POLLARDŮV ρ ALGORITMUS PRO FAKTORIZACI PŘIROZENÝCH ČÍSEL ÚVOD

Rozměr: px
Začít zobrazení ze stránky:

Download "POLLARDŮV ρ ALGORITMUS PRO FAKTORIZACI PŘIROZENÝCH ČÍSEL ÚVOD"

Transkript

1 South Bohemia Mathematical Letters Volume 5, (017), No. 1, POLLARDŮV ρ ALGORITMUS PRO FAKTORIZACI PŘIROZENÝCH ČÍSEL JAROSLAV HORA ABSTRAKT. S rozvojem moderních šifrovacích metod jde ruku v ruce i zvýšený zájem o moderní algoritmy pro hledání rozkladu složeného čísla v součin prvočísel. Faktorizační metoda, navržená J. M. Pollardem v r. 1975, byla svého času nejlepším známým algoritmem pro rozklad složených přirozených čísel. Jde o metodu využívající pravděpodobnost a lze ji vysvětlit i studentům středních škol. ÚVOD Je dobře známo, že v posledních desetiletích velmi vzrostl zájem o problematiku rozkladu (faktorizace) přirozených čísel a o další otázky z oblasti teorie čísel, a to zejména v souvislosti s moderním šifrováním zpráv (RSA šifrovací metoda). Běžná metoda pokusného dělení (trial division) vyžaduje při hledání případných vlastních dělitelů přirozeného čísla N zkoušet (prvo)číselné dělitele od až do N. Nejsou li žádní, je N prvočíslem, jinak jsme nalezli vlastní dělitel složeného čísla N. Metoda pokusného dělení je tedy zároveň testem prvočíselnosti i technikou pro nalezení vlastního dělitele přirozeného čísla N. Pro účely běžné školní výuky, kdy volíme malá přirozená čísla N, je dobře využitelná: známe seznam několika malých prvočísel a požadovaných pokusných dělení nebývá mnoho. Je li ale N velké přirozené číslo, vyjeví se nevýhody metody my lidé (ale ani počítače) nemáme v paměti dostatečně velký seznam prvočísel, a hlavně je zřejmé, že testovacích dělení bude muset proběhnout velice mnoho. Ukazuje se, že metoda opakovaného dělení je pomalá a pro velká N ji nelze nechat v úplnosti proběhnout. Seznamme se tedy s jinou faktorizační metodou, kterou navrhl John Pollard již v roce 1975, tedy před nástupem počítačové techniky. Jde o metodu Monte Carlo, tj. postup využívající pravděpodobnosti. Idea metody je dostupná středoškolským studentům. 1. NAROZENINOVÝ PARADOX Příklad 1.: Sešla se skupina n osob, n. Vypočtěte pravděpodobnost, že alespoň dva z nich budou mít narozeniny stejný den v roce. (Pro jednoduchost předpokládejme, že rok má 365 dní, tj. nebereme v úvahu přestupné roky). Řešení: Určeme pravděpodobnost komplementárního jevu A, že žádné dvě osoby z n zúčastněných nebudou mít narozeniny týž den v roce. Spočtěme nejprve, kolik je všech možných případů pro data narození těchto n osob. Pro den narození první osoby je 365 možností, pro dvě osoby je tedy 365 možností, pro n osob 365 n možností. Vypočtěme dále, kolik z těchto případů je příznivých. První osoba se může narodit kterýkoli den v roce. Je -li ale již známo její datum narození a nemá -li druhá osoba mít narozeniny týž den, zbývá pro její datum narození již jen = 364 možností. Nemá -li datum narození Key words and phrases. Faktorizace přirozených čísel, metoda opakovaného dělení, narozeninový paradox, Pollardův ρ algoritmus. 34

2 POLLARDŮV RHO ALGORITMUS 35 žádných dvou osob z n zúčastněných připadnout na stejný den v roce, je (365 n + 1) příznivých případů. Proto n 1 P(A) = (1) 365 n je pravděpodobnost jevu, že žádné dvě osoby z n zúčastněných nebudou mít narozeniny týž den v roce. Výpočet numerické hodnoty P(A) pro jednotlivé hodnoty n je vhodné přenechat nějakému pomocníku. V devadesátých letech minulého století jsme s oblibou používali grafické kalkulátory třídy TI 9 či program Derive, nyní je k dispozici řada dalších programů. OBR. 1 OBR. Pro n = 3 je P(A) = 0,4970, tj. pravděpodobnost jevu, že mezi 3 osobami nemají žádné dvě narozeniny týž den v roce, je již menší než 50. Je tedy pravděpodobnější, že nastane jev komplementární, tj. že aspoň dva lidé z této skupiny slaví narozeniny týž den v roce. Dále je možné si nechat několik hodnot vypsat do tabulky. Obr. 3 zachycuje displej kalkulátoru, na němž je uvedeno několik hodnot P(A) z (1) pro n = 19, 0,..., 5. Proč se mluví o narozeninovém paradoxu, když výpočet je korektní a nic paradoxního na něm není? Kdybychom o předpověď výsledku požádali nematematika, Hilbertova OMZU, obyčejného muže z ulice, dočkali bychom se asi o hodně vyššího odhadu čísla n. Celou věc si můžeme představit ještě jedním způsobem. Kdybychom házeli nikoli běžnou hrací kostkou, ale pravidelným mnohostěnem o 365 stěnách, pak jsme určili pravděpodobnost, že dojde k opakování již hozeného čísla. K opakování dojde brzy a právě tato skutečnost se s výhodou využije v Pollardově ρ algoritmu. K jeho popisu teď přistoupíme.. VSAĎ VYHRAJEŠ SNAD! Podle vyprávění mých rodičů byl tento slogan prvorepublikovým reklamním heslem jisté loterie. (Heslo bylo vcelku korektní, v dnešní době je třeba vzbudit zájem publika enormními výhrami pro náhodného jednotlivce a dosáhnout dojmu, že taková výhra čeká na každého). Ale i když je Pollardův ρ algoritmus metodou Monte Carlo, tedy pravděpodobnostní, je vymyšlen korektně a vyhrajeme skoro vždy. Máme faktorizovat složené přirozené číslo N, které není mocninou prvočísla. (Poslední podmínka se zřejmě snadno otestuje a rovněž existují testy na složenost přirozeného čísla). n Zkonstruujeme jistou posloupnost x přirozených čísel takto. Buď x 0 libovolné přirozené číslo. Další členy posloupnosti počítejme z kongruence x i+1 x i + 1 (mod N).

3 36 JAROSLAV HORA Jak se uvádí v : The choice of this iteration function is black magic, but linear polynomials do not work, and higher degree polynomials are more costly to evaluate, and one cannot prove more about them than about x + 1. Nyní již můžeme přistoupit k formulaci Pollardovy metody. Nechť N je přirozené číslo, které chceme faktorizovat. Zvolme přirozené číslo x 0 a vypočtěme jistý počet členů posloupnosti nezáporných celých čísel x i, definovaných následovně: x i+1 x i + 1 (mod N). Předpokládejme, že prvočíslo p je nejmenším prvočíselným dělitelem čísla N. Dále předpokládejme, že x i je posloupností pseudonáhodných čísel modulo p. Dále, nechť pro jisté dva členy x n, x m, n m této posloupnosti platí, že x n x m (mod p). (Příklad 1 nám dává naději, že na výskyt takovýchto členů posloupnosti x i nebudeme muset čekat dlouho). Platí tedy p (x n x m ), p N, tedy největší společný dělitel D(x n x m, N) 1. Pokud zároveň x n x m (mod N), je D(x n x m, N) N a nalezli jsme netriviální vlastní dělitel čísla N. Navíc je výhodné, že tento dělitel lze nalézt Eukleidovým algoritmem, což je velice efektivní metoda. Krajně neuspokojivé by ale bylo, kdybychom vskutku museli počítat D(x n x m, N) pro všechny dvojice n, m N, n m. Objem výpočtů by narostl tak, že by to zcela znehodnotilo praktické využití navrhované metody. Naštěstí lze velkou část těchto propočtů ušetřit. Postačí totiž testovat jen dvojice x i, x i, i N, jak posléze ukážeme. Nyní zapišme nástin algoritmu pro Pollardovu metodu a pro malý kalkulátor: Je dáno přirozené číslo N, které chceme rozložit. 1. Zvolme přirozené číslo x 0.. Vypočtěme x i+1 x i + 1 (mod N), i = 0, 1, Pro jistý počet i N vypočtěme D(x i x i, N). 4. Opakujme to do té doby, než D(x i x i, N) je netriviálním dělitelem čísla N úspěch. Pokud proces běží přes daný časový limit neúspěch. Příklad : Rozložme číslo N = 57 pomocí Pollardovy metody. Řešení: Volme kupř. x 0 = 3 a vypočtěme dalších deset členů posloupnosti x i. Máme x 1 = 10, x = 101, x 3 = 189, x 4 = 413, x 5 = 349, x 6 = 65, x 7 = 10, x 8 = 101, x 9 = 189, x 10 = 413. Dále D(x x 1, N) = D(101 10, 57) = 1, D(x 4 x, N) = D( , 57) = 1, D(x 6 x 3, N) = D(65 189, 57) = 31. Nalezli jsme netriviální dělitel čísla N = 57, je 57 = Teď také vidíme, odkud se vzalo písmeno v názvu metody. První člen x 0 = 3 tvoří předperiodu, pak dochází k zacyklení, neboť x 1 = x 7 = 10. Kdybychom si získanou posloupnost zakreslili na papír ve tvaru uzlového grafu, dostali bychom zřejmě obrázek, který připomíná řecké písmeno. (Jindy může být předperioda delší a podobnost grafického znázornění členů posloupnosti s písmenem výraznější). Pro úspěch metody je rozhodující snížení výpočetní náročnosti, kdy nemusíme testovat počítat D(x n x m, N) pro všechny dvojice n, m N, n m, ale jen pro dvojice tvaru x i, x i, i N. To souvisí s tzv. Floydovým trikem pro hledání cyklu, který se v posloupnosti x i mod p objeví. Věta: Nechť p je prvočíslo dělící číslo N a nechť x 0 je dané přirozené číslo. Nechť v posloupnosti x i, kde x i+1 x i (mod p), i = 0, 1,..., existují taková m, n N, m n, že x n x m (mod p). Potom pro jisté t N platí x t x t (mod p). Návod k důkazu: Postupujme podle tohoto schématu:

4 POLLARDŮV RHO ALGORITMUS Pišme n = m + d, d 1. Ukažme, že x m+1 x m + d + 1 (mod p) a dále indukcí, že x m+r x m + d + r (mod p) pro všechna r N.. Mezi čísly m, m + 1,..., m + d 1 je právě jedno násobkem čísla d. Předpokládejme, že k je ten index z množiny 0, 1,..., d 1, pro který d m + k. Potom m + k = d. e pro jisté e N, x ed x m+k x m+k + d x ed + d ( mod p). 3. Dokažme, že obdobně platí x ed x ed + d (mod p), x ed x ed + 3d (mod p),..., x ed x ed + ed x ed (mod p). Položíme -li nyní t = ed, máme x t x t (mod p), což bylo dokázati. Jak jsme naznačili, existují případy, kdy Pollardova metoda selže. Příklad 3: Pokusme se rozložit N = 141 s tím, že x 0 = 6. Řešení: Napišme několik prvních členů posloupnosti x i : x 0 = 6, x 1 = 37, x = 19, x 3 = 509, x 4 = 954, x 5 = 464, x 6 = 604, x 7 = 104, x 8 = 19, x 9 = 509, x 10 = 954, x 11 = 464, x 1 = 604, x 13 = 104, x 14 = 19, x 15 = 509, x 16 = 954 atd. Dále D(x x 1, 141) = D(19 37, 141) = 1, D(x 4 x, 141) = D(954 19, 141) = 1, D(x 6 x 3, 141) = D( , 141) = 1, D(x 8 x 4, 141) = D(19 954, 141) = 1, D(x 10 x 5, 141) = D( , 141) = 1. Poté ale D(x 1 x 6, 141) = D( , 141) = 141. Následuje D(x 14 x 7, 141) = D(19 104, 141) = 1, D(x 16 x 8, 141) = D(954 19, 141) = 1, D(x 18 x 9, 141) = D( , 141) = 1, D(x 0 x 10, 141) = D(19 954, 141) = 1, D(x x 11, 141) = D( , 141) = 1. Poté opět D(x 4 x 1, 141) = D( , 141) = 141 a začíná být patrné, že existují (vcelku vzácné) případy, kdy Pollardova metoda neposkytne výsledek. Kdybychom ale volili x 0 = 7, dostali bychom x 1 = 50, x = 19, x 3 = 36, x 4 = 740, x 5 = 30, x 6 = 639, x 7 = 33, x 8 = 1090, x 9 = 464, x 10 = 604, x 11 = 104, x 1 = 19, x 13 = 509, x 14 = 954. Poté máme D(x x 1, 141) = D(19 50, 141) = 1, D(x 4 x, 141) = D(740 19, 141) = 1, D(x 6 x 3, 141) = D(639 36, 141) = 1, D(x 8 x 4, 141) = D( , 141) = 1, D(x 10 x 5, 141) = D(604 30, 141) = 1, D(x 1 x 6, 141) = D(19 639, 141) = 17. Snadno se zjistí, že 141 = je hledaný rozklad. Změna čísla x 0 tedy pomohla. Pollardova metoda by mohla být v případě malých N dostupná i pro žáky ZŠ, protože vyžaduje provádění operací s přirozenými čísly, které jsou žákům známy. Studentům SŠ se zájmem o výpočetní techniku a programování by mohla poskytnout pokročilejší podněty. Závěrem poznamenejme, že začátkem osmdesátých let minulého století byla Pollardova metoda nejlepším dostupným algoritmem pro faktorizaci přirozených čísel. V roce 1981 se např. Brentovi a Pollardovi zdařilo pomocí této metody rozložit osmé Fermatovo číslo 8 F 8 = + 1 = p 16.p 6, tedy v součin dvou prvočísel, majících 16, resp. 6 cifer. Je známo (viz 1 ) i porovnání časové náročnosti metody opakovaného dělení a Pollardovy metody: je li n (zhruba) počet cifer čísla N, je časová náročnost metody opakovaného dělení úměrná n 4, kdežto u Pollardova postupu n a to je pro velká n významný rozdíl. ZÁVĚR Dnes jsou k dispozici lepší faktorizační metody jenže jsou složité a asi je nebudeme moci vysvětlit našim žákům. LITERATURA [1] von zur Gathen, J, Gerhard, J.: Modern Computer Algebra, Cambridge University Press, 1999.

5 38 JAROSLAV HORA [] Childs, L. N.: A Concrete Introduction to Higher Algebra, Springer, New York, third ed., 009. KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY FPE ZČU PLZEŇ, ČESKÁ REPUBLIKA address: horajar@kmt.zcu.cz

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................

Více

Matematické algoritmy (11MAG) Jan Přikryl

Matematické algoritmy (11MAG) Jan Přikryl Prvočísla, dělitelnost Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAG ponděĺı 7. října 2013 verze: 2013-10-22 14:28 Obsah přednášky Prvočísla

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-03

Více

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů

Více

MFF UK Praha, 22. duben 2008

MFF UK Praha, 22. duben 2008 MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29 Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl 2. přednáška 11MAG pondělí 7. října 2013 verze: 2013-10-22 14:29 Obsah 1 Prvočísla 1 1.1 Vlastnosti prvočísel...................................

Více

Prvočísla, dělitelnost

Prvočísla, dělitelnost Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace

Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:

Více

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D.

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D. Generování pseudonáhodných čísel při simulaci Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky V simulačních modelech se velice často vyskytují náhodné proměnné. Proto se budeme zabývat otázkou, jak při simulaci

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl 4. přednáška 11MAG pondělí 3. listopadu 2014 verze: 2014-11-10 10:42 Obsah 1 Dělitelnost 1 1.1 Největší společný dělitel................................

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

2.8.6 Čísla iracionální, čísla reálná

2.8.6 Čísla iracionální, čísla reálná .8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00

Více

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21. Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup S Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 s Obsah přednášky Rozklady podle podgrup ô Normální podgrupy s Doporučene zdroje Martin Panák,

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Správa přístupu PS3-2

Správa přístupu PS3-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Správa přístupu PS3-2 1 Osnova II základní metody pro zajištění oprávněného přístupu; autentizace; autorizace; správa uživatelských účtů; srovnání současných

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další). 0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Argumentace a ověřování Gradovaný řetězec úloh Autor: Stanislav Trávníček Úloha 1 (úroveň 1)

Více

Největší společný dělitel

Největší společný dělitel 1..1 Největší společný dělitel Předpoklady: 01016 Číslo Číslo nsn Platí pravidlo "nsn získáme jako součin obou čísel"? = 1 = Násobící pravidlo platí. 1 = Násobící pravidlo platí. 1 = Násobící pravidlo

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}. 5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.

Více

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické

Více

DVA POHLEDY NA JEDNU APLIKACI TEORIE ČÍSEL

DVA POHLEDY NA JEDNU APLIKACI TEORIE ČÍSEL South Bohemia Mathematical Letters Volume 25, (2017), No. 1, 28-33. DVA POHLEDY NA JEDNU APLIKACI TEORIE ČÍSEL JAROSLAV HORA, MARTINA KAŠPAROVÁ, ŠÁRKA PĚCHOUČKOVÁ ABSTRAKT. Teorie čísel byla kdysi považována

Více

Testování prvočíselnosti

Testování prvočíselnosti Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo

Více

Eliptické křivky a RSA

Eliptické křivky a RSA Přehled Katedra informatiky FEI VŠB TU Ostrava 11. února 2005 Přehled Část I: Matematický základ Část II: RSA Část III: Eliptické křivky Matematický základ 1 Základní pojmy a algoritmy Základní pojmy Složitost

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Dělitelnost přirozených čísel. Násobek a dělitel

Dělitelnost přirozených čísel. Násobek a dělitel Dělitelnost přirozených čísel Násobek a dělitel VY_42_INOVACE_ČER_10 1. Autor: Mgr. Soňa Černá 2. Datum vytvoření: 2.1.2012 3. Ročník: 6. 4. Vzdělávací oblast: Matematika 5. Vzdělávací obor: Matematika

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Problematika převodu zprávy na body eliptické křivky

Problematika převodu zprávy na body eliptické křivky Problematika převodu zprávy na body eliptické křivky Ing. Filip Buršík Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií Vysoké Učení Technické v Brně Purkyňova 118, 612 00 Brno,

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

3. Podmíněná pravděpodobnost a Bayesův vzorec

3. Podmíněná pravděpodobnost a Bayesův vzorec 3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná METODICKÝ LIST DA9 Název tématu: Autor: Předmět: Dělitelnost Nejmenší společný násobek a největší společný dělitel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Diskrétní logaritmus

Diskrétní logaritmus 13. a 14. přednáška z kryptografie Alena Gollová 1/38 Obsah 1 Protokoly Diffieho-Hellmanův a ElGamalův Diffieho-Hellmanův a ElGamalův protokol Bezpečnost obou protokolů 2 Baby step-giant step algoritmus

Více

Čínská věta o zbytcích RSA

Čínská věta o zbytcích RSA Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 11:20 Obsah

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání

Více

Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA

Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA O OŠKLIVÉM LEMÁTKU PAVEL JAHODA Prezentace pro přednášku v rámci ŠKOMAM 2014. Dělitelnost na množině celých čísel 3 dělí 6 Dělitelnost na množině celých čísel 3 dělí 6 protože Dělitelnost na množině celých

Více

MATEMATIKA. Diofantovské rovnice 2. stupně

MATEMATIKA. Diofantovské rovnice 2. stupně MATEMATIKA Diofantovské rovnice 2. stupně LADISLAVA FRANCOVÁ JITKA KÜHNOVÁ Přírodovědecká fakulta, Univerzita Hradec Králové V tomto článku se budeme zabývat některými případy diofantovských rovnic 2.

Více

Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy

Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Kritéria dělitelnosti Divisibility Criterions

Kritéria dělitelnosti Divisibility Criterions VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Kritéria dělitelnosti Divisibility Criterions 2014 Veronika Balcárková Ráda bych na tomto místě poděkovala

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 113-122. DĚLENÍ KRUHU NA OBLASTI MAREK VEJSADA ABSTRAKT. V textu se zabývám řešením následujícího problému: Zvolíme na kružnici určitý počet

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01 Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı

Více

GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ ÚVOD

GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ ÚVOD South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 66-72. GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ MGR. JITKA NOVÁKOVÁ ABSTRAKT. S kvalitní výukou geometrie se musí začít již na základní škole.

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Kritéria dělitelnosti

Kritéria dělitelnosti Kritéria dělitelnosti Jaroslav Zhouf, Pedf UK Praha Kritéria dělitelnosti slouží k rozhodování o tom, zda je určité přirozené číslo n dělitelné určitým přirozeným číslem k. Každé takové kritérium se snaží

Více

Důkazové metody v teorii čísel

Důkazové metody v teorii čísel Důkazové metody v teorii čísel Michal Kenny Rolínek ØÖ غPříspěveknejenukazujeklasickátvrzenízelementárníteoriečísel, ale především ukazuje obvyklé postupy při jejich používání, a to převážně na úlohách

Více

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV Mgr. Jitka Nováková SPŠ strojní a stavební Tábor Abstrakt: Grafické řešení rovnic a jejich soustav je účinná metoda, jak vysvětlit, kolik různých řešení může daný

Více

Teorie pravěpodobnosti 1

Teorie pravěpodobnosti 1 Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Historie matematiky a informatiky 2 7. přednáška

Historie matematiky a informatiky 2 7. přednáška Historie matematiky a informatiky 2 7. přednáška Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 5. října 2013 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitoly z teorie

Více

Principy indukce a rekursivní algoritmy

Principy indukce a rekursivní algoritmy Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

Diffieho-Hellmanův protokol ustanovení klíče

Diffieho-Hellmanův protokol ustanovení klíče Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,

Více

Cyklické grupy a grupy permutací

Cyklické grupy a grupy permutací Cyklické grupy a grupy permutací Jiří Velebil: A7B01MCS 5. prosince 2011: Cyklické grupy, permutace 1/26 Z minula: grupa je důležitý ADT Dnešní přednáška: hlubší pohled na strukturu konečných grup. Aplikace:

Více