Cavendishův pokus: Určení gravitační konstanty,,vážení Země
|
|
- Nikola Holubová
- před 6 lety
- Počet zobrazení:
Transkript
1 Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem Cavendishova expeimentu je učení gavitační konstanty postřednictvím měření sil v řádech N na tosních vahách. Pomocí gavitační konstanty lze učit nejen gavitační sílu působící mezi dvěmi tělesy, ale i hmotnost libovolného tělesa, známe-li gavitační zychlení a vzdálenost tělesa v daném místě. Newtonův gavitační zákon nám říká, že dvě tělesa se navzájem přitahují gavitační silou, kteá je přímo úměná součinu hmotností obu těles a nepřímo úměná kvadátu jejich vzdálenosti. V matematickém vyjádření této síly se nám ale musí objevit gavitační konstanta, kteou jsme se ozhodly změřit. Vztah po výpočet této síly je pak m1m F =, (1) kde je pávě gavitační konstanta, m 1, m hmotnosti těles a jejich vzdálenost. Expeiment je ovněž nazýván Vážení Země, což je nepřesné, ale vystihuje to jeden z největších přínosů. Jak bylo řečeno v abstaktu, změříme-li můžeme učit nejen hmotnost Země, ale i jakéhokoli jiného tělesa, známe-li gavitační zychlení a vzdálenost v daném bodě. Po tento výpočet upavíme výše uvedený vztah do podoby M = g, () kde M je hledaná hmotnost a g je gavitační zychlení v daném místě. (Jako g se standadně označuje tíhové zychlení, do kteého je ale započteno odstředivé zychlení na dané ovnoběžce. My ale potřebujeme pouze zychlení dané gavitací planety, nikoli její otací.) Základní motivací po nás bylo zkusit s jakou přesností se nám povede gavitační konstantu změřit.
2 . Expeiment a)teoie: Měření na tosních vahách je založeno na vlastnostech lanka či pásku a nosné tyčky s tělesy. Lanko nám zde haje oli pužiny, kteou v tomto expeimentu nelze po nedostatečnou přesnost při měření velmi malých sil použít. Velké koule o hmotnostech m 1 působí na malé koule o hmotnostech m stejně velkými silami opačného směu F podle gavitačního zákona, (samozřejmě působí i malé koule na velké silou F, ale zychlení způsobené těmito silami je tak malé, že je neuvažujeme). Vzniká moment síly τ k = Fd (d, F viz obázek). Jako eakce na tento moment vzniká v lanku moment síly τ l = κθ, kde θ je úhel stočení a κ je tosní neboli koutící moment lanka. Tyto dva momenty se musí ovnat (zákon akce a eakce). τ = (3) k τ l m1m κθ = d (4) b Úhel θ si vyjádříme pomocí goniometických funkcí a expeimentálně naměřených hodnot S 1, (viz ob.). Apoximace goniometické funkce na její agument je možná u malých úhlů (cca do ). S θ = () 4L
3 Tosní moment κ je s peiodou kmitů tosních vah T, kteou získáme fitováním naměřených hodnot, ve vztahu 4π J T =, (6) κ kde J je moment setvačnosti soustavy malých koulí (m ) vůči ose kolmé na tyčku a pocházející jejím středem, přičemž tyčku po její malou hmotnost zanedbáme. Moment J je za použití Steineovy věty [] J = m ( d + ). (7) d + Z toho je 8 κ = π m (8) T Nyní upavíme vztah (4), dosadíme do něj vztahy po θ, κ a získáme vztah po výpočet gavitační konstanty d (9) + = π Sb T m Ld Je nutné povést koekci. Malá koule m je ovlivněna i vzdálenější větší koulí (ob.1,[3]-s.1). 1 0 = 1 b (10) Do tohoto vztahu dosadíme naměřené a zpacované údaje. b)měření: Měření jsme pováděli metodou popsanou v manuále [3] metodou II. Laseový
4 Výsledky: Laseový papsek odážející se od zcátka na ose tosníh vah dopadal na stupnici ve vzdálenosti L. Z této stupnice jsme odečítali hodnoty zobazené v gafu čenými tečkami. Je vidět, že změnou polohy velkých koulí jsme získali dvě ůzné sinusoidy. Navifováním v pogamu Oange jsme získali paamety těchto sinusoid a čevenou stopu v gafu, kteá je zobazením těchto funkcí s nejmenší možnou odchylkou od naměřených hodnot. Tyto funkce zapíšeme x τ π f = Ae sin( T ( x xc)) + A0 (11) 1. funkce. funkce A 396 ±6-4± A 0 336±1 460,7±0,1 T 49,±0, 00,1±0,1 τ 090±70 166±1 x c 81 77,1±0, Po výpočet použijeme zvýazněné hodnoty. T jsou peiody z kteých uděláme půmě, A0 jsou hodnoty S1, (ob.). Údaje uváděné v tabulce jsou výsledky dílcích měření ozměy pomůcek a vzdáleností (ob.) , 0,009 d 0,00 0,0 b 46,0 0,046 L 6077,00 6,077 ds 14,00 0,14 T 496,00 m1 1,49 Výchylka [mm] chyba % 6,01E-011 6,30E-011 6,67E-11, 3. Shnutí Tento typ měření gavitační konstanty pováděn s chybou půměně % [3], což jsme s naměřenou hodnotou 6,3 E-11 a tedy odchylkou,% přibližně dodželi. Myslím, že vzhledem k zaokouhlování, kteé jsme pováděli, je výsledek opavdu dobý. Asi nejdůležitější je dostatečně velký statistický vzoek měření, aby výsledek měření zpacovaný počítačem byl zatížen co nejmenší statistickou chybou. 4. Poděkování Za konzultace našemu supevisoovi Davidu Koňaříkovi a za skvělé zázemí FJFI ČVUT.. Refeence: [1] FEYNMAN, R. P. LEIHTON, R. B. SANDS, M. Feynmanovy přednášky z fyziky s řešenými příklady Fagment 000 č. stany - 10 [] [3] avitional tosion balance PASCO scientific Čas [s]
5 [4] Macháček, J.- Mouchová, Z- Nowakova, J. Cavendishův pokus: Měření gav. konst. FYZTYD 006 č. st.
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační
VíceKlíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole
Pojekt Efektivní Učení Refomou oblastí gymnaziálního vzdělávání je spolufinancován Evopským sociálním fondem a státním ozpočtem České epubliky. GRAVITAČNÍ POLE Teoie Slovně i matematicky chaakteizujte
VíceHlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby
Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod
VíceNewtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce
Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí
VíceCavendishův experiment
FJFI ČVUT v Praze Fyzikální praktikum I Úloha 4 Verze 171001 Cavendishův experiment Abstrakt: Jednou z fundamentálních interakcí je interakce gravitační. Ta má přitažlivý charakter a působí na všechny
VíceHarmonický pohyb, výchylka, rychlost a zrychlení
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, kinematika Hamonický pohyb,
VíceKonstrukční a technologické koncentrátory napětí
Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem
VíceUrčení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).
Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása
VíceLaboratorní úloha č. 3 Spřažená kyvadla. Max Šauer
Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................
VíceJméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_20_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 27. 12. 2012 Číslo DUM: VY_32_INOVACE_20_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
VíceFyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro
VíceMěření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
VíceSMR 1. Pavel Padevět
SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně
VíceFyzikální korespondenční seminář UK MFF 17. III. E
17. očník, úloha III. E... Země je kulatá (8 bodů; půmě 4,71; řešilo 31 studentů) Učete, na kteé ovnoběžce se nachází vaše bydliště. Navhněte co nejvíce metod a alespoň dvě ealizujte. Úlohu vymyslel Honza
VíceVÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
VíceTÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
VíceELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE
ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho
Více[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
VíceSTANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE
DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním
VíceCavendishův experiment
Číslo úlohy: 1 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 19. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Cavendishův
VíceGravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
Více1.7.2 Moment síly vzhledem k ose otáčení
.7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá
VíceRezonanční jevy na LC oscilátoru a závaží na pružině
Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na
Více4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal
4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika
VíceMOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova
Více5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
Více3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Vícev 1 = at 1, (1) t 1 = v 1
Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného
VíceSeminární práce z fyziky
Seminání páce z fyziky školní ok 005/006 Jakub Dundálek 3.A Jiáskovo gymnázium v Náchodě Přeměny mechanické enegie Přeměna mechanické enegie na ovnoamenné houpačce Název: Přeměna mechanické enegie na ovnoamenné
Více7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
VíceZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí
VícePříklady elektrostatických jevů - náboj
lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém
Více3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.
Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného
Více6 Pokyny ke zpracování naměřených hodnot
6 Pokyny ke zpacování naměřených hodnot Při numeických výpočtech nesmíme zapomínat, že naměřené hodnoty veličin jsou pouze přibližná, neúplná čísla. Platné cify (číslice) daného čísla jsou všechny od pvní
Více3.1.7 Kyvadlo. Předpoklady: 3106
37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VíceParametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
VíceRozklad přírodních surovin minerálními kyselinami
Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových
VíceFyzikální praktikum I
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...
VíceS d. Dílny Heuréky / Heureka Workshops KDF MFF UK v Praze. Abstrakt. kapacita zavedení kapac. Zavedení kapacity kondenzátoru
Dílny Heuéky 2009-2010 / Heueka Wokshops 2009-2010 KDF MFF UK v Paze Abstakt kapacita zavedení kapac Zavedení kapacity kondenzátou knihy kondenzátou S použijeme multimet, kteý tuto možnost nabízí. C kde
VíceR2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
VíceKinematika. Hmotný bod. Poloha bodu
Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po
Více( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku
ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
VíceMatematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
VíceGravitační a elektrické pole
Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole
VíceMěření hodnoty g z periody kmitů kyvadla
Měření hodnoty g z periody kmitů kyvadla Online: http://www.sclpx.eu/lab2r.php?exp=8 Úvod Při určení hodnoty tíhové zrychlení z periody kmitů kyvadla o délce l vycházíme ze známého vztahu (2.4.1) pro periodu
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceRovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
VícePohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
VíceMěrný náboj elektronu
Měrný náboj elektronu Miroslav Frantes 1, Tomáš Hejda 2, Lukáš Mach 3, Ondřej Maršálek 4, Michal Petera 5 1 miro11@seznam.cz; Gymnázium Benešov, 2 tohe@centrum.cz; Gymnázium Christiana Dopplera, Praha
VíceMoment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
VíceVyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)
Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel
VíceFYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
VícePřijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
VícePohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
Více3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.
1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření
VíceMAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
VíceMetoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
VíceSeriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
Více1.3.8 Rovnoměrně zrychlený pohyb po kružnici I
1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb
VíceMěření tíhového zrychlení reverzním kyvadlem
43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n
VíceStřední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
VíceFYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava
VíceNázev: Studium kmitů na pružině
Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání
VíceŘešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
VíceMěření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
Více3.2.8 Oblouková míra. Předpoklady:
3..8 Oblouková mía Předpoklady: Pedagogická poznámka: Tato hodina zabee přibližně jednu a půl vyučovací hodiny. Na 45 minut je možné hodinu zkátit buď vynecháním někteých převodů na konci (vzhledem k tomu,
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
VíceUčební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy
VíceRychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
VíceLaboratorní práce č. 1: Měření délky
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.
VíceFyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte
VícePraktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
VíceHlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
Více11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Více6A Paralelní rezonanční obvod
6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní
VíceHydraulika podzemních vod
Hydaulika podzemních vod STOUPACÍ ZKOUŠKY - vyhodnocení stavu po skončení čepací zkoušky - měří se tzv. zbytkové snížení (původní hladina hladina po skončení čepání v libovolném čase po skončení odběu)
Více1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Více3. Měření viskozity, hustoty a povrchového napětí kapalin
Fyzikální praktikum 1 3. Měření viskozity, hustoty a povrchového napětí kapalin Jméno: Václav GLOS Datum: 12.3.2012 Obor: Astrofyzika Ročník: 1 Laboratorní podmínky: Teplota: 23,5 C Tlak: 1001,0 hpa Vlhkost:
VíceOdhad změny rotace Země při změně poloměru
Odhad změny rotace Země při změně poloměru NDr. Pavel Samohýl. Seznam symbolů A, A, A součinitel vztahu pro závislost hustoty Země na vzdálenosti od středu, totéž v minulosti a současnosti B, B, B součinitel
VíceSoustava hmotných bodů
Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět
Více1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.
1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními
Více1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3
lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál
VíceDerivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
VíceHydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
VíceELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje
EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ
Více5. Světlo jako elektromagnetické vlnění
Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech
VíceFyzika_6_zápis_8.notebook June 08, 2015
SÍLA 1. Tělesa na sebe vzájemně působí (při dotyku nebo na dálku). Působení je vždy VZÁJEMNÉ. Působení na dálku je zprostředkováno silovým polem (gravitační, magnetické, elektrické...) Toto vzájemné působení
VíceDynamika rotačního pohybu
Číslo úlohy: 11 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 2. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Dynamika rotačního
Více2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané.
FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #1 Cavendishův experiment Datum měření: 15.11.013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace: 1 Pracovní
Více03 - síla. Síla. Jak se budou chovat vozíky? Na obrázku jsou síly znázorněny tak, že 10 mm odpovídá 100 N. Určete velikosti těchto sil.
1 03 - síla Síla Tato veličina se značí F a její jednotkou je 1 newton = 1 N. Často se zakresluje jako šipkou (vektorem), kde její délka odpovídá velikosti síly, začátek jejímu působišti a šipka udává
Více13 otázek za 1 bod = 13 bodů Jméno a příjmení:
13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit
VíceUrčete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první
VíceFilip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse
ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.
VíceEXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
VícePRAKTIKUM I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..
Více