jsou podsítě lineárního tvaru sekvence metabolických reakcí specifické zaměření na určité proměnné analyzované problémy: délka dráhy, existence alternativních drah sítě reprezentují komplexní data (zohledňují širokou množinu proměnných a všech relevantních interakcí) komplexy určitého druhu reakcí (transkripce, metabolismus, protein-protein,...) analyzované problémy: stupeň větvení, délka nejkratší dráhy, modularita, motivy,...
12 Vyhledávání alternativních drah E. coli
13 Vyhledávání alternativních drah S. cerevisiae
14 Alternativní dráhy
15 Alternativní dráhy význam v genetice a genomice modifikace drah souvisí přímo s vývojem genomu (evoluce) identifikace neznámých genů význam v biotechnologii identifikace a implementace alternativních variant enzymů, substrátů, produktů i celých drah význam ve farmakologii laterální náhrada genu metabolicky-specifické medikamenty
16 Biologické sítě různé typy sítí: regulatorní sítě (popis transkripční regulace) proteinové sítě (popis interakce proteinů) metabolické sítě (popis metabolismu) signální sítě (popis aktivačních/deaktivačních kaskád proteinů a neurotransmiterů) další typy (např. sítě genových interakcí)
17 Biologická síť jako graf Definition Nechť V je konečná množina uzlů a E V V relace. Biologickou sítí nazveme graf G reprezentovaný uspořádanou dvojicí G (V, E). Pokud a, b E. a, b E b, a E, G nazýváme neorientovaný. V ostatních případech hovoříme o orientovaném grafu. typ sítě V E G genová regulační geny (resp. proteiny) regulace exprese or. proteinová proteiny proteinové interakce neor. metabolická metabolity enzymové reakce or. signální molekuly aktivace/deaktivace or.
18 Cesty a kružnice cesta v grafu je libovolná sekvence uzlů [a 1, a 2,..., a n ] t.ž. i {1,..., n 1}. a i, a i+1 E, číslo n 1 nazýváme délkou cesty (počet hran) cestu nazveme primitivní pokud se na ní každá hrana vyskytuje právě jednou cestu nazveme elementární pokud se na ní každý vrchol vyskytuje právě jednou kružnice v grafu je libovolná cesta [a 1, a 2,..., a n ] t.ž. a 1 = a n smyčkou nazýváme libovolnou kružnici délky 1
19 Cesty a kružnice
20 Cesty a kružnice kolik kružnic...
21 Cesty a kružnice kolik kružnic... 4 kolik cest z a do d...
22 Cesty a kružnice kolik kružnic... 4 kolik cest z a do d... 2 délka nejkratší cesty z d do c...
23 Cesty a kružnice kolik kružnic... 4 kolik cest z a do d... 2 délka nejkratší cesty z d do c... d(d, c) = 2
24 Vlastnosti grafu délku nejkratší cesty z a do b značíme d(a, b) charakteristickou délku cesty grafu G (V, E) značíme L G a definujeme: L G = 2 V ( V 1) a,b V d(a, b) množinu sousedních uzlů uzlu a značíme N a a definujeme N a = {b V a, b E b, a E} stupeň uzlu a značíme k a a definujeme jako počet všech sousedních uzlů uzlu a, tedy k a = N a koeficient seskupení uzlu (clustering coefficient [Watts, Strogatz]) a značíme C a a definujeme: C a = { c, d E c N a d N a } k a (k a 1)
25 Vlastnosti grafu koeficient seskupení grafu G je značen C G a definován jako průměr klastrovacích koeficientů všech uzlů: C G = 1 V a V C a
26 Vlastnosti grafu
27 Vlastnosti grafu C a =
28 Vlastnosti grafu C a = 2 2 = 1
29 Vlastnosti grafu C a = 2 2 = 1 C b =
30 Vlastnosti grafu C a = 2 2 = 1 C b = 2 6 = 1 3
31 Vlastnosti grafu C G = C a = 2 2 = 1 C b = 2 6 = 1 3
32 Vlastnosti grafu C a = 2 2 = 1 C b = 2 6 = 1 3 C G = 1 4 ( ) = 0.65
33 Náhodný graf náhodný graf je definován pevným počtem uzlů a pravděpodobností p existence hrany mezi libovolnými dvěma uzly pravděpodobnost, že v náhodném grafu má daný uzel stupeň k, je charakterizována Poissonovým rozložením (s konst. λ): f (k λ) = e λ λ k [Erdös, Rényi, On the evolution of random graphs ] k!
34 Náhodný graf
35 Vlastnosti sítí typ grafu C G L G svaz vysoké dlouhé náhodný graf nízké krátké small-world vysoké krátké
36 Small-world sítě zavedeny Wattsem a Strogatzem, Collective dynamics of small-world networks, Nature 393, 1998 klíčem jsou lokální a globální metriky seskupení uzlů a metrika charakteristické délky cesty identifikovány jako grafy s vysokým koeficientem seskupení ale krátkou charakteristickou délkou cesty bylo prokázáno, že mnoho reálných sítí má tento charakter např. graf filmových herců propojených dle společného účinkování neuronové sítě v C. elegans výrazný posun v porozumění chování rozsáhlých dynamických systémů zavedení pojmu real-world graphs
37 Scale-free sítě zavedl Barabási a Albert, Emergence of Scaling in Random Networks, Science 286, 1999
38 Scale-free sítě reálné sítě nejsou statické (nemají pevný počet uzlů), ale vyvíjejí se dynamicky v čase, tzv. rostou nové uzly se napojují nejvíce k těm uzlům, které jsou se zbytkem sítě již dobře propojeny např. metabolické sítě E. coli jsou scale-free [Wagner, Fell, 2001] označíme-li P(k) pravděpodobnost, že libovolný uzel má stupeň k, pak pro scale-free sítě platí následující ůměra (pro konst. λ): P(k) k λ
39 Scale-free sítě
40 Motivy ve scale-free sítích ve scale-free sítích se vyskytují specifické uzly, tzv. huby uzly s vysokým stupněm propojení na kostru síťové struktury ostatní uzly jsou lokálně napojeny k hubům objeveno např. při studiu proteionvé sítě kvasinky pivovarské [Jeong, Mason, 2001] díky hubům jsou sítě robustní proti náhodnému vyjmutí uzlu, ale naopak vyjmutí hubu znamená výrazné porušení sítě tato struktura vede k hierarchičnosti a modulárnímu charakteru jako moduly jsou identifikovány často opakující se výrazné podsítě (motivy) [Alon et.al., Network Motifs: Simple Building Blocks of Complex Networks, 2002] http: //
41 Motivy
42 Reprezentace grafů maticí sousednosti matice rozměru V V M[a, b] = 1, pokud a, b E; M[a, b] = 0, jinak. maticí incidence matice rozměru V E M[a, e] = 1, pokud b V.e a, b E; M[a, e] = 1, pokud b V.e b, a E; M[a, e] = 0, jinak. nároky na paměť O( V 2 ) reprezentace efektivní pro malé grafy pro větší nutno použít seznam sousedů
43 Reprezentace grafů matice sousednosti
44 Metody statické analýzy cílem je zkoumat vlastnosti individuální biologické sítě nebo vzájemné porovnání biologických sítí vyhledávání v grafu do šířky (breadth-first search BFS) do hloubky (depth-first search DFS) iterativní zanořování (kombinace DFS a BFS) vyhledávání kružnic vyhledávání nejkratších cest vyhledávání cest incidujících s danou množinou uzlů vyhledávání a identifikace motivů
45 Nástroje pro statickou analýzu uplatnění tradičních grafových algoritmů Pathway Hunter Tool analýza nejkratších cest v metabolických drahách identifikace uzlů enzymy v EC notaci možnost porovnání metabolických drah v různých organismech vyhledávání metbaolických cest v databázi KEGG KEGG databáze metabolických drah vyhledávání dle enzymových čísel umožňuje nalézt cesty incidující s danou množinou enzymů podporuje grafické vyobrazení metabolických drah (staticky předdefinovaná schémata)
46 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu
47 Modely dynamiky základní vlastnosti chemické reakce syntéza a rozklad látek v čase stav situace pozorovaná v určitém okamžiku kinetika změna stavu za limitní jednotku času rychlost reakce určuje konstanta (reaction rate, mol/s) ekvilibrium rovnovážný stav vyčerpání energie (zdrojů) reakce vyrovnávají vzájemný účinek přeměna: A k B syntéza: A + B k 1 AB rozklad: AB k 1 A + B
48 Deterministické modely dynamiky makropohled předpoklad vysoké molární koncentrace látek stav vektor aktuálních koncentrací látek vyžadují nejvíce kvantitativních znalostí diskrétní modely abstrahující čas a hodnoty koncentrací boolovské sítě a kinetická logika stav zachycuje určitou diskrétní úroveň koncentrací disktrétní modely abstrahující čas a průběh interakcí stav definován jako u spojitých modelů dynamika řídících interakcí diskretizována
49 Stochastické modely dynamiky mikropohled interakce individuálních molekul [Gillespie] stav zachycuje počty molekul jednotlivých látek může být přímo diskrétní konfigurace nebo distribuční funkce vzhledem k čase diskrétní i spojité modely markovovy řetězce stochastické diferenciální rovnice
50 Deterministické modely dynamiky differential equations continuous logic kinetic logic boolean networks discrete continuous
51 Koncept vymezení relevantního podprostoru
52 Koncept vymezení relevantního podprostoru
53 Rizika systémové biologie dogmata nesmí být přeceňována le programme génétique [Monod, Jacob] genetický determinismus the selfish gene [Dawkins] hypotézy musí být řádně testovány etická rizika
54 Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce jsou omezeny základními zákony chemie ale i evolučním vývojem syntaxí organismu-systému je síť komponent sémantikou organismu-systému je jeho funkce (dynamika) základní koncepty systémové biologie modely a simulace in silico důraz na interakci, součinnost hierarchie (např. separace časových škál) vymezení relevantního podprostoru možností
55 Shrnutí experimentalni analyza overeni/zamitnuti biologicka data ziskavani znalosti modelovani experimenty in vivo/in vitro in silico model vyvoj technologie hypotezy simulace analyza
PB050: Modelování a predikce v systémové biologii
PB050: Modelování a predikce v systémové biologii David Šafránek 21.10.2009 Obsah Pojem modelu a simulace in silico opakování Obsah Pojem modelu a simulace in silico opakování Workflow systémové biologie
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 8.10.2008 Obsah Metody dynamické analýzy Obsah Metody dynamické analýzy Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 24.9.2008 Obsah Modelové organismy Získávání biologických dat Modely a simulace in silico Obsah Modelové organismy Získávání biologických dat Modely a simulace
Modelov an ı biologick ych syst em u Radek Pel anek
Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,
Modelování biochemických procesů: Deterministický model transkripční regulace
Modelování biochemických procesů: Deterministický model transkripční regulace David Šafránek Seminář ParaDiSe 1.10.2007 Obsah Základní pojmy Spojitý deterministický model chemických reakcí Spojitý deterministický
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Úvod do systémové biologie
Úvod do systémové biologie David Šafránek Seminář ParaDiSe 24.9.2007 Obsah Přehled EC-MOAN Základní pojmy Biologické sítě Modelování dynamiky Obsah Přehled EC-MOAN Základní pojmy Biologické sítě Modelování
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Metody analýzy dat I. Míry a metriky - pokračování
Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 29.10.2008 Obsah Spojitý deterministický model transkripční regulace Obsah Spojitý deterministický model transkripční regulace Schema transkripční regulace
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
Teorie systémů TES 1. Úvod
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 17.9.2008 Obsah Informace o předmětu Úvod Historie Základní pojmy a principy Obsah Informace o předmětu Úvod Historie Základní pojmy a principy Náplň předmětu
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Albert-László Barabási. Network Science http://barabasi.com/networksciencebook/ kapitoly 1 a 2 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Moderní aplikace statistické fyziky II - TMF050
Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy
Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [235-270] Zaki, M. J., Meira Jr, W.
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
01 Teoretické disciplíny systémové vědy
01 Teoretické disciplíny systémové vědy (systémový přístup, obecná teorie systému, systémová statika a dynamika, úlohy na statických a dynamických systémech, kybernetika) Systémová věda je vědní disciplínou
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 3.12.2008 Obsah Obsah Robustnost chemotaxe opakování model chemotaxe bakterií nerozliseny stavy aktivity represoru aktivita = ligandy a konc. represoru
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Markovovy modely v Bioinformatice
Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
MATEMATIKA A 3 Metodický list č. 1
Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná
Jan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
Metody in silico. stanovení výpočtem
Metody in silico stanovení výpočtem Inovace a rozšíření výuky zaměřené na problematiku životního prostředí na PřF MU (CZ.1.07/2.2.00/15.0213) spolufinancován Evropským sociálním fondem a státním rozpočtem
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.
Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.
Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD.
POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. SIMULACE nástroj pro studium chování objektů reálného světa SYSTÉM určitým způsobem uspořádána množina komponent a relací mezi nimi. zjednodušený,
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Generování sítě konečných prvků
Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Úvod do mobilní robotiky AIL028
Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie
Evoluční strategie Navrženy v 60. letech jako experimentální optimalizační metoda Založena na reálných číslech Velice rychlá s dobrou podporou teorie Jako první zavedla self-adaptation (úpravu sebe sama)
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
Datové typy a struktury
atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19
Předmluva 13 O autorovi 15 Poděkování 16 O odborných korektorech 17 Úvod 19 Co kniha popisuje 19 Co budete potřebovat 20 Komu je kniha určena 20 Styly 21 Zpětná vazba od čtenářů 22 Errata 22 KAPITOLA 1
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna
Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných