3. podzimní série. ... {z }

Rozměr: px
Začít zobrazení ze stránky:

Download "3. podzimní série. ... {z }"

Transkript

1 3. podzimní série Téma: Kombinatorika Datumodeslání: º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Ó Ýµ Monča potřebuje zatelefonovat Pepovi, avšak nemá u sebe svůj telefonní seznam PraSátek. Zná však předvolbu 723 a vzpomněla si, že Pepovo číslo obsahuje právě tři po sobě jdoucí nuly, přičemž žádná jiná nula se již v čísle nevyskytuje. Spočteš, z kolika možností bude Monča hádat? ¾º ÐÓ Ó Ýµ Vejtek má dvě ponožky, žlutou a zelenou. Považuje však za společensky nepřijatelné, aby každý denmělnasoběstejněoblečenéponožky.urči,nakolikdnímutytodvěponožkyvystačí,pokud jemůžedávatnasebevrůznémpořadíčinarubynebonositjenněkteroučižádnou. º ÐÓ Ó Ýµ Olin dal Ťamovi následující posloupnost teček a čárek délky 4n.... {z } 4n Ťam okamžitě rozpoznal morseovku bez oddělovačů a jal se do ní oddělovače dopnit. Chtěl ale, abymuvznikalajenpísmenkazeslovamatematika 1.KolikazpůsobymůžeŤamprovésttoto dělení? ŠnEksechcedostatzjednohorohukrychledoprotějšího,avšakplazitsechcepouzepohranách 2 a do večera stihne urazit nejvýše vzdálenost pěti hran. Pomoz šnekovi zjistit, kolik takových cest má. Kolikjezlomků p q vzákladnímtvarutakových,že pq=2!a p q <1?3 Mějme 25 kuliček, z nichž některé jsou bílé a některé černé, rozdělených do dvou krabiček. Pravděpodobnost, že vytáhneme z obou krabiček bílou kuličku, je,54. Spočti pravděpodobnost, že vytáhneme z obou krabiček černou kuličku. Alčasidočtvercovésítě n nzapisuječíslatak,žečíslovkaždémpolíčkuodpovídápočtu obdélníkůvsíti,kteréhoobsahují.napříkladpro n=3: 1 Slovomatematikasevmorseovcezapíšejako / / / / / / / / /. 2 Otáčetseaměnitsměrchcejenvevrcholech,můžejítvíckrátpotésaméhraně. 3 Faktoriálzčísla n,zkráceně n!,ječíslo1 2 n.

2 n+2 2 Dokaž,žesoučetvšechčíselvečtvercijeroven 4. 3 Mějme všechna devíticiferná čísla taková, že každá z číslic se v jejich desítkovém zápisu vyskytuje právě jednou a nula se zde nevyskytuje. Rozhodni, zda můžeme tato čísla rozdělit na dvě skupiny tak, že součet druhých mocnin čísel v první skupině je roven součtu druhých mocnin čísel ve skupině druhé. Řešení 3. podzimní série 1. úloha Monča potřebuje zatelefonovat Pepovi, avšak nemá u sebe svůj telefonní seznam PraSátek. Zná však předvolbu 723 a vzpomněla si, že Pepovo číslo obsahuje právě tři po sobě jdoucí nuly, přičemž žádná jiná nula se již v čísle nevyskytuje. Spočteš, z kolika možností bude Monča hádat? České telefonní číslo má cifer i s předvolbou. Trojici nul můžeme mít na čtyřech pozicích (723, 723, 723 a 723 ). Na pozice hvězdiček hledáme tři čísla nabývající hodnot 1 až (= cifer). Počet možností nahrazení trojice hvězdiček je tedy variace s opakováním V(3,)= 3.Tostačívynásobitnašimičtyřmimožnostmiumístěnínulamámevýsledek: 4 3 =216. Monča bude hádat z 216 možných čísel. Obecněpro nciferzapředvolboumáme n 2možnostíumístěnítrojicenulan 3zbylých pozic(hvězdiček).výsledeklzezapsat(n 2) n úloha Vejtek má dvě ponožky, žlutou a zelenou. Považuje však za společensky nepřijatelné, aby každý denmělnasoběstejněoblečenéponožky.urči,nakolikdnímutytodvěponožkyvystačí,pokud jemůžedávatnasebevrůznémpořadíčinarubynebonositjenněkteroučižádnou. Řešení si rozdělíme do několika částí, podle počtu a způsobu použití ponožek: (a) Vejteksioblečepouzejednuponožku.Navýběrmázedvounohou,dvoubarevadvou obráceníponožky.mátedy2 3 =8možností. (b) Použijeobě,nakaždounohujednu.Nejprvezvolínakterounohudájakouponožku.To může provést dvěma způsoby. Dále pro každou ponožku vybere, zda bude převrácená, či nikoliv. Tojestdohromady2 2 2 =8způsobů. 4 Kombinačníčíslo `n k sedefinujejako n! k!(n k)! audávápočetmožností,jakznrozlišitelných předmětů vybrat k bez ohledu na pořadí výběru.

3 (c) Oblečesioběponožkynajednunohu.Zdesikroměnohy,barvyaobrácenímůžezvoliti pořadí,tj.kteráponožkabudesvrchníakteráspodní.dostávámenavíc2 4 =16možností. Sečteme-li jednotlivé možnosti a uvědomíme-li si, že Vejtek může jít i bos, dospějeme k výsledku úloha Olin dal Ťamovi následující posloupnost teček a čárek délky 4n.... {z } 4n Ťam okamžitě rozpoznal morseovku bez oddělovačů a jal se do ní oddělovače dopnit. Chtěl ale, abymuvznikalajenpísmenkazeslovamatematika 5.KolikazpůsobymůžeŤamprovésttoto dělení? Nejprvesivšimneme,žepísmenoK( )sevposloupnostinemůženikdevyskytnout, protože jsou vždy dvě tečky vedle sebe(žádná není osamocená). Zbývají nám tedy písmena M ( ),I( ),T( ),E( )aa( ).Dalšípozorováníje,žekdykolivsevzadanéposloupnosti vyskytne tečka bezprostředně za čárkou, musí být odděleny oddělovačem, neboť v žádném ze zbývajících písmen se znaky takto po sobě nevyskytují. V posloupnosti se tedy oddělovače určitě budou nacházet na těchto místech: / / /... / /. Posloupnostsenámtaktorozpadlana n+1úseků,znichžprvníaposledníjsoutvořenydvěma stejnýmiznakyaprostředních n 1jevetvaru.Protožejsoutytoúsekyodděleny oddělovači, můžeme je dále dělit samostatně, nezávisle na sobě. První a poslední úsek můžeme zřejmě rozdělit dvěma způsoby buď oddělovač mezi znaky umístíme( / ), nebo ne( ). Prostřední úseky lze rozdělit pěti způsoby: /, / /, / /, / / /, / /. Protožejeprostředníchúseků n 1,lzejedohromadyrozdělitoddělovači5 n 1 způsoby(prokaždý úsek se možnosti vynásobí). Nakonec ještě každý z okrajových úseků dokážeme rozdělit dvěma způsoby.celkovýpočetzpůsobůrozděleníposloupnostioddělovačijetedy2 5 n 1 2=4 5 n úloha ŠnEksechcedostatzjednohorohukrychledoprotějšího,avšakplazitsechcepouzepohranách 6 a do večera stihne urazit nejvýše vzdálenost pěti hran. Pomoz šnekovi zjistit, kolik takových cest má. První řešení: Umístěmekrychlidosouřadnicovéhosystémutak,žešnEkzačínávevrcholu[,,],máse dostat do vrcholu[1, 1, 1] a hrany krychle jsou rovnoběžné se souřadnicovými osami. Pokaždé, když šnek přeleze jednu hranu, změní právě jednu souřadnici z na 1 nebo naopak. Nejkratší 5 Slovomatematikasevmorseovcezapíšejako / / / / / / / / /. 6 Otáčetseaměnitsměrchcejenvevrcholech,můžejítvíckrátpotésaméhraně.

4 cesta, kterou se dostane do protějšího vrcholu, má tedy délku 3, to když postupně změní všechny třisouřadnicezna1.počettakovýchcestje3!=6,protožezáležípouzenapořadí,vjakémto udělá. Snadno si rozmyslíš, že přeplazením libovolných čtyř hran se šnek do cíle dostat nemůže. Zbývá poslední případ, kdy přeleze pět hran. V tomto případě dvě souřadnice změní pouze jednou ajednutřikrát.tomůžeudělat3 5! 3! =6způsoby,neboťmátřimožnosti,jakvybratsouřadnici, kterouzměnítřikrát,a 5! 3! způsobů,jakuspořádat5prvků(5změnjednézesouřadnic),znichž 3jsoustejné 7 (třikrátzměnítusamou).celkemmátedyšneknavýběrz66různýchcest. Druhé řešení: Toto řešení je založeno na následující jednoduché myšlence: Víme-li, kolika způsoby se šnek přelezením n hran může dostat do každého z vrcholů, umíme u každého vrcholu jednoduše spočítat,kolikazpůsobysedonějlzedostatpřelezením n+1hran,atotak,žesečtemečíslauvšech jeho sousedů udávající, kolika způsoby se do toho kterého vrcholu dalo dostat přes n hran. Podívejme se na následující obrázek. Předpokládejme, že šnek leze z vrcholu označeného prázdným kolečkem do vrcholu označeného plným kolečkem. Na obrázku jsou u všech vrcholů vyznačeny počtyzpůsobů,jaksedonichlzedostatpřelezenímpořadějedné,dvou,tří,čtyřapětihran. Vypočítali jsme je postupně použitím výše popsané úvahy. Nyní se stačí podívat na čísla u cílovéhovrcholu.vidíme,žešnekmá6různýchcestnatřihranyvedoucíchdocíle,dalších6 využívajících pět hran a žádné jiné cesty po méně než pěti hranách neexistují. Opět jsme dospěli k celkovému počtu možností Dodatek: Předpokládejme(jako mnoho řešitelů této úlohy), že pokud se šnek dostane po třech hranách docílovéhovrcholu,cestapronějkončíaužnikamdálneleze.pakmusímeodprávěnalezeného počtu66odečístpočetcest,kterévedounatřihranydocíleapaksiještěodskočídojednohose třísousedníchvrcholůazpět.takovýchcestje6 3=18.Celkovýpočetmožností,jaksemůže šnekdostatdocíle,anižbyjímpředtímprošel,jetedypouze úloha Kolikjezlomků p q vzákladnímtvarutakových,že pq=2!a p q <1?8 Načísla paqklademezezadánítřipodmínky.zaprvémusíbýtnesoudělná,neboťzlomek p senemádátkrátit.zadruhémusíbýtsoučin p qrovenčíslu2!.třetípodmínku p < q q ponechejme zatím stranou a rozložme si 2! na prvočísla: 7 Prolepšípochopenívýrazu 5! 3! sipředstav,žezkoumášpočetmožností,jakdátzasebetři modré, jednu červenou a jednu zelenou kuličku. Kdyby měla každá kulička jinou barvu, tak je to 5!,aležemajítřistejnoubarvu,takmusímevýsledekvydělit3!. 8 Faktoriálzčísla n,zkráceně n!,ječíslo1 2 n.

5 2!= Znesoudělnosti paqplyne,žepokudnějakézprvočíseldělí p,paknemůžedělit q,atedy musídělit provnouvtémocnině,vekterédělíčíslo2!.totéžplatíinaopak.mezičitatele a jmenovatele tedy vlastně nerozdělujeme prvočísla, ale prvočísla ve svých úplných mocninách. Množinu těchto si označme M. M= {2 18,3 8,5 4,7 2,11,13,17,1}. Ukaždéhozosmiprvků Msivybíráme,zdahodámedočitatelenebodojmenovatele.Máme protocelkem2 8 =256možnostíjaksestavitzlomek,abyvyhovovalprvnímdvěmapodmínkám (pokud do jedné části zlomku zrovna nepřipadne nic, dáme tam jedničku). Teďjeještěpotřebazakomponovatdořešenípodmínku p < q.tojevšaksnadné,pokudsi uvědomíme,ževyhovuje-lizlomek a b prvnímdvěmapodmínkám,vyhovujejimizlomek b a.oněch 256 zlomků lze tedy uspořádat do dvojic navzájem vůči sobě převrácených zlomků, z nichž právě jedenbudevždyvětšínež1adruhýmenšínež1.naokrajsehodízmínit,žežádnýzlomekurčitě nebude roven jedné, jelikož čitatel a jmenovatel jsou vždy různá čísla. Hledanýpočetzlomkůjetedy256:2= úloha Mějme 25 kuliček, z nichž některé jsou bílé a některé černé, rozdělených do dvou krabiček. Pravděpodobnost, že vytáhneme z obou krabiček bílou kuličku, je,54. Spočti pravděpodobnost, že vytáhneme z obou krabiček černou kuličku. Označme c 1 > c 2 počtykuličekvevětšíamenšíkrabičce(rozumějsvětšímamenšímpočtem kuliček).zjevně c 1, c 2 >,abybylocotahat.dáleoznačme b 1, b 2 počtybílýchkuličekvevětší a menší krabičce. Pravděpodobnostvytáhnutíbílékuličkyzvětšíkrabičkyje b 1 c1,zmenšíkrabičky b 2 c2,aprotože jsou tyto pravděpodobnosti nezávislé, tak podle zadání platí cožpoúpravědává b 1 c 1 b2 c 2 =,54, 5b 1 b 2 =27c 1 c 2. Celkemjekuliček c 1 + c 2 =25azpředchozírovniceplyne5 c 1 c 2,mámetakjendvěmožnosti napočtykuličekvkrabičkách:(1): c 1 =2ac 2 =5nebo(2): c 1 =15ac 2 =1. (1) Jelikož27 b 1 b 2, b 2 c 2 a b 2 >,takjejedinoumožnostípromenšíkrabičku b 2 =3. Dopočtemzjistíme b 1 =18apravděpodobnostvytáhnutíčernýchkuličekzoboukrabičekjepak c 1 b 1 c2 b = 5 3 =,4. c 1 c (2) Protože b 1 b 2 = 27 5 c 1c 2 = = 81 a b 1, b 2 < 25, tak nutně b 1 = b 2 =. Pravděpodobnost vytáhnutí černých kuliček z obou krabiček je c 1 b 1 c2 b 2 15 = 1 =,4. c 1 c

6 V obou možných případech vyšla hledaná pravděpodobnost,4, což je odpověď na naši úlohu. 7. úloha Alčasidočtvercovésítě n nzapisuječíslatak,žečíslovkaždémpolíčkuodpovídápočtu obdélníkůvsíti,kteréhoobsahují.napříkladpro n=3: n+2 2 Dokaž,žesoučetvšechčíselvečtvercijeroven. 3 První řešení: Podívejmese,jakvtabulce n nvypadáčíslonapozici 1 [i, j],hledámetedyvšechnyobdélníky, ve kterých se tato pozice nachází. j 1 n j i 1 i j? n i Každý obdélník je jednoznačně zadán polohou svého levého horního a pravého spodního vrcholu. Pokud chceme, aby čtvereček[i, j] ležel uvnitř, máme pro výběr polohy levého horního rohucelkem i jmožností,neboťtenmusíležetněkdevhornímlevémobdélníku i j.obdobně můžemepravýspodnírohobdélníka,vekterémležíčtvereček[i, j],vybratcelkem(n i+1)(n j +1) možnostmi. Takto jsme popsali všechny obdélníky obsahující čtvereček[i, j], tudíž v něm budečíslo ij(n i+1)(n j+1). Hledáme-li součet všech čísel v tabulce n n, hledáme vlastně součet n n ij(n i+1)(n j+1)= i(n i+1) j(n j+1)= j=1 j=1 2 i(n i+1)!. Kombinačníčíslo `n k sedefinujejako n! k!(n k)! audávápočetmožností,jakznrozlišitelných předmětů vybrat k bez ohledu na pořadí výběru. 1 Pozicevlevonahořeje[1,1].

7 Nyní už stačí jen spočítat hledaný součet. Zde použijeme známé vztahy +2+ +n= n(n+1), 2 i 2 = n 2 = n(n+1)(2n+1). 6 Kdojenezná,taksesnimimůžeseznámitvnašíknihovněvpříspěvkusčitovanie(sčítánísum). Máme tedy i(n i+1)= (n+1)i i 2 =(n+1) i i 2 = = (n+1)n(n+1) n(n+1)(2n+1) = 2 6 n(n+1)(3n+3 2n 1) = = n(n+1)(n+2) = 6 6 n+2 =, 3 aprotonámcelkovýsoučetvychází `n+2 2,cožjsmechtělidokázat. 3 Druhé řešení trikové: Přeformulujeme-li zadání, hledáme vlastně počet dvojic[obdélník, políčko] takových, že obdélník obsahuje políčko. K řešení nám vystačí pouhá kombinatorická interpretace, počítejme počet těchto dvojic[obdélník, políčko]. Vezměmesidanoutabulku n napřidejmedvařádkyadvasloupce,vždyjedennazačátek ajedennakonectak,ženámvzniknetabulka(n+2) (n+2),kteráobsahujepůvodnítabulku uprostřed. Zvolme nyní tři řádky a tři sloupce, jako na obrázku. Každý takový výběr nám jednoznačně určuje dvojici[obdélník, políčko] v původním čtverci n n.prvníaposlednívybranýřádekspolečněsprvnímaposlednímsloupcemvytvoříhranice obdélníku, průnik druhého vybraného řádku a druhého vybraného sloupce označují hledané

8 políčko. Projdeme-li tedy všechny trojice řádků a sloupců, dostaneme libovolnou dvojici[obdélník,políčko].třiřádkyatřisloupcemůžemezvolitcelkem `n+2 2způsoby 3 11,cožjeisoučet vpůvodnítabulce n n. 8. úloha Mějme všechna devíticiferná čísla taková, že každá z číslic se v jejich desítkovém zápisu vyskytuje právě jednou a nula se zde nevyskytuje. Rozhodni, zda můžeme tato čísla rozdělit na dvě skupiny tak, že součet druhých mocnin čísel v první skupině je roven součtu druhých mocnin čísel ve skupině druhé. Rozdělení existuje, čísla přidělíme do skupin podle posledního trojčíslí. Symbol abc od teď budeznačittrojmístnéčíslosciframi a, b, cvtomtopořadí. Zkoušením pro trojciferná čísla s různými ciframi a, b, c bychom zjistili Toho hned využijeme v rovnosti abc 2 + bca 2 + cab 2 = acb 2 + bac 2 + cba 2, abc+bca+cab=acb+bac+cba. (k+ abc) 2 +(k+bca) 2 +(k+ cab) 2 =(k+ acb) 2 +(k+bac) 2 +(k+ cba) 2, která, jak by bylo vidno z roznásobení, platí pro libovolné celé číslo k. Každou skupinu čísel se shodným prvním šestičíslím umíme díky předchozí rovnosti rozdělit dodvouskupintak,žesebudesoučetjejichdruhýchmocninrovnat.číselješest,protožejsou zbylé tři cifry až na své pořadí jednoznačně určeny. šestičíslí abc 2 +šestičíslí bca 2 +šestičíslí cab 2 =šestičíslí acb 2 +šestičíslí bac 2 +šestičíslí cba 2. Všechna čísla jsme rozdělili, úloha je vyřešena. 11 Dvakrátvybírámetrojicez(n+2)-tic.

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Úlohy klauzurní části školního kola kategorie B

Úlohy klauzurní části školního kola kategorie B 65. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie B 1. Kolika způsoby je možno vyplnit čtvercovou tabulku 3 3 čísly,, 3, 3, 3, 4, 4, 4, 4 tak, aby součet čísel v každém čtverci

Více

1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti

1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti 1. podzimní série Téma: Triky Datumodeslání: ½½º Ò ¾¼½¼ ½º ÐÓ Ó Ýµ Miško vymyslel trik! Nejdříve požádá Tomáška, ať si vybere osmičku nebo devítku. Potom mu řekne, aby zvolené číslo vynásobil jakýmkoliv

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé

Více

1. podzimní série. Zlomky

1. podzimní série. Zlomky . podzimní série Téma: Datumodeslání: Zlomky º Ò ¾¼¼ ½º ÐÓ Ó Ýµ Třem malým PraSátkům, Myregovi, Vejtkovi a Šavlíkovi, se zjevil sáček plný bonbonů. Dohodli se,žesijerozdělí,avšichništěstímspokojeněusnuli.vnociseprvnívzbudilmyreg.když

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice 63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =

Více

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost. Úloha. V Americe se pro měření teploty používají místo Celsiových stupňů stupně Fahrenheitovy. PřepočetzCelsiovýchstupňůnaFahrenheitovylzeprovéstpodlevzorce f = 9 5 c+32(cjsoustupně Celsiovy, f Farenheitovy).

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1 1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8

Více

Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné

Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné Cifry 3. jarní série Termín odeslání: 10. dubna 2017 Pokud není řečeno jinak, pro zápis čísel používáme desítkovou soustavu. V celé sérii jsou proměnné k a n přirozená čísla. Úloha 1. Nechť S(k) značí

Více

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že Jak rozeznáváme nekonečné množiny. Nejprve něco o zobrazeních: Nášvýkladbudezaložennaintuitivnípředstavězobrazení f: A Bjakoněčeho,cokaždému prvku a Apřiřazujenějakýprvek f(a) B. Mějmezobrazení f: A B.Řekneme,že

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

Internetová matematická olympiáda listopadu 2008

Internetová matematická olympiáda listopadu 2008 Internetová matematická olympiáda - 5. listopadu 008 ŘEŠENÍ ÚLOH 1. Obrazec na Obrázku 1 je složen z 44 čtverců o straně 6 mm. Bodem A veďte jedinou přímku, která daný obrazec rozdělí na dva obrazce o

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých

II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých II. kolo kategorie Z5 Z5 II 1 Z čísel 959 362 a 192 075 vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých čísel odečteme číslo menší. Jaký nejmenší rozdíl můžeme dostat? Řešení. Z jednoho čísla

Více

Klauzurní část školního kola kategorie A se koná

Klauzurní část školního kola kategorie A se koná 56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

20 b. 45 b. 25 b. 20 b. Kolo J Klasické S. 9. Klasické R. 8. Klasické Č. 7. Klasické M. 5 b. 10 b. 5 b. 5 b. 3. Klasické

20 b. 45 b. 25 b. 20 b. Kolo J Klasické S. 9. Klasické R. 8. Klasické Č. 7. Klasické M. 5 b. 10 b. 5 b. 5 b. 3. Klasické body: Soutěž jednotlivců b. Nepravidelné b b 0 b 0 b b 0 b b. Klasické Č. Klasické R 0. Klasické S. Klasické. Klasické 0. Klasické. Klasické Brno,. a. září 0 www.sudokualogika.cz logických her a sudoku

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 64. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. Určete počet cest délky 14, které vedou po hranách sítě na obrázku z bodu do bodu. élka každé hrany je jedna.. Je dán rovnoběžník,

Více

I. kolo kategorie Z8

I. kolo kategorie Z8 68. ročník Matematické olympiády I. kolo kategorie Z8 Z8 I 1 Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 38. Kdyby totéž provedli za čtyři

Více

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3 1 of 6 20. 1. 2014 12:14 Matematická olympiáda - 49. ročník (1999-2000) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Jirka půjčil Mirkovi předevčírem přibližně 230 Kč, tj. 225

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 65. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Určete všechny trojice celých kladných čísel k, l a m, pro které platí 3l + 1 3kl + k + 3 = lm + 1 5lm + m + 5. 2. Je dána úsečka AB,

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

Pythagorova věta

Pythagorova věta .8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Teorie her(povídání ke čtvrté sérii)

Teorie her(povídání ke čtvrté sérii) Teorie her(povídání ke čtvrté sérii) Je velice obtížné definovat obecně, co je to hra. Navíc tento pojem intuitivně chápeme. Budeme se zabývat takovými hrami jako jsou šachy nebo pišqorky hrami dvou hráčů,

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 65. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Pro přirozená čísla k, l, m platí k + m + klm = 05 404. Určete všechny možné hodnoty součinu klm. Řešení. I když rovnice v zadání

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška osmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Kombinatorika: pravidla součtu a součinu 2 Kombinatorika:

Více

66. ročníku MO (kategorie A, B, C)

66. ročníku MO (kategorie A, B, C) Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené

Více

2. série. Prvočísla. Téma: Datumodeslání: Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo.

2. série. Prvočísla. Téma: Datumodeslání: Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo. 2. série Téma: Datumodeslání: Prvočísla º Ð ØÓÔ Ù ¾¼¼ ½º ÐÓ Ó Ýµ Dokažte,žekaždéprvočíslovětšínež5jdepsátvetvaru6k+1nebo6k 1,kde kjenějaké přirozené číslo. ¾º ÐÓ Ó Ýµ Mějme libovolné přirozené číslo n,

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 65. ročník matematické olympiády Úlohy krajského kola kategorie. Najděte nejmenší možnou hodnotu výrazu x xy + y, ve kterém x a y jsou libovolná celá nezáporná čísla.. Určete, kolika způsoby lze všechny

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Korespondenční Seminář z Programování

Korespondenční Seminář z Programování Korespondenční Seminář z Programování SOUTĚŽ KASIOPEA 27. ročník Zadání úloh Březen 2015 V tomto textu naleznete zadání úloh online soutěže Kasiopea 2015, která probíhá o víkendu 22. 23. března. Veškeré

Více

( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207

( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207 78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat

Více

Algoritmus pro generování normálních magických čtverců

Algoritmus pro generování normálních magických čtverců 1.1 Úvod Algoritmus pro generování normálních magických čtverců Naprogramoval jsem v Matlabu funkci, která dokáže vypočítat magický čtverec libovolného přípustného rozměru. Za pomocí tří algoritmů, které

Více

2. jarní série. Rovnice a soustavy

2. jarní série. Rovnice a soustavy Téma: Datumodeslání:. jarní série Rovnice a soustavy ½ º ÞÒ ¾¼½¼ ½º ÐÓ Ó Ýµ Kája našla na kraji svého sešitu napsanou tuto soustavu pěti rovnic: ab=, bc=, cd=, de=4, ea=6. Pomoztejíjivyřešit,tzn.najdětevšechnypěticečísel

Více

I. kolo kategorie Z6

I. kolo kategorie Z6 68. ročník atematické olympiády I. kolo kategorie Z6 Z6 I Ivan a irka se dělili o hrušky na míse. Ivan si vždy bere dvě hrušky a irka polovinu toho, co na míse zbývá. Takto postupně odebírali Ivan, irka,

Více

2. Elementární kombinatorika

2. Elementární kombinatorika 2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

62.ročník Matematické olympiády. I.kolo kategorie Z6

62.ročník Matematické olympiády. I.kolo kategorie Z6 62.ročník Matematické olympiády I.kolo kategorie Z6 Z6 I 1 Libor si myslí trojmístné přirozené číslo, které má všechny své číslice liché. Pokud kněmupřičte421,dostanetrojmístnéčíslo,kterénemáanijednusvoučíslicilichou.najděte

Více

I. kolo kategorie Z8

I. kolo kategorie Z8 Z8 I 67. ročník atematické olympiády I. kolo kategorie Z8 Vyjádřete číslo milion pomocí čísel obsahujících pouze číslice a algebraických operací plus, minus, krát, děleno, mocnina a odmocnina. Určete alespoň

Více

GP PROSTĚJOV 2012 LOGICKÉ ÚLOHY

GP PROSTĚJOV 2012 LOGICKÉ ÚLOHY GP PROSTĚJOV 01 LOGICKÉ ÚLOHY Řešitel: Body: 1. ČOKOLÁD ORION 8 bodů. SKLÁDÁNÍ PENTOMIN 8 bodů. NTIMGICKÝ ČTVEREC bodů. NŠE HORY 18 bodů 5. DĚLENÍ 8 bodů. SOUČTY ČÍSLIC 15 bodů 7. RODIN 0 bodů 8. ČESKÉ

Více

Matematický KLOKAN 2007 kategorie Junior (A) 8 (B) 9 (C) 11 (D) 13 (E) 15 AEF? (A) 16 (B) 24 (C) 32 (D) 36 (E) 48

Matematický KLOKAN 2007 kategorie Junior (A) 8 (B) 9 (C) 11 (D) 13 (E) 15 AEF? (A) 16 (B) 24 (C) 32 (D) 36 (E) 48 Matematický KLOKAN 007 kategorie Junior Úlohy za 3 body 1. Lucka, Radek a David mají dohromady 30 míčů. Jestliže Radek dá 5 míčů Davidovi, David dá 4 míče Lucce a Lucka dá míče Radkovi, budou mít oba chlapci

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

BCH kódy. Alena Gollová, TIK BCH kódy 1/27

BCH kódy. Alena Gollová, TIK BCH kódy 1/27 7. přednáška z algebraického kódování Alena Gollová, TIK 1/27 Obsah 1 Binární Alena Gollová, TIK 2/27 Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód

Více

Vzorové řešení 3. série

Vzorové řešení 3. série Vzorové řešení 3. série Příklad 3.1. V Lenošíně se rozhodli, že začnou zkrášlovat víceciferná přirozená čísla. Dělali to tak, že vzali libovolné číslo a udělali jeho ciferný součin. Z výsledku udělali

Více

Přijímací zkouška z matematiky 2017

Přijímací zkouška z matematiky 2017 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2017 Kód uchazeče ID:.................. Varianta: 14 Příklad 1. (3b) Mějme dvě čísla zapsaná v pětkové soustavě: 4112 5 a 2443

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší,

56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší, 6 ročník Matematické olympiády Komentáře k domácímu kolu kategorie Z8 1 Z číslic 1,2,,9 jsme vytvořili tři smíšená čísla a b c Potom jsme tato tři čísla správně sečetli Jaký nejmenší součet jsme mohli

Více

Úloha 2. Obdélník ABCDprotínákružnicivbodech E, F, G, H jakonaobrázku.jestližeplatí AE =3, DH =4a GH =5,určete EF. G C

Úloha 2. Obdélník ABCDprotínákružnicivbodech E, F, G, H jakonaobrázku.jestližeplatí AE =3, DH =4a GH =5,určete EF. G C Úloha 1. Čitatel i jmenovatel Kennyho zlomku jsou přirozená čísla se součtem 2011. Hodnota zlomku jepřitommenšínež 1 3.Jakánejvětšímůžetatohodnotabýt? Úloha 2. Obdélník Dprotínákružnicivbodech E, F, G,

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Brlohovská úloha za 2 body

Brlohovská úloha za 2 body Brlohovská úloha za 2 body Určete, kolika nejméně barvami můžeme obarvit naše logo tak, aby žádné dvě sousední oblasti neměly stejnou barvu. Za sousední se považují oblasti, které mají společný více než

Více

3. jarní série. Stereometrie. Háňasiběhempsaníbakalářkyvyrobilačtyřstěn,jehoždélkyhranjsouceláčísla1,1, x, x,3, 3.Čemuvšemusemůžerovnat x?

3. jarní série. Stereometrie. Háňasiběhempsaníbakalářkyvyrobilačtyřstěn,jehoždélkyhranjsouceláčísla1,1, x, x,3, 3.Čemuvšemusemůžerovnat x? Téma: atumodeslání:. jarní série Stereometrie ½¾º Ù Ò ¾¼½¼ ½º ÐÓ Ó Ýµ Háňasiběhempsaníbakalářkyvyrobilačtyřstěn,jehoždélkyhranjsouceláčísla1,1, x, x,,.čemuvšemusemůžerovnat x? ¾º ÐÓ Ó Ýµ Franta má doma

Více

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

4. Kombinatorika a matice

4. Kombinatorika a matice 4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

tabulku. Takových políček nám vyjde 6, proto součet všech čísel bude 6.1 = 6

tabulku. Takových políček nám vyjde 6, proto součet všech čísel bude 6.1 = 6 1. Mějme tabulku čísel rozměrů 4 4. Pro každé políčko platí, že součet čísel na sousedních políčkách je roven 1 (dvě políčka sousedí právě tehdy, když mají společnou hranu). Jaký je součet všech čísel

Více

3. série. Nerovnosti. Téma: Termínodeslání:

3. série. Nerovnosti. Téma: Termínodeslání: Téma: Termínodeslání: 3. série Nerovnosti º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Óݵ Nechť a, b jsou délky odvěsen pravoúhlého trojúhelníka, c buď délka jeho přepony. Dokažte, že prokaždépřirozenéčíslo nvětšíneždvaplatí c

Více

čtyřicet ponožek od jedné barvy a po třech ponožkách od všech ostatních, tedy celkem = 58

čtyřicet ponožek od jedné barvy a po třech ponožkách od všech ostatních, tedy celkem = 58 1. Vlado má dvoje digitální hodinky (oboje ukazují čas od 0 do 24h). Jedny se každou hodinu o tři minuty předbíhají, druhé se každou hodinu o dvě minuty zpožd ují. Stejný čas ukazovaly dnes ve 12.00. Jaký

Více

Mistrovství České republiky v logických úlohách

Mistrovství České republiky v logických úlohách Mistrovství České republiky v logických úlohách Blok 1 - Logický mixer 10:00-11:40 Řešitel 1 Praha 013 Mrakodrapy 3 Heywake 4 Rybáři 5 Dvojblok Pentomina 7 Nádraží 8 Slalom 9 Plot 10 Kriskros 11 Cesta

Více

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle Kombinatorika Michael Krbek. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle konečnými) strukturami a patří kvůli tomu mezi nejstarší oblasti matematiky. Je těžké podat přesný výčet

Více

1 Zadání Zadání- Náboj 2010 Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a.

1 Zadání Zadání- Náboj 2010 Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a. Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a. Úloha2.Pomocíprávětříosmičekalibovolnýchzesymbolů+,,,/, vytvořtečíslo3.jedensymbol můžete použít i víckrát. Úloha3.Vejtekmělknihuzteoriemnožin,jejížlistybylyčíslovanépostupně0,1,2,3,...

Více

101 Střední škola, město Zadání - Náboj 2008 Úloha 1. Kolik různých trojúhelníků s celočíselnými délkami stran má obvod 7? Které to jsou?

101 Střední škola, město Zadání - Náboj 2008 Úloha 1. Kolik různých trojúhelníků s celočíselnými délkami stran má obvod 7? Které to jsou? Úloha 1. Kolik různých trojúhelníků s celočíselnými délkami stran má obvod 7? Které to jsou? Úloha 2. V růžovém království se platí mincemi v hodnotě 3 a 7. Určete největší částku, která se nedá pomocí

Více

Kombinatorický předpis

Kombinatorický předpis Gravitace : Kombinatorický předpis Petr Neudek 1 Kombinatorický předpis Kombinatorický předpis je rozšířením Teorie pravděpodobnosti kapitola Kombinatorický strom. Její praktický význam je zřejmý právě

Více

Booklet soutěže družstev

Booklet soutěže družstev tým: body: 11. mistrovství ČR v řešení sudoku Booklet soutěže družstev HALAS Hráčská asociace logických her a sudoku www.sudokualogika.cz Soutěž družstev Brno, 17. a 18. září 2016 Antidiagonální Každá

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

3. Provaz o délce 10 m je náhodně roztřižen na tři kusy. Jaká je pravděpodnost, že alespoň jeden z kusů

3. Provaz o délce 10 m je náhodně roztřižen na tři kusy. Jaká je pravděpodnost, že alespoň jeden z kusů 1. Mějme tabulku o 3 řádcích a 52 sloupcích. Dále máme dílky domina o rozměrech 2 1. Kolika způsoby lze tato tabulka vyplnit dílky domina tak, aby právě dva dílky domina byly vertikálně? Řešení 1 702 2.

Více

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114 STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez

Více

Matematický KLOKAN 2006 kategorie Junior

Matematický KLOKAN 2006 kategorie Junior Matematický KLOKAN 006 kategorie Junior Vážení přátelé, v následujících 7 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

x 0; x = x (s kladným číslem nic nedělá)

x 0; x = x (s kladným číslem nic nedělá) .. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

Datum odevzdání 12. prosince Vypočtěte velikost strany čtverce ABCD s vrcholem A = [0, 0], jestliže

Datum odevzdání 12. prosince Vypočtěte velikost strany čtverce ABCD s vrcholem A = [0, 0], jestliže Příklady k řešení (. kolo) Datum odevzdání. prosince 00 PŘÍKLAD. Vypočtěte velikost strany čtverce ABCD s vrcholem A = [0, 0], jestliže úhlopříčka BD leží na přímce p :x +y = 0. PŘÍKLAD. Jsou dány body

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více