ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
|
|
- Karel Vlček
- před 7 lety
- Počet zobrazení:
Transkript
1 ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé, že pro každý bod X p existuje právě jedno reálné číslo t nenulové tak, že X A t u. Na obrázku vpravo jsou jako příklad vyobrazeny dva konkrétní body X a X, které jsou ve vyjádření X A t u příslušné číslům t =, t =. Pro každé t R existuje právě jeden X p a naopak pro každý bod X p existuje právě jedno reálné číslo t R tak, že X A t u. Přímka p je tedy jednoznačně určena bodem A a vektorem u. Nechť A= [x ; y ], u = (u ; u ), t R. Rovnici X A t u můžeme rozepsat po souřadnicích takto: x = x + tu y = y + tu Tyto rovnice nazýváme parametrické vyjádření přímky v rovině (PVP). Každé hodnotě parametru t odpovídá právě jeden bod přímky p a obráceně každému bodu přímky odpovídá právě jedna hodnota parametru t. Vektor u nazýváme směrový vektor přímky. Stejně tak může být směrový vektor přímky p i libovolný nenulový násobek vektoru u. Každá přímka je tedy jednoznačně určena svým libovolným bodem a libovolným směrovým vektorem. Př.. Napište parametrické vyjádření přímky procházející body A = [5; ], B = [9; 4]. Řešení: Přímka je určena svým libovolným bodem a směrovým vektorem. Bod už máme (dokonce dva), vektor určíme jako rozdíl bodů A a B v libovolném pořadí. u = B A u = 9 5 = 4 u = 4 = u = (4; ) Můžeme tedy psát: x = 5 + 4t y = + t Pozn. Pro parametrické vyjádření přímky jsme mohli použít i bod B a libovolný nenulový násobek vektoru u. Existuje nekonečně mnoho parametrických rovnic této přímky v rovině! Například: x = 9 + 4t nebo x = 9 + t (se směrovým vektorem,5u) atd. y = 4 + t y = 4 + t
2 Otázka: Co se stane, dosadíme-li do parametrických rovnic přímky za parametr t nějaké reálné číslo? Odpověď: Dostaneme jeden konkrétní bod ležící na přímce p. Např. zvolíme t = 4 x = y = 4 Pro parametr t = 4 jsme dostali bod X přímky p o souřadnicích [; ]. Obecná rovnice přímky v rovině Každá přímka v rovině xy se dá vyjádřit rovnicí ax + by + c =, kde alespoň jedno z čísel a,b je nenulové. Tuto rovnici nazýváme obecná rovnice přímky v rovině. Vektor o souřadnicích (a; b) zveme normálový vektor přímky a značíme n. Normálový vektor přímky je kolmý ke směrovému vektoru přímky u, platí tedy: n u (viz AG ). Př.. Napište obecnou rovnici přímky, která je vyjádřena parametricky: x = 3 + t y = 5t Řešení: Abychom mohli psát obecnou rovnici přímky, potřebujeme se zbavit parametru t, ten jak vidno v obecné rovnici přímky nefiguruje. První rovnici tedy násobíme číslem 5 a poté obě rovnice sečteme. 5x = 5 + 5t y = 5t 5x + y = 7 5x + y 7 = Obecná rovnice přímky má tvar 5x + y 7 =. Pozn. Mohli jsme postupovat i jinak. Z parametrických rovnic přímky plyne, že přímka prochází bodem A = [3; ] a její směrový vektor u má souřadnice (; 5). Normálový vektor n přímky je kolmý k vektoru u, musí tedy platit n u. Skalární součin rozepíšeme: a u b u Dosadíme hodnoty vektoru u. a 5b Zvolíme např. b = a dopočítáme souřadnici a. a = 5 Dostali jsme normálový vektor n = (5; ). Obecná rovnice tedy vypadá takto: 5x + y + c =. Zbývá dopočítat koeficient c. Ten vypočítáme po dosazení souřadnic bodu A do rovnice, neboť bod A leží na přímce a jeho souřadnice tak musí vyhovovat její rovnici. 5 3 c c = 7 Obecná rovnice přímky má tvar 5x + y 7 =.
3 Př. 3. Teď otočíme příklad. Máme obecnou rovnici přímky 5x + y 7 = a chceme najít její parametrické vyjádření. Řešení: Normálový vektor n = (5; ) směrový vektor přímky u má souřadnice například ( ; 5), neboť jistě platí: 5 5. Teď potřebujeme zjistit souřadnice libovolného bodu ležícího na přímce. To provedeme jednoduše. Víme-li, že přímka není rovnoběžná s žádnou osou souřadnicového systému xy (směrové vektory souřadnicových os x a y jsou po řadě (; ) a (, )), můžeme za některou z proměnných (např. x) dosadit konkrétní číslo a dopočítat y. Volíme tedy: x = 5 y 7 y = 7 5 = Dostali jsme bod X = [; ]. Parametrické vyjádření přímky tedy vypadá takto: x = t y = + 5t Nepanikařte, že je toto PVP jiné jak u příkladu. Každá přímka má přeci nekonečně mnoho parametrických vyjádření! Pro zajímavost si ukážeme, které hodnotě parametru t bude v tomto parametrickém vyjádření příslušet bod A = [3; ] (který v PVP u příkladu přísluší pochopitelně parametru t = ). 3 = t t = = + 5t t = Bod A přísluší v tomto parametrickém vyjádření přímky hodnotě t =. Směrnicový tvar rovnice přímky Máme-li přímku danou rovnicí ax + by + c =, tak pokud b (tj. přímka není rovnoběžná se souřadnicovou osou y), můžeme její rovnici psát ve směrnicovém tvaru: y a b x c b který se obvykle zapisuje ve tvaru y = kx + q, kde k a, b c q. b Číslo q udává posunutí přímky po ose y. Jaký význam má však konstanta k? Zvolíme-li na přímce bod A = [x ; y ], dostaneme pro x z rovnice y = kx + q : k y q x Je-li φ úhel, který svírá přímka s kladnou poloosou x, je k = tg φ. Číslo k = tg φ se nazývá směrnice přímky, úhel φ nazýváme směrový úhel přímky. Pro ilustraci přikládám obrázek.
4 y q tg y x q x Př. 4. Je dána přímka p: x = + 4t ; y = 5t. Určete její směrový úhel a průsečíky se souřadnicovými osami. Řešení: Přímka je zadána parametricky. Najdeme její obecnou rovnici (OR), tu vyjádříme ve směrnicovém tvaru a pak určíme pomocí směrnice přímky k směrový úhel přímky φ. Průsečíky přímky se souřadnicovými vypočítáme nakonec. směrový úhel přímky = (4; 5) normálový vektor = (5; 4) známý bod přímky = [ ; ]. OR: 5x 4y + c = Dosadíme bod [ ; ]. 5 4 c c = OR: 5x 4y + = Z této rovnice vyjádříme neznámou y. 4y = 5x y x 4 5 k tg 4 φ = cca 5 Směrový úhel přímky je přibližně 5. Pro průsečík přímky s osou x platí: P x = [?; ]. Abychom určili první souřadnici tohoto průsečíku, dosadíme do obecné rovnice přímky y =. 5x 4y + = 5x + = x = Vyšel nám pochopitelně bod [ ; ]. To bylo zřejmé už od samého začátku. Pro průsečík přímky s osou y platí: P y = [;?]. Postupujeme analogicky jako u průsečíku P x, jen bude asi výhodnější použít směrnicový tvar rovnice přímky.
5 5 5 y x Za x volíme. 4 5 y Vyšel nám bod 5 ;. Pro ilustraci přikládám opět jeden skromný obrázek. Máme přímky: p: a x + b y + c = q: a x + b y + c = Vzájemná poloha dvou přímek v rovině Jejich normálové vektory jsou po řadě n = (a ; b ), n = (a ; b ). Jsou-li násobky, tj. existuje-li nenulové reálné číslo k tak, že n = kn, pak jsou přímky p, q rovnoběžné. Mají li navíc přímky p, q aspoň jeden společný bod, pak jsou logicky totožné (tzn. c = kc ). Nejsou-li vektory n = (a ; b ), n = (a ; b ) násobky, přímky jsou různoběžné a protínají se v jednom bodě, který zveme jejich průsečíkem. Př. 5. Určete vzájemnou polohu přímek p, q. p: x 3y + 5 = q: x + y = Řešení: n p = (; 3) n q = (; )
6 Je vidět, že žádný z těchto dvou vektorů není násobkem toho druhého. To znamená, že přímky p, q jsou různoběžné a existuje jejich průsečík P. Ten najdeme, když vyřešíme soustavu rovnic přímek p, q: x 3y = 5 x + y = x 3y = 5 3x + 3y = 6 5x = x = 5 Druhou souřadnici dopočítáme např. z druhé rovnice. x + y = 5 + y = y = 5 9 Přímky p a q jsou různoběžné, jejich průsečík je bod o souřadnicích 9 ; 5 5. Př. 6. Určete vzájemnou polohu přímek a, b. a: x = + 3t b: x = + 6s y = + 4t y = 4 + 8s Řešení: Nejdříve vypíšeme směrové vektory obou přímek. Budou-li násobky, přímky jsou rovnoběžné. s a = (3; 4) s b = (6; 8) s b = s a, tedy přímky jsou rovnoběžné. Jsou totožné nebo různé? Přímka a obsahuje bod A = [; ]. Jsou-li přímky totožné, musí bod A ležet i na přímce b. Jeho souřadnice tedy dosadíme do parametrických rovnic přímky b. = + 6s s = 6 = 4 + 8s s = 4 Parametr s vyšel pokaždé různý, bod A tedy neleží na přímce b (každý bod přímky přísluší právě jednomu parametru a naopak) a přímky jsou rovnoběžné různé. Odchylka dvou přímek Máme-li dvě různoběžné přímky, můžeme spočítat jejich odchylku, za kterou budeme považovat vždy ten úhel sevřený oběma přímkami, který je z intervalu ; 9. Odchylka φ dvou přímek s normálovými, resp. směrovými vektory u, v (opravdu je to jedno, ale nekombinovat normálové a směrové!!) se vypočítá podle vzorce: uv uv cos u v
7 Pozn. Vzorec se od podobného vzorce, jenž řeší úhel dvou vektorů, liší pouze absolutní hodnotou ve svém čitateli, jelikož úhel dvou vektorů může být větší než 9, ale úhel dvou přímek nikoli. Bude-li skalární součin vektorů u, v (čitatel zlomku) roven (tedy cos φ = ), pak jsou přímky kolmé. Vzdálenost bodu od přímky (dvou rovnoběžných přímek) Máme-li dánu přímku p: ax + by + c = a bod M = [x ; y ], který na ní neleží, pak vzdálenost bodu M od přímky p je rovna vzdálenosti bodu M od paty kolmice vedené z bodu M k přímce p. Pěkné, že? Vzdálenost bodu M = [x ; y ] od přímky p: ax + by + c = se vypočítá podle vzorce: v( M ; p) ax by a b c Úlohu na výpočet vzdálenosti dvou rovnoběžných přímek převedeme na úlohu pro výpočet vzdálenosti jedné z přímek od libovolného bodu druhé přímky (viz obrázek). Př. 7. Určete vzdálenost dvou rovnoběžných přímek a, b. a: 3x 4y + 8 = b: 6x + 8y 6 = Řešení: Nejdříve se přesvědčíme, že jsou přímky a, b skutečně rovnoběžné. Co když si z nás někdo střílí a chce po vás určit vzdálenost dvou různoběžek? Ta pochopitelně neexistuje. Směrové, resp. normálové vektory přímek a, b musí být násobky. n a = (3; 4) n b = ( 6; 8) n b = n a Tedy přímky a, b jsou skutečně rovnoběžné a lze určit jejich vzdálenost. K tomu budeme potřebovat libovolný bod přímky b, označme jej třeba M. Má-li bod M = [x ; y ] ležet na přímce b, musí jeho souřadnice vyhovovat rovnici přímky b. 6x + 8y 6 = Za x volíme např y 6 = 8y = y =,5 Určili jsme bod M b ; M = [;,5]. Nyní přikročíme k výpočtu vzdálenosti bodu M (a tedy celé přímky b) od přímky a.
8 ax by c 3 4,5 8 v ( M ; a) a b 3 4 Vzdálenost přímek a, b je rovna. 5 5 Pozn. Kdyby vyšla vzdálenost rovna, znamenalo by to a = b. Př. 8. Určete odchylku přímek a, b. a: x y + 5 = b: x = 5 + 4t ; y = t Řešení: K určení odchylky dvou přímek potřebujeme znát jejich normálové nebo směrové vektory. n a = (; ) s a = (; ) s b = (4; ) Odchylku budeme tedy počítat pomocí směrových vektorů obou přímek podle známého vzorce: uv uv cos, kde u a v jsou směrové vektory přímek a, b. u v Dosadíme jejich souřadnice a dostáváme: cos 4 4 Jestliže cos φ =, pak φ = 9 a přímky a, b jsou navzájem kolmé. Na závěr si je ještě nakreslíme. Použiju k tomu můj oblíbený MatMat.exe, takže je třeba nejdřív obě rovnice převést do směrnicového tvaru (čili vyjádřit je jako předpis lineární funkce). a: x y + 5 = y = x + 5 b: x = 5 + 4t x = 5 + 4t x + y 7 = y = t y = 4t y x 7
9 Př. 9. Je dán obdélník ABCD, AB = 5 cm, AD = 3 cm. Dále je dán bod X AD tak, že DX : AX = :. Vypočítejte odchylku přímek BX a AC. Řešení: Jeden by řekl, že je to typická úloha z planimetrie, nicméně výpočet užitím metod AG bude mnohem lepší volbou. Pro tyto potřeby je však potřeba umístit obdélník ABCD do souřadnicového systému. Například takto: V tomto souřadnicovém systému platí: X = [; ], A = [ ; ], B = [5; ], C = [5; ]. Směrový vektor přímky AC = C A = (5; 3), směrový vektor přímky XB = B X = (5; ). Odchylku přímek AC a BX vypočítáme podle vzorce: uv uv cos u v cos Odchylka přímek AC a BX 546.
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
VíceParametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
VíceLingebraické kapitolky - Analytická geometrie
Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V
VíceVZÁJEMNÁ POLOHA DVOU PŘÍMEK
VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK p: a x b y c 0 q: a x b y c 0 ROVNOBĚŽNÉ PŘÍMKY (RŮZNÉ) nemají žádný společný bod, můžeme určit jejich vzdálenost, jejich odchylka je 0. Normálové
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
VíceAnalytická geometrie kvadratických útvarů v rovině
Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme
VíceM - Příprava na 1. čtvrtletku pro třídu 4ODK
M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ07/500/34080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Více1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
VíceVZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
VíceM - Příprava na 12. zápočtový test
M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Více1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
VíceAnalytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
VícePŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
Více3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
VíceAnalytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceRovnice přímky vypsané příklady. Parametrické vyjádření přímky
Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice
VíceMatematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
VícePříklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
VíceRovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
VíceAnalytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37)
Analytická geometrie přímka vzájemná poloha přímek rovina vzájemná poloha rovin Název: XI 3 21:42 (1 z 37) Název: XI 3 21:42 (2 z 37) Rovnice přímky a) parametrická A B A B C A X Název: XI 3 21:42 (3 z
VíceMatematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
VíceMatematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Více6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
VíceOdvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
Více3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
Více11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Více8. Parametrické vyjádření a. Repetitorium z matematiky
8. Parametrické vyjádření a obecná rovnice přímky a roviny Repetitorium z matematiky Podzim 2012 Ivana Medková Osnova: 1 Geometrie v rovině 1. 1 Parametrické vyjádření přímky 1. 2 Obecná rovnice přímky
VíceLineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
VíceX = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
VíceMichal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Více19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
VíceM - Analytická geometrie pro třídu 4ODK
M - Analytická geometrie pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument
Více7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
VíceRovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
Více11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
VíceMichal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Vícex 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
VíceANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceLineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Více2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Víceobecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
VíceNejprve si uděláme malé opakování z kurzu Množiny obecně.
@021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceVzdálenosti. Copyright c 2006 Helena Říhová
Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2
Více1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
VíceANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VíceFunkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceKolmost rovin a přímek
Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Mgr. Zora Hauptová ANALYTICKÁ GEOMETRIE PŘÍMKY TEST VY_32_INOVACE_MA_3_20 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti
VíceAsymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze
Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě
VíceFunkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
VíceM - Příprava na 4. čtvrtletku - třídy 1P, 1VK.
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Více7 Analytická geometrie v rovině
7 Analytická geometrie v rovině Myslím, tedy jsem (René Descartes) 71 Úsečka V kapitole 51 jsme zavedli pojem souřadnice v rovině pro potřeby konstrukce grafů funkcí Pomocí souřadnic lze ovšem popisovat
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
VíceZákladní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
Více7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceVEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost
VícePedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:
753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů
Více17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
Více7.2.12 Vektorový součin I
7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné
VíceMay 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková
Elipsa 2 rovnice elipsy SOŠ InterDact Most, Mgr.Petra Mikolášková 1 Název školy Autor Název šablony Číslo projektu Předmět SOŠ InterDACT s.r.o. Most Mgr. Petra Mikolášková III/2_Inovace a zkvalitnění výuky
VíceKapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
VícePRACOVNÍ SEŠIT ANALYTICKÁ GEOMETRIE. 8. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online
Připrav se na státní matritní zkošk z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 8. tematický okrh: ANALYTICKÁ GEOMETRIE vytvořila: RNDr. Věra Effenberger expertka na online příprav
Více6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
VíceKótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
VíceLineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
Více= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621
ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Více( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.
76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0
VíceVzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
VíceDefinice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
VíceGeometrie v R n. student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2
Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Více9. Soustava lineárních rovnic
@097 9. Soustava lineárních rovnic Definice: Nechť x, y, z, t,... jsou reálné proměnné, a, b, c, d,... jsou reálné konstanty. Kombinace proměnných a konstant tvaru ax+b=0, ax+by+c=0, ax+by+cz+d=0, ax+by+cz+dt+e=0,
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
VíceGeometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2
Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.
Více1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište
Řešená cvičení lineární algebr I Karel Král 10. října 2017 Tento tet není určen k šíření. Všechn chb v tomto tetu jsou samořejmě áměrné. Reportujte je prosím na adresu kralka@iuuk.mff.cuni... Obsah 1 Cviceni
Více37. PARABOLA V ANALYTICKÉ GEOMETRII
37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
VíceFunkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Více6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Více7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceCyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
VíceAnalytická geometrie
Analytická geometrie Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Vektory - opakování 2 1.1 Teorie........................................... 2 1.1.1 Pojem vektor a jeho souřadnice, umístění
Více3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
Více