5EN306 Aplikované kvantitativní metody I
|
|
- Eva Matějková
- před 5 lety
- Počet zobrazení:
Transkript
1 5EN306 Aplikované kvantitativní metody I Přednáška 9 Zuzana Dlouhá
2 Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam popisných charakteristik 4. Vicenásobná regrese v ekonomické analýze 5. Vicenásobná regrese: DUMMY proměnné a jejich interakce 6. Difference in differences estimator 7. First Differencing a Fixed Effects 8. Instrumentální proměnné, Panelová data 9. Testy robustnosti 10. Úvod do časových řad (zbyde-li čas) témata se prolínají 2
3 Panelová data (First differencing, Fixed Effects, ) minule: instrumentální proměnné identifikační strategie = způsob, jakým výzkumník využívá napozorovaná data (tedy data negenerována náhodně) k přiblížení se k reálnému (přirozenému) experimentu pozorovaná korelace X a Y nemusí nutně znamenat existenci kauzality z důvodu možné existence nepozorovaných faktorů Panelová data data, u kterých opakovaně pozorujeme charakteristiky statistických jednotek: roční míra nezaměstnanosti každého státu za několik let čtvrtletní prodeje každé z poboček Tesca za několik čtvrtletí mzda jedince v několika zaměstnáních podstata měříme stále stejnou statistickou jednotku (na rozdíl od pooled cross-section data náhodný výběr) definice vyrovnaného a nevyrovnaného panelu (balanced / unbalanced) krátký vs. dlouhý panel (práce s krátkými panely je podobnější práci s průřezovými údaji, práce s dlouhými panely práci s časovými řadami) Wooldridge kap. 13 a 14 3
4 Unobserved heterogeneity (unobserved effect) forma omitted variable bias problém k řešení: statistické jednotky i (jedinci, domácnosti, firmy, státy, ) se od sebe můžou lišit o specifické charakteristiky, které jsou v čase neměnné (nebo téměř neměnné): demografické geografické atd. to má vliv na měřenou (závislou) veličinu úrovňová konstanta pro každou ze statistických jednotek unobserved effect model nebo fixed effect model (v čase neměnné) příklad crime rate (různé způsoby reportování zločinů v různých státech USA, lokace) mzda vs. vzdělání (různá barva pleti, genetická zátěž, sociální zázemí apod.) neměřitelné vlivy (neměřitelný vliv je náhodná složka) tak dělíme na v čase neměnné fixed effects v čase proměnlivé náhodná složka u it jak bychom to řešili (odhad modelu)? přidat regresory? binární proměnné? 4
5 Vymezení problému panelová data (datová kostka) základní model: y t x w it it it je zde problematizován heterogenitou jednotek: y t x a u it it i it kde w it = a i + u it, a i = fixní, nepozorovaný efekt (nemění se v čase, ale je jiný pro každou pozorovanou jednotku) také nepozorovaná či individuální heterogenita u it = idiosynkratická chyba a i ovlivňuje Y a může být korelována i s X! a i jsou konstantní v čase, neměřitelné i když u it a x it jsou nekorelované, problém, pokud a i a x it korelované, tj. platí, že E(a i x it ) 0 omitted variable bias = heterogeneity bias pozn.: trend může být definován formou dummies 5
6 First differencing (první diference) princip: diference sousedních časových period ztrácíme jedno období pro každou jednotku (n) nejjednodušší - pro dvě časové periody y d2 x a u i 0 0 t 1 it i it Period 2: y ( ) x a u Period 1: i i2 i i2 y x a u i1 0 1 i1 i i1 First-differencing: y y ( x x ) u u i2 i1 0 1 i2 i1 i2 i1 y x u i2 0 1 i2 i2 fixní efekty jsou odstraněny (stále ale mohou být v čase proměnné faktory, které v modelu nemáme) 6
7 First differencing (první diference) Předpoklady Δu i není skorelované s Δx i (platí, pokud je u it nekorelovaná s x it v každém t) nenastáva podstatná heterogenita proměnlivá v čase homoskedasticita Δu i pro více časových period neautokorelace Δu it Δx i musí mít nějakou variabilitu přes i (problém, pokud x se v čase nemění nebo se mění o stejnou hodnotu neodseparujeme od a i ) příklad? Nedostatky redukce variability x (ztrácíme informaci) někdy se dá do určité míry obejít velkým počtem pozorování) někdy se používají diference přes delší časové periody hodně nízká variabilita (vysoké standardní chyby) některé charakteristiky se v čase vůbec nemění, či o konstantu nelze je použít (nelze je odseparovat od a i ) ztráta n pozorování stále tu mohou být faktory v čase proměnné 7
8 First differencing (první diference) Více časových period nezbavíme se faktoru času musíme řešit autokorelaci Δu it pro t = 2, 3, pokud je u it neautokorelovaná, pak Δu it autokorelovaná je: sousední pozorování náhodné složky ve FD u it u it-1 a u it+1 u it pokud u it ~ AR(1) pak Δu it autokorelované pokud u it ~ RW pak Δu it nekorelované 8
9 First differencing příklad 1 mzda příklad s více nezávislými proměnnými závislá proměnná: y it = logaritmus mzdy pracovníka i v čase t nezávislé proměnné: x it1 = lokální míra nezaměstnanosti pracovníka i v čase t = počet měsíců zkušeností pracovníka i v čase t x it2 x i3 a i = počet let vzdělání pracovníka i (v čase neměnná!!!) = talent pracovníka i (neměřitelná a zároveň v čase neměnná) Δy i2 = δ 0 + β 1 Δx i21 + β 2 Δx i22 + Δu i2 x i3 počet let vzdělání + a i talent pracovníka jsme metodou FD odstranili!!! Δx i22 bude rovna 12 pro skoro všechny pracovníky (méně než 12 pro nezaměstnané) nízká variabilita nepřesně odhadnut koeficient β 2 vysoké standardní chyby významný heterogeneity bias!!! 9
10 First differencing příklad 2 kriminalita míra kriminality: období 1982 a měst USA míra nezaměstnanosti (v %) a míra kriminality (počet zločinů na 1000 obyvatel) hledám negativní vztah a významnost!!! rok 1987 po FD Interpretace 15,4 = nárůst kriminality o 15,40 na 1000 obyvatel mezi obdobími 1982 až 1987 bez změny nezaměstnanosti 2,22 = vzroste-li nezaměstnanost o 1 %, vzroste počet zločinů o 2,22 na 1000 obyvatel 10
11 First differencing příklad 3 školení Účastníci školení měřím kauzální efekt účastníků školení nezávislé proměnné účast na školení, individuální charakteristiky, závislá proměnná mzdy, produktivita práce, t = 2 období po absolvování školení y d2 prog a u, t 1,2 it t it i it first differencing model: y prog u i i i model OLS: y treat y control náhodná složka v it = a i + u it kontroluje v čase neměnné charakteristiky firem: účastník školení: prog it = 1 nezúčastnil se školení: prog it = 0 11
12 Fixed effects model přístup č. 2 k dohadu panelových dat Jak odseparovat fixní efekty a i + neztratit pozorování? uvažujme model: zprůměrujme rovnici v čase pro každé i: kde např.: odečtu obě rovnice od sebe tímto jsme odstranili fixní efekty a i poslední rovnice je tzv. time-demeaned odhadneme pooled data OLS metodou tento estimátor se nazývá within-estimátor, protože využívá rozptyl v čase v rámci (within) průřezových jednotek pokud bychom odhadli model přímo z průměrů (neodečetli bychom rovnice mezi sebou) metodou OLS, jednalo by se o betweenestimátor není nestranný 12
13 Fixed effects model Předpoklady opět striktní exogenita x it homoskedasticita u it neautokorelace u it (musíme řešit i pro 2 periody) Nedostatky ztratíme proměnné konstantní v čase (wage = f(sex, race, ) proměnné konstantní v čase můžeme použít v interakcích (educ*časová dummy) proměnné měnící se o konstantu neodlišíme od trendu jestli do modelu dáme všechny časové dummies, nemůžeme odhadnout efekt proměnných, jejichž změna v čase je konstantní (např. počet let zkušeností) počet stupňů volnosti je N*T-N-k (tato úprava je nutná, protože navíc odhadujeme N*průměry) 13
14 Fixed effects model Předpoklady opět striktní exogenita x it homoskedasticita u it neautokorelace u it (musíme řešit i pro 2 periody) Nedostatky ztratíme proměnné konstantní v čase (wage = f(sex, race, )) proměnné konstantní v čase můžeme použít v interakcích (educ*časová dummy) proměnné měnící se o konstantu neodlišíme od trendu jestli do modelu dáme všechny časové dummies, nemůžeme odhadnout efekt proměnných, jejichž změna v čase je konstantní (např. počet let zkušeností) počet stupňů volnosti je N*T-N-k (tato úprava je nutná, protože navíc odhadujeme N*průměry) Pozitiva neztrácíme pozorování po FE odhadu můžeme fixní efekty odhadnout: 14
15 Fixed effects model nebo First difference? když T = 2, FE a FD jsou identické když T > 2, FE je vydatnější než FD, pokud jsou splněny předpoklady KLRM pokud náhodná složka u it neautokorelovaná, pak lepší FE pokud náhodná složka u it generována RW, pak lepší FD obecně se spíše používají FE, ale je vhodné aplikovat obojí a porovnávají se výsledky pokud dlouhé časové řady (T velké) a problém s nestacionaritou (hrozí zdánlivá regrese), pak může být FD lepší variantou (speciálně máme-li málo jednotek) také závisí, zda nás zajímají odhady a i 15
16 Fixed Effects příklad Cornwell, Trumbull (1994) Cornwell, Ch., Trumbull, W. N.: Estimating the Economic Model of Crime with Panel Data; The Review of Economics and Statistics, Vol. 76, No. 2 (May, 1994), pp k dispozici na stránkách: cíl: zpřesnit odhady elasticit nabídky zločinů (elasticita proto použili log-log model): Pa pravděpodobnost zadržení Pc pravděpodobnost odsouzení Pp pravděpodobnost uvěznění S závažnost trestu logicky odhady elasticit by měli být záporné (zvyšují očekávané náklady nebo-li znižují očekávaný užitek) dosavadní výzkum: Ehrlich (1973) -0,52 Pp; -0,59 S; Carr-Hill &Stern (1973) -0,59 Pp; -0,17 S 16
17 Fixed Effects příklad Cornwell, Trumbull (1994) založeno na maximalizaci očekávaného užitku rozhodnutí porovnání výnosů a nákladů max Y i = zisk ze zločinu (monetární ekvivalent) E(u i ) = očekávaný užitek jedince F i = monetární ekvivalent trestu v případě dopadení, předpoklad Y i < F i p i = pravděpodobnost potrestání u i = užitková funkce 17
18 Fixed Effects příklad Cornwell, Trumbull (1994) Data: panelová data agregátní za jednotlivé kraje Severní Karolína, N = 90; T = 7 Zdroje: FBI's Uniform Crime Reports věznice probation files of the North Carolina Department of Correction Motivace: města mohou mít specifické kulturní a jiná charakteristiky Zdroje endogeneity: unobserved heterogeneity simultaneita Strategie: kontrola fixních efektů jednotlivých oblastí mnoho důvodů k obavám o odlišnostech 18
19 Fixed Effects příklad Cornwell, Trumbull (1994) Model ALL BETWEEN (průměry) Fixed effects model R it podíl zločinů zaznamenaných FBI na populaci X it návratnost z legálních aktivit (mzda, věk, rasa, ) P it pravděpodobnosti (zadržení, odsouzení, ) α i fixní efekty (můžou být skorelovány s X it a P it ) ε i náhodná složka Between (průměry) použít v případě, když X it a P it jsou neskorelovány s nepozorovanou heterogenitou (unobserved heterogeneity) 19
20 Cornwell, Trumbull odhad Between model 20
21 Cornwell, Trumbull odhad Fixed Effects model F-test: fixní efekty jsou významné 21
22 Dummy variable regresssion další způsob odhadu fixních efektů dummy proměnná pro každé pozorování (každou statistickou jednotku) máme N+k parametrů oproti FE máme hodně odhadovaných parametrů relativně vysoký koeficient determinace 22
23 Random Effects Model předpoklad: a i a X nejsou korelovány: cov(a i, x itj ) = 0 za tohoto předpokladu je náhodná chyba a i + u it nekorelovaná s vysvětlujícími proměnnými, ale je sériově korelovaná pro pozorování pocházející z jednoho i: y x v, t 1,2,..., T vit ai uit it it it vysvětlující proměnné jsou exogenní, takže pooled OLS estimátor je konzistentní v tomto případě musíme upravit standardní chyby, protože chyby pro dané i jsou korelovány v čase (clusterované standardní chyby) OLS není kvůli sériové korelaci vydatný následujícím způsobem můžeme transformovat model, aby splňoval G- M předpoklady: y y (1 ) ( x x )... ( v v ), t 1,2,..., T it i it i it i parametr λ neznáme, ale můžeme ho odhadnout RE estimátor 23
24 Random Effects Model pokud je náhodný efekt relativně nevýznamný vzhledem k idiosynkratické chybě, dá RE estimátor výsledek blízký pooled OLS estimátoru ( λ 0) pokud je náhodný efekt relativně významný vzhledem k idiosynkratické chybě, dá RE estimátor výsledek blízký FE estimátoru (λ 1) RE estimátor funguje i pro časově invariantní proměnné v ekonomii jsou nepozorované individuální efekty málokdy nekorelované s vysvětlujícími proměnnými, což svědčí ve prospěch FE estimátoru možno otestovat, jestli máme použít spíše FE nebo RE (Hausmanův test v Gretlu) 24
25 Cornwell, Trumbull odhad Random Effects model 25
26 Cornwell, Trumbull odhad Random Effects model Breusch-Pagan LM test: zamítam hypotézu o tom, že efekty nejsou náhodné (tj. efekty jsou náhodné Hausman test: existuje systematický rozdíl mezi FE a RE odhadem RE odhady nekonzistentní, FE odhady konzistentní (volím) 26
27 Random Effects Model Výhody: můžeme do modelu vložit proměnné, které se v čase nemění neztrácíme stupně volnosti Nevýhody: přísný a silný předpoklad exogenity a i v případě, že a i jsou korelovány s některými vysvětlujícími proměnnými musíme použít FD anebo FEM 27
28 Shrnutí předpokladů pro FE estimátor máme náhodný výběr z průřezových jednotek všechny vysvětlující proměnné se aspoň pro některá i mění v čase a neexistuje perfektní lineární kombinace mezi vysvětlujícími proměnnými regresory jsou striktně exogenní podmíněně na fixním efektu rozptyl idiosynkratických chyb podmíněně na všech regresorech je konstantní neexistuje autokorelace mezi idiosynkratickými chybami idiosynkratické chyby mají normální rozdělení podmíněně na všech regresorech 28
29 Shrnutí předpokladů pro RE estimátor máme náhodný výběr z průřezových jednotek neexistuje perfektní lineární kombinace mezi vysvětlujícími proměnnými regresory jsou striktně exogenní v tom je obsaženo, že E(a i X i ) = const Rozptyl chyb podmíněně na všech regresorech je konstantní v tom je obsaženo, že Var(a i X i ) = const neexistuje autokorelace mezi chybami chyby mají normální rozdělení podmíněně na všech regresorech 29
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 1 Zuzana Dlouhá Úvod do předmětu obecné informace Konzultační hodiny: úterý 16:00 18:00, místnost 433 NB e-mail: figlova@vse.cz // zuzana.dlouha@vse.cz
VícePraktikum z ekonometrie Panelová data
Praktikum z ekonometrie Panelová data Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, zouharj@vse.cz 9. května 2014 1 Terminologie a značení Sledujeme-li pro všechny průřezové jednotky stejná časová období,
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. vorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 2 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
VícePřednáška 4. Lukáš Frýd
Přednáška 4 Lukáš Frýd Časová řada: stochastický (náhodný) proces, sekvence náhodných proměnných indexovaná časem Pozorovaná časová řada: jedna realizace stochastického procesu Analogie: Průřezový výběr,
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
VíceMatematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 7 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantativní metody I Přednáška 8 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
VíceCross-section pozorování Firma, člověk Časový úsek
Pooled data y = Xβ + ε Cross-section pozorování Firma, člověk ds = αsdt + σsdw Časový úsek Základní soubor Výběrový soubor Základní soubor Je Proces 1 konkrétní realizace Co sledovat firmu(y), osobu(y)
VíceTECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD
TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,
VíceZáklady ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28
Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
VícePřepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0
Heteroskedasticita Přepoklady KLM a Gauss Markov teorém KLM Klasický lineární model 1) Lineární v parametrech ) E ε = 0 Blue odhad - GM Nezkreslený odhad 1) Lineární v parametrech ) E ε = 0 3) E( ȁ ε X)=
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Více4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Více4EK201 Matematické modelování. 11. Ekonometrie
4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické
Více4EK211 Základy ekonometrie
4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 4 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
VíceTestování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
VíceČasové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
VíceČasové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
Více18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
VíceTestování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
VíceRNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
VíceAVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
VíceLekce 1 úvod do ekonometrie
Lekce 1 úvod do ekonometrie Některé věci se zde budou opakovat několikrát důležité pro rozležení v hlavě a jiný úhel pohledu Dokázat aplikovat ekonometrie nestačí se pouze naučit na zkoušku Základní kurz
VíceKorelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
VícePojem endogenity a exogenity
22. 4. 2010 Úvodní definice Klasická definice Exogenita a endogenita není jednoznačná, přesto se nejčastěji pracuje s následující definicí. Proměnná x vysvětlující proměnnou y je exogenní, pokud L(y x)
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VíceMÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantativní metody I Přednáška 9 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
VíceZkušenosti s použitím metod Counterfactual Impact Evaluation při evaluaci ESF v České republice. Jan Brůha IREAS
Zkušenosti s použitím metod Counterfactual Impact Evaluation při evaluaci ESF v České republice Jan Brůha IREAS Pilotní projekt použití CIE pro hodnocení ESF OPLZZ V současné době byly použity tři metody
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Více5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE
5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE 1 STRUKTURA PŘEDNÁŠKY - DNES - Formulace a strukturace problému za pomoci teorie; data; ekonometrický model; identifikační
VícePSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
VíceRegresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Logistická křivka Umělé proměnné Cvičení 11 Zuzana Dlouhá Logistická křivka log-lineární model patří mezi poptávkové funkce, ty dělíme na: a) klasické D = f (příjem, cenový index,
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z
VíceZáklady ekonometrie. X. Regrese s časovými řadami. Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim / 47
Základy ekonometrie X. Regrese s časovými řadami Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim 2015 1 / 47 Obsah tématu 1 ADL model 2 Regrese se stacionárními řadami 3 Regrese s řadami
VíceCvičení 9 dekompozice časových řad a ARMA procesy
Cvičení 9 dekompozice časových řad a ARMA procesy Příklad 1: Dekompozice časové řady Soubor 18AEK-cv09.xls obsahuje dvě časové řady (X a Y) se 72 pozorováními. Použijte časovou řadu Y. a) Pokuste se na
VíceÚvod do ekonometrie Minitesty
Úvod do ekonometrie Minitesty Poznámka k zadání Použité značení odpovídá přednáškám, v případě nejasností nahlédněte do zveřejněných prezentací. V zadání jsou všude použity desetinné tečky (kvůli souladu
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceRegrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA
Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot
VíceIlustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
VíceAVDAT Geometrie metody nejmenších čtverců
AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε
VíceEKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
VíceStatistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Více10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 12 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
VíceStatistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
VíceANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
VíceEkonometrie. Jiří Neubauer
Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá
VíceAnalýza rozptylu. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Srovnávání více než dvou průměrů
PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Analýza rozptylu Srovnávání více než dvou průměrů If your experiment needs statistics, you ought to have done a better experiment. Ernest Rutherford
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VíceT T. Think Together 2013. Marta Gryčová THINK TOGETHER
Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 4. února 2013 T T THINK TOGETHER Think Together 2013 Mzdová disparita v českém agrárním sektoru v období od
VíceStatistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do
VíceREGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD
Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování
VíceAVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
VíceInovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
VícePSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
VíceJednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Víceodpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
VíceNáhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
VíceTestování hypotéz a měření asociace mezi proměnnými
Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,
VíceSEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:
VíceTeorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
VíceSEMINÁRNÍ PRÁCE Z 4ST432 Tereza Michlíková (xmict05) ZS 06/07
SEMINÁRNÍ PRÁCE Z 4ST432 Tereza Michlíková (xmict05) ZS 06/07 Nesezónní časová řada - Základní údaje o časové řadě Časová řada příjmy z daní z příjmu v Austrálii ( http://www.economagic.com/emcgi/data.exe/tmp/213-220-208-205!20061203093308
VíceZáklady ekonometrie. II. Netechnický úvod do regrese. Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim / 67
Základy ekonometrie II. Netechnický úvod do regrese Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim 2015 1 / 67 Obsah tématu 1 Regrese Úvod do regrese Příklady 2 Jednoduchý regresní model
VíceOdhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení
VíceEKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. přednáška Zobecněný lineární regresní model Požadavky (některé) pro odhad LRM klasickou MNČ nejsou zpravidla splněny. Použití metody nejmenších čtverců nemusí poskytovat kvalitní odhady
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
VíceINDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
VíceStatistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
VíceNáklady a přínosy firemní diverzity
Náklady a přínosy firemní diverzity Filip Pertold filip.pertold@cerge-ei.cz Nezávislý think tank při Národohospodářském ústavu AV ČR, v.v.i. zaměřující se na analýzu, vyhodnocování a vlastní návrhy veřejných
VíceProstorová variabilita
Prostorová variabilita prostorová závislost (autokorelace) reprezentuje korelaci mezi hodnotami určité náhodné proměnné v místě i a hodnotami téže proměnné v jiném místě j; prostorová heterogenita je strukturální
VíceZákony hromadění chyb.
Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky
VíceMETODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC.
METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC. ZÁKLADNÍ HARRODŮV-DOMARŮV MODEL RŮSTU A JEHO VERZE VE FORMĚ MULTIPLIKÁTOR AKCELERÁTOR. Parametry modelu simultánních rovnic ve
VíceZáklady ekonometrie. I. Úvod do ekonometrie a práce s daty. Základy ekonometrie (ZAEK) I. Úvod do ekonometrie a práce s daty Podzim / 66
Základy ekonometrie I. Úvod do ekonometrie a práce s daty Základy ekonometrie (ZAEK) I. Úvod do ekonometrie a práce s daty Podzim 2015 1 / 66 Obsah tématu 1 Úvod do ekonometrie Ekonomický model Ekonometrický
Více