2.7.6 Rovnice vyšších řádů
|
|
- Richard Šmíd
- před 8 lety
- Počet zobrazení:
Transkript
1 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení stupně Přehled rovnic: Řád rovnice Tvar Název způsob řešení (vzorec) ax + b = 0 lineární b a 0, x = a ax + bx + c = 0 kvadratická ± a 0, x, = a ax + bx + cx + d = 0 kubická Cardanovy vzorce ax + bx + cx + dx + e = 0 Cardanovy vzorce 5 4 ax + bx + cx + dx + ex + f = 0 neexistuje a vyšší b b 4ac Cardanovy vzorce jsou velice složité, proto je nebudeme pro rovnice třetího a vyšších řádů používat a zkusíme jiné metody Numerická metoda separace kořenů S počítačem jednoduché, s kalkulačkou snesitelné, s papírem smrt, ale jde u všech algebraických rovnic Výsledek je pouze přibližný (ale snadno ho zjistíme na libovolný počet desetinných míst) Hledáme řešení rovnice x x + 5 = 0 Hodnoty levé strany nám přiblíží funkce y = x x + 5 Jak vypadá? Pro velká záporná čísla jsou hodnoty záporné (kvůli zápornému výsledku třetí mocniny x) Pro velká kladná čísla jsou hodnoty kladné (kvůli kladnému výsledku třetí mocniny x) Graf funkce musí projít přes osu x Hodnota x, kde k tomu dojde, je řešením rovnice Hledáme toto místo dosazováním: Dosadíme 0: = 5 kořen je záporné číslo Dosadíme : ( ) ( ) + 5 = 6 kořen je v intervalu ( ;0) Dosadíme : ( ) ( ) + 5 = kořen je v intervalu ( ; ) Dosadíme,5: (,5) (,5) + 5 = 5, 65 kořen je v intervalu (,5; ) Dosadíme,: (,) (,) + 5 = 0, 06 kořen je v intervalu (,;, 0) A tak bychom dosazovali dál, dokud bychom nezjistili kořen s dostatečnou přesností Pedagogická poznámka: Při výkladu mám na tabuli nakreslenou soustavu souřadnic a postupně do ní dokresluji křížky s aktuálně spočítanou hodnotou Tak je nejlépe
2 vidět, ve kterém intervalu se kořen rovnice nachází Už od dosazování diskutujeme se studenty, které číslo je nejvýhodnější vyzkoušet Př : Urči kořen rovnice x x + 5 = 0 s přesností na tři desetinná místa Pokračujeme v dosazování z předchozího postupu: Dosadíme,09 (, 09) (, 09) 5 0, 0508 (,;, 09) Dosadíme,095 (, 095) (, 095) 5 0, 005 (, 095;,090) Dosadíme,094 (, 094) (, 094) 5 0, 006 (, 095;,094) určili jsme kořen s přesností na tři desetinná čísla + = kořen je v intervalu + = kořen je v intervalu + = kořen je v intervalu Pedagogická poznámka: Můžete vyhlásit soutěž o odhalení kořenu na minimální počet dosazení Při kontrole pak dávám pozor nejen na pochopení základního algoritmu, ale i na logickou volbu čísel na dosazování Správná hodnota na 8 desetinných míst je K = {, } Graf funkce y x x = + 5 je na obrázku
3 Př : Najdi pomocí metody separace kořenů, alespoň jeden kořen rovnice x 9x 4x + 60 = 0 s přesností na jedno desetinné místo Rovnice má určitě alespoň jeden kořen (funkce y = x 9x 4x + 60 je pro velká kladná x kladná pro velká záporná x záporná musí projít přes nulu) Spočítáme hodnoty pro několik jednoduchých čísel: x = ; není žádný kořen nebo jsou dva kořeny + = v intervalu x = ( ) ( ) ( ) + = v intervalu ( ;0) x = ( ) ( ) ( ) + = v intervalu ( ; ) x =,5 je alespoň jeden kořen je alespoň jeden kořen ( ) ( ) ( ) + = v intervalu ( ;,5),5 9,5 4,5 60,5 kořen x =,6 ( ) ( ) ( ) + = v intervalu ( ;,6),6 9,6 4,6 60 0,408 kořen x =,65 je alespoň jeden je alespoň jeden ( ) ( ) ( ) + = kořen je v intervalu (,65;,6), 65 9, 65 4, 65 60, zaokrouhleno na jedno desetinné místo má hledaný kořen hodnotu x =,6 x = v intervalu ( 0; ) - přesná hodnota,5, v intervalu ( ; ) - přibližná hodnota 4, = 9 rovnice má ještě dva kořeny: S přesností na deset desetinných míst můžeme napsat K =, ;,5; 4, { } Metoda snížení stupně uhádnutím kořene (kořenů) U kvadratických rovnic: Když rozložíme rovnici na součin, najdeme kořeny: x x 4 = 0 ( x 4)( x + ) = 0 x = 4, x = Opačně, když najdeme kořeny, můžeme trojčlen rozložit na součin Máme rovnici: x 6x + x 6 = 0 Zkusíme uhádnout dosazováním jeden z kořenů a využít ho na rozklad druhá část rozkladu bude už pouze kvadratická a půjde řešit vzorcem Hledáme kořen: zkoušíme čísla, která se snadno dosazují - 0,,-,,- atd (většinou nemá smysl zkoušet za a ) Snadno uhádneme, že jeden z kořenů je : = 0 Musí platit: x 6x + x 6 = ( x x )( x + px + q) = ( x )( x + px + q)
4 Problém: Neznáme druhý člen v rozkladu Jak určit čísla p a q? a) vydělením x 6x + x 6 = ( x )( x + px + q) / : x Upravíme rovnost: Vydělíme: x x + x x = x + px + q 6 6 : x x x x x ( 6 + 6) : ( ) = x x 5x + x 6 ( 5x + 5 x) 6x 6 (6x 6) 0 (když nevyjde zbytek 0, pak jsme špatně dělili nebo hádali kořen) x 6x + x 6 = ( x )( x 5x + 6) = 0 = K = {,,} ( x )( x )( x ) 0 b) zpětným násobení x 6x + x 6 = 0 ( x )( x + px + q) = 0 Jde o dvě shodné rovnice, když součin v druhé rovnici roznásobíme, musí se rovnat ( x )( x + px + q) = x + px + qx x px q = x + x ( p ) + x( q p) q = 0 Teď napíšeme rovnice pod sebe a srovnáme je: x 6x + x 6 = 0 x + x ( p ) + x( q p) q = 0 Aby byly rovnice stejné musí být před stejnými mocninami x stejná čísla: = q p 6 = p 6 = q = q ( 5) 5 = p 6 = q 6 = q Máme rovnice pro neznámé poslední rovnice je kontrola správnosti předchozích kroků, musí nám vyjít x 6x + x 6 = ( x )( x 5x + 6) = 0 = K = {,,} ( x )( x )( x ) 0 Pedagogická poznámka: Při řešení následujících příkladů náhodně střídám obě metody Po studentech chci, aby si obě alespoň jednou samostatně vyzkoušeli a pak mohou používat tu, která jim více vyhovuje Př : Vyřeš rovnici x x x + + = 0 = x x x + + = + + = 8 + = 0 Hledáme rozklad pomocí zpětného násobeni: x + x + x = x + x + px + q = x + px + qx + x + px + q 4
5 x x x x + + = 0 ( p ) x ( q + p) x + q = 0 = p + = p = q + p = q + = q x x x x x x + + = + + Určíme kořeny rovnice x + x = 0 : = q = q b ± b ac ± 4 ± 4 5 x, = = = a x = x = 5 5 K ; ; + = Pedagogická poznámka: Při řešení následujících příkladů se snažím, aby se studenti samostatně snažili vyrovnat s problémy, které přinášejí (6 před x v příkladu 4 a 4 x v dalších příkladech) Jde o cvičení adaptace na částečně se měnící podmínky Př 4: Vyřeš rovnici 6x x x + = 0 = 6x x x + = 6 + = 6 + = 0 Hledáme rozklad pomocí dělení mnohočlenů: 6x x x + : x = 6x x ( 6x 6x ) x x + ( x x) x + ( x ) 0 ( 6x x x ) ( x )( 6x x ) = Určíme kořeny rovnice 6x x 0 = : b ± b 4ac ± 4 6 ± 49 ± x, = = = = a + x = = x = = K = ; ; 5
6 Poznámka: Pokud bychom zjišťovali rozklad zpětným násobením, musíme dát pozor: 6x x x + = x 6x + px + q = 6x + px + qx 6x px q a dál jako předtím Před x v hledaném kvadratickém trojčlenu musí být 6, abychom po zpětném násobení získali 6x Pedagogická poznámka: Někteří studenti sami (a to je třeba ocenit) zjistí, že 6 před x může způsobit problémy a rovnici vydělí šesti Tím vyřeší problém se šestkou, ale v rovnici se objeví zlomky, které komplikují výpočty Řešíme potom, který ze způsobů řešení je z hlediska snadnosti výpočtu nejvýhodnější 4 Př 5: Vyřeš rovnici x 6x + 8x + 6x 9 = 0 = 4 4 x 6x + 8x + 6x 9 = = = 0 Musíme uhádnout ještě jeden kořen, abychom stupeň rovnice snížili o dva = 4 x x x x = = = 0 Hledáme rozklad pomocí zpětného násobeni: x 4 6x + 8x + 6x 9 = x + x x + px + q = x x + px + q = x px qx x px q 4 x x x + x = 0 ( q ) 4 x x x x + p + 6 = p p q = 0 8 = q 9 = q 6 = p 6 = p 4 x x x x x x x x = = 0 Určíme kořeny rovnice K = { ; ;} x 9 = q 9 = q 6x + 9 = 0 : x 6x + 9 = ( x ) x = x = 4 Pedagogická poznámka: Příklad je možné řešit také ve dvou krocích vždy o jeden stupeň V takovém případě budeme při roznásobování hledat kubický čtyřčlen x + px + qx + r Př 6: Vyřeš rovnici x x x + x = = 4 4 x 4x x + x = 4 + = 4 + = 0 Musíme uhádnout ještě jeden kořen, abychom stupeň rovnice snížili o dva = x x x + x = + = = Hledáme rozklad pomocí zpětného násobeni:
7 4 4 x x x + x = x x x + px + q = x x + x + px + q = x + px + qx x px qx + x + px + q = = x + p x + q p + x + q + p x + q x 4x x + x ( 6) x ( q p + 4) ( q + ) = 0 x + p + x + p x + q = = p 6 = p = q p + 4 = q + 4 = q x x x + x = x x x + x 4 4 Určíme kořeny rovnice x + x = : 0 = q + p = + = = q = q b ± b 4ac ± 4 ± ± ± x,4 = = = = = a x = x4 = K ; + ;; = 4 Př : Vyřeš rovnici x 5x 5x + 5x = 0 = x x x + x = + = = Hledáme rozklad pomocí dělení mnohočlenů: 4 x 5x 5x + 5x : x = x x 8x ( x x ) x 5x 5x ( x x ) + 8x 5x ( 8x 8x) x ( x ) 0 4 x 5x 5x 5x x x x 8x = Řešíme rovnici: x x 8x + = 0 = x x 8x + = 8 + = = 0 Hledáme rozklad pomocí dělení mnohočlenů:
8 ( x x ) x x 8x + : x + = x 5x + + 5x 8x ( 5x 5x) x + ( x ) + 0 ( x x 8x + = 0) = ( x + )( x 5x + ) Určíme kořeny rovnice x 5x + = 0 : b ± b 4ac 5 ± ± 89 5 ± x,4 = = = = a x = = x4 = = K = ; ; ; 4 Rovnice druhé a třetího řádu můžeme řešit také na některých kalkulačkách (jde o vyšší typy vědeckých kalkulátorů, které jsou zakázány u státních maturit) Následující postup platí pro kalkulačky CASIO (konkrétně typ fx-50ms) Tlačítkem MODE přepínáme dokud se na display neobjeví mód pro řešení rovnic EQN Přepneme do tohoto módu odpovídajícím tlačítkem (v našem případě ) Nevolíme počet neznámých (otázka Unknowns?), ale přejdeme doprava na další nabídku tlačítkem REPLAY Zvolíme stupeň (otázka Degree?) Na display se objeví dotaz na jednotlivé koeficienty soustavy (jako prvnía), zadání koeficientů ukončujeme tlačítkem = Koeficienty se zadávají z následujících tvarů rovnic: ax + bx + c = 0, ax + bx + cx + d = 0 Po zadání posledního koeficientu zobrazí kalkulačka kořeny rovnice Například pro rovnici 6x x x + = 0 získáme řešení K = ; ; Př 8: Vyřeš na kalkulačce rovnici x x x = 0 Zhodnoť výsledek Kalkulačka CASIO fx-50ms najde dva kořeny: a 5 Počet kořenů je překvapivý U rovnice třetího řádu bychom očekávali tři kořeny (příklady, které jsme počítali) nebo jeden kořen (po vydělení získáme kvadratickou rovnici, která nemá řešení) Zkusíme využít výsledek z kalkulátoru a vyřešit rovnici tak, jako v předchozích příkladech Protože kořenem je číslo, můžeme levou stranu rozložit (například dělením): 8
9 ( x x ) : = + 0 x x x x x x x + x 4 0 ( x 4x) 0x 0 ( 0x 0) 0 Získaný trojčlen můžeme rozložit z hlavy ( x x 0) ( x )( x 5) Celá rovnice: ( x 9x 4x 0) ( x )( x )( x 5) dvakrát (dvojnásobný kořen) + = + = číslo je kořenem rovnice Př 9: Načrtni graf funkce x x x = 0 Využij výsledky předchozího příkladu Pro velká záporná čísla má funkce určitě záporné hodnoty Prochází osou x v bodech [ ;0 ] a [ 5;0 ] Pro velká kladná čísla se hodnoty blíží k nekonečnu Osou y prochází v bodě [ 0; 0] Pokud máme všechny podmínky splnit, musí se graf v bodě [ ;0 ] dotýkat osy x zespodu y 4-4 x -4 Odhad si můžeme ověřit grafem z počítače 9
10 Shrnutí: Rovnice třetího nebo vyššího řádu už neřešíme pomocí vzorců 0
2.7.6 Rovnice vyšších řádů
6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení
2.7.6 Rovnice vyšších řádů (separace kořenů)
76 Rovnice vyšších řádů (separace kořenů) Předpoklady: 00507, 00705 Přehled rovnic: Řád rovnice Tvar Název způsob řešení (vzorec) ax + b = 0 lineární b a 0, x = a ax + bx + c = 0 kvadratická ± a 0, x,
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: 000 Rovnicí se nazývá vztah rovnosti mezi hodnotami dvou výrazů obsahujícími jednu nebo více neznámých. V této kapitole se budeme zabývat pouze
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
Funkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka:
..10 Kvadratické nerovnice Předpoklady: 01, 0, 0, 07 Př. 1: Vyřeš nerovnici 0. 0 - mohu rozložit na součin není to nic nového + 1 0 ( )( ) Hledám nulové body: 0 ( ) = = ( ) ( ; 1) ( 1; ) ( ; ) ( ) - -
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108
ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární
[ 0,2 ] b = 2 y = ax + 2, [ 1;0 ] dosadíme do předpisu Soustavy lineárních nerovnic. Předpoklady: 2206
..7 Soustavy lineárních nerovnic Předpoklady: 06 Pedagogická poznámka: První příklad je opakování, pokud se u někoho objeví problémy, je třeba je řešit před hodinou 0009. Př. : Urči předpis funkce f. Odhadni
2.6.5 Další použití lineárních lomených funkcí
.6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:
Variace. Kvadratická funkce
Variace 1 Kvadratická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratická funkce Kvadratická
( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :
.. Lineární nerovnice II Předpoklady: 00 Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < : Správné řešení. x < / + x 0 < + x / < x K = ( ; ) Test možné správnosti: x = :
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
Algebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
Nerovnice v součinovém tvaru, kvadratické nerovnice
Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Lineární funkce IV
.. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít
Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
MAT 1 Mnohočleny a racionální lomená funkce
MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy
4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s
Nerovnice. Vypracovala: Ing. Stanislava Kaděrková
Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
( ) Kvadratický trojčlen. Předpoklady: 2501, 2502, 2507, Kvadratický trojčlen je každý trojčlen, který je možné zapsat ve tvaru
.5.9 Kvadratický trojčlen Předpoklady: 50, 50, 507, 508 Kvadratický trojčlen je každý trojčlen, který je možné zapsat ve tvaru Odkud ho známe? levá strana kvadratické rovnice předpis kvadratické funkce
2.9.4 Exponenciální rovnice I
9 Eponenciální rovnice I Předpoklady: 90 Pedagogická poznámka: Eponenciální rovnice a nerovnice jsou roztaženy do celkem sedmi hodin zejména proto, že jsou brány jako nácvik výběru metody Nejprve si v
( x ) 2 ( B) ( ) ( ) ( ) Rozklad mnohočlenů na součin pomocí vzorců. Předpoklady: ) ( )( ) a) ( ) ( ) ( ) b) ( ) ( ) ( ) Př.
1.8.7 Rozklad mnohočlenů na součin pomocí vzorců Předpoklady: 010806 Př. 1: Vypočti. ( 1) ( + ) ( + 1) ( ) 1 + = + 1 + 6 + 9 = 10 8 + 1 = 9 + 6 + 1 + = 8 + 10 Př. : Zapiš druhou mocninu závorky jako mnohočlen
Rovnice v oboru komplexních čísel
Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a
ROZKLAD MNOHOČLENU NA SOUČIN
ROZKLAD MNOHOČLENU NA SOUČIN Rozkladedem mnohočlenu na součin rozumíme rozklad mnohočlenu na součin jednodušších mnohočlenů, které z pravidla již nejsou dále rozložitelné. Pro rozklad mnohočlenu na součin
Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.
Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost
( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
1.8.5 Dělení mnohočlenů
185 Dělení mnohočlenů Předpoklady: 18 Mohou nastat dvě možnosti 1 Dělení mnohočlenů jednočlenem Jednoduché dělíme každý člen zvlášť Př 1: Vyděl mnohočleny ( 9x y 6x y + 1xy x : x Dělit znamená dát mnohočleny
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
M - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro
Soustavy dvou lineárních rovnic o dvou neznámých I
.3.10 Soustavy dvou lineárních rovnic o dvou neznámých I Předpoklady: 308 Pedagogická poznámka: Hodina má trochu netradiční charakter. U každé metody si studenti opíší postup a pak ho zkusí uplatnit na
M - Kvadratická funkce
M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně
Logaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
2.3.1 Rovnice v součinovém tvaru
.. Rovnice v součinovém tvaru Předpoklady: 70, 0 Pedagogická poznámka: Hodina obsahuje poměrně dost příkladů (0). I když je někteří stihli vypočítat, mám trochu obavu, zda postup nebyl příliš rychlý. Pokud
Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
4.3.3 Základní goniometrické vzorce I
4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924
5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět
M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK
M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento
Lineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
Michal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
ROVNICE, NEROVNICE A JEJICH SOUSTAVY
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x
..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost
2.3.7 Lineární rovnice s více neznámými I
..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto
M - Příprava na 2. čtvrtletku - třídy 1P, 1VK
M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
7. SOUSTAVY LINEÁRNÍCH A KVADRATICKÝCH ROVNIC
7. SOUSTAVY LINEÁRNÍCH A KVADRATICKÝCH ROVNIC 7.1. Řeš pro reálné neznámé a y soustavu lineárních rovnic: = 5 = 1 = 5 / 5 = 1 / 3 1 15y = 15 1+ 15y = 3 31 = 155 = 5 {[ ] K = 5; 5 = 5 / 7 = 1 / 14 1y =
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
x 0; x = x (s kladným číslem nic nedělá)
.. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.
2.8.8 Výpočty s odmocninami II
.8.8 Výpočty s odmocninami II Předpoklady: 00807 Př. : Vypočti. Odmocniny, které nejdou počítat z hlavy usměrni. 5 0 7 3 c) 5 3 5 0 = 00 = 0 7 3 = 9 3 3 = 3 3 = 9 c) 5 = 9 5 = 3 5 3 = 6 = Př. : Vypočti
7.5.1 Středová a obecná rovnice kružnice
7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli
Rovnice s neznámou pod odmocninou I
.7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte, můžete obětovat hodiny dvě a nechat
4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
15. KubickÈ rovnice a rovnice vyööìho stupnï
15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných
Grafy relací s absolutními hodnotami
..5 Grafy relací s absolutními hodnotami Předpoklady: 0, 0, 03, 0, 05,, 3 Pedagogická poznámka: Tato hodina nepatří do klasických středoškolských osnov. Je reakcí na fakt, že relace s absolutními hodnotami
Analytická geometrie kvadratických útvarů v rovině
Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme
( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x
9 Vzorce pro dvojnásobný úhel II Předpoklady: 08 Př : Urči definiční obor výrazů a zjednoduš je a) ( sin cos ) sin x + cos x sin x x + x sin x b) cos x + cos x + sin x + cos x sin x a) x R sin x + cos
( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.
.. Nerovnice v součinovém tvaru II Předpoklady: 0 Př. 1: Řeš nerovnici x x 0. Problém: Na levé straně není součin musíme ho nejdříve vytvořit: x x x x x x x x x x + 0. ( ( ( = = + řešíme nerovnici: ( (
13. Kvadratické rovnice 2 body
13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >
16. Goniometrické rovnice
@198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny
Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.
Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme
KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,
KVADRATICKÉ FUNKCE Definice Kvadratická funkce je každá funkce na množině R (tj. o definičním ooru R), daná ve tvaru y = ax + x + c, kde a je reálné číslo různé od nuly,, c, jsou liovolná reálná čísla.
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
2.7.3 Použití grafů základních mocninných funkcí
.7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy
Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:
753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
5. Na množině R řeš rovnici: 5 x 2 2 x Urči všechna reálná čísla n vyhovující nerovnostem: 3 5
I 16 VADRO (váha 80) E 1. Na obrázku vpravo je graf funkce g dané předpisem: y = a + b + c. Urči koeficienty a, b, c.. Zapiš definiční obor a obor hodnot funkce f na obrázku vpravo. f: y = 0,5 4 + 3. Na
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ
VÝPOČET PECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Pro různé situace se hodí různé metody (výpočtu!). Jak již bylo několikrát zdůrazněno,
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)
Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1