DSS a De Novo programming
|
|
- Jaroslava Havlová
- před 5 lety
- Počet zobrazení:
Transkript
1 De Novo Programming
2 DSS a De Novo programming DSS navrhují žádoucí budoucnost a cesty k jejímu uskutečnění Optimalizační modely vhodné nástroje pro identifikaci optimálního řešení problému Je ale problém systém - model dostatečně nebo dokonce optimálně navržen? Semistrukturované, špatně strukturované problémy Milan Zelený De Novo Programming
3 Prof. Milan Zelený Gymnasium Sladkovského VŠE Ekonomický ústav Profesor na amerických, čínských univerzitách a ve Zlíně Kritická cesta, vícekriteriální rozhodování a management znalostí Systémové a ekonomické obory 2012 uvažoval o kandidatuře na prezidenta ČR
4 Optimální šálek kávy Mám-li jediný hrníček, není co optimalizovat Evolutionary Multi-Criterion Optimization, 2005, Guanajuato, Mexico
5 Tradiční koncept optimality Optimální rozhodnutí, řešení Optimalita řešení je odvozena od Podmínek Cílů - kritérií Alternativ Řešení implicitně určeno zadáním problému jako optimalizačního modelu STAČÍ TO? JE TO DOBŘE?
6 Koncept optimality a optimální systém Optimální a Paretovská řešení Podmíněna množinou přípustných řešení Nikoliv samotnými kritérii Optimální systém Rozšíření a definice přípustnosti Nikoliv její dogmatické chápání
7 Optimalita návrhu systému Co je dáno a priori nemůže být předmětem optimalizace - Je to dáno Co není dáno, musí být zvoleno či identifikováno - Musí být optimalizováno Na tomto základě jsou klasifikovatelné různé koncepty optimalizace
8 Metamodelování Realita Popis problému Definice systému Modelování Volba, konstrukce a aplikace modelu Řešení problému Modelový kolaps Metamodelování Změna předpokladů, modelů Model modelu Systém design
9 Obecný koncept optimality Rovnováha Podmínek Cílů - kritérií Alternativ Nutno optimalizovat i podmínky Řešení pak není implicitně dáno zadáním
10 Optimalizace s jedním kritériem Klasický optimalizační problém Optimalizace - použití výpočetního algoritmu Není to rozhodovací proces
11 Vícekriteriální optimalizace Vektorový (vícekriteriální) optimalizační model Rozhodování určení preferencí Optimalizace výpočet podle agregovaného kritéria není adekvátní Nutno hledat paretovská řešení
12 Optimální návrh systému (jedno kritérium) Konstrukce optimálního systému rozhodovacích alternativ Klasická optimalizace s optimálně stanovenými pravými stranami
13 Optimální návrh systému (více kritérií) Konstrukce optimálního prostoru rozhodovacích alternativ Vektorová optimalizace s optimálně stanovenými pravými stranami Lze zvýšením spotřeby zdrojů (snížením požadavků) dosáhnout na ideální řešení?
14 Optimální hodnocení Alternativy známy. Podle čeho hodnotit? Konstrukce, volba optimálního kritéria Jedno nebo více kritérií, hodnocení Je lepší optimální hodnota podle jednoho nebo optimální hodnota podle druhého? Analýza trade-off
15 Optimalizace poznání - modelu (konceptu, šablony) Optimalita právě vybraného kritéria Optimalita zadaných hodnot pravých stran Řešení pro všechny kombinace a výběr nejlepšího modelu
16 Od tradiční optimalizace k optimálnímu poznání Zadání Jedno kritérium Více kritérií Kritéria i alternativy Kritéria Alternativy Kvalitativní pohled Klasický optimalizační model Optimální návrh systému (De Novo) Optimální hodnocení Optimalizace poznání Vícekriteriální optimalizační model Optimální návrh systému (De Novo) Optimální hodnocení Optimalizace poznání
17 Lineární programování Dané zdroje max Cx Ax b 0, x 0 x - neznámé rozsahy procesů b - dané kapacity a požadavky C - koeficienty kriteriálních funkcí A - koeficienty v omezujících podmínkách
18 Lineární programování max Cx Ax b 0, x 0 A b C
19 Programování De Novo Předpokládáme přerozdělení zdrojů max Cx Ax b 0, pb B, x 0 x - neznámé rozsahy procesů b - neznámé kapacity a požadavky C - koeficienty kriteriálních funkcí A - koeficienty v omezujících podmínkách p - ceny, ohodnocení velikosti kapacit a požadavků B - disponibilní rozpočet
20 Programování De Novo max Cx Ax b 0, pb B, x 0 A -E 0 0 p B C
21 Programování De Novo Transformace problému vynásobení omezujících podmínek p max kde q = pa Cx qx B, 0 Parciální optimalizací dostaneme ideální řešení Z * problému pro dané B x
22 Programování De Novo max Cx qx B, x 0 q B C Jediná podmínka spojitý problém batohu
23 Programování De Novo Jaký potřebujeme rozpočet k dosažení ideálního řešení Metaoptimalizační model min qx Cx Z *, x 0 kde Z * je ideální řešení B * = qx* je minimální rozpočet pro dosažení ideálního řešení
24 Programování De Novo min qx Cx Z *, x 0 C Z* q
25 Optimum-path ratios B* B Máme nedostatek finančního krytí, jinak bychom dosáhli na ideální řešení okamžitě Protože jde o lineární problém, nejlepší řešení problému je založeno na poměru r B * Tedy s rozpočtem B je optimálním řešením B x r. x * b r. b * Z r. Z *
26 Programování De Novo Řešení problému De Novo Optimální alokace B Maximalizace Cx Rozšíření Optimální velikost B Například pomocí parametrizace Požadavkové podmínky
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
Simplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25
Simplexové tabulky z minule (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25 Simplexová metoda symbolicky Výchozí tabulka prom. v bázi zákl. proměné přídatné prom. omez. A E b c T 0 0 Tabulka po přepočtu
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
Metody výběru variant
Metody výběru variant Používají se pro výběr v případě více variant řešení stejného problému Lze vybírat dle jednoho nebo více kritérií V případě více kritérií mohou mít všechna stejnou důležitost nebo
ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová
PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)
MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE
OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování
Vícekriteriální programování příklad
Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)
Systémové modelování. Ekonomicko matematické metody I. Lineární programování
Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a
13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP
4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r
Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
1 Úvod do celočíselné lineární optimalizace
Úvod do celočíselné lineární optimalizace Martin Branda, verze 7.. 7. Motivace Reálné (smíšeně-)celočíselné úlohy Optimalizace portfolia celočíselné počty akcií, modelování fixních transakčních nákladů,
Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb
16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ P. Chalupa, J. Novák Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Centrum aplikované kybernetiky Abstrakt Příspěvek se zabývá
VÍCEKRITERIÁLNÍ ROZHODOVANÍ
VÍCEKRITERIÁLNÍ ROZHODOVANÍ 1 Obsah Typy modelů vícekriteriálního rozhodování Základní pojmy Typy informací Cíl modelů Užitek, funkce užitku Grafické zobrazení Metody vícekriteriální analýzy variant 2
Metody lineární optimalizace Simplexová metoda. Distribuční úlohy
Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního
Lineární programování
24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.
7 Kardinální informace o kritériích (část 1)
7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru
MANAŽERSKÉ ROZHODOVÁNÍ. Téma 1 - Normativní a deskriptivní teorie rozhodování, struktura problémů a rozhodovacích procesů
MANAŽERSKÉ ROZHODOVÁNÍ Téma 1 - Normativní a deskriptivní teorie rozhodování, struktura problémů a rozhodovacích procesů doc. Ing. Monika MOTYČKOVÁ (Grasseová), Ph.D. Univerzita obrany Fakulta ekonomika
OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU. Vladimír Hanta
OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU Vladimír Hanta Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky Při modelování a simulaci chemicko-inženýrských
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0259 Garantující institut: Garant předmětu: Exaktní metody rozhodování Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková,
4EK201 Matematické modelování. 10. Teorie rozhodování
4EK201 Matematické modelování 10. Teorie rozhodování 10. Rozhodování Rozhodování = proces výběru nějaké možnosti (varianty) podle stanoveného kritéria za účelem dosažení stanovených cílů Rozhodovatel =
Operační výzkum. Základní informace
Operační výzkum Přednášející: doc. Ing. Miroslav Žižka, Ph.D. Katedra podnikové ekonomiky Cvičící: doc. Ing. Miroslav Žižka, Ph.D. Základní informace rozsah předmětu: 2/2, zakončeno: zkouškou, počet kreditů:
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
FORMULACE, VÝBĚR A IMPLEMENTACE STRATEGIE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser
MANAŽERSKÉ ROZHODOVÁNÍ Zpracoval Ing. Jan Weiser Obsah výkladu Rozhodovací procesy a problémy Dvě stránky rozhodování Klasifikace rozhodovacích procesů Modely rozhodování Nástroje pro podporu rozhodování
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Semestrální práce z předmětu Matematické modelování Modely vyjednávání
Semestrální práce z předmětu Matematické modelování Modely vyjednávání Anna Řezníčková A07143 5. 1. 2009 Obsah 1 Úvod...3 2 Modelování základních vztahů...3 3 Koncepce modelování vyjednávacího procesu...7
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Postupy při hodnocení variant a výběru nejvhodnějšího řešení. Šimon Kovář Katedra textilních a jednoúčelových strojů
Postupy při hodnocení variant a výběru nejvhodnějšího řešení Šimon Kovář Katedra textilních a jednoúčelových strojů Znáte nějaké postupy hodnocení variant řešení? Vícekriteriální rozhodování Při výběru
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
1 Duální simplexová metoda
1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Problém lineární komplementarity a kvadratické programování
Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou
Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005
PROPOJENÍ OPTIMALIZAČNÍHO A SIMULAČNÍHO MODELU PRO PLÁNOVÁNÍ A ŘÍZENÍ 1. Úvod FARMACEUTICKÉ VÝROBY Ing Petra Vegnerová Prof. Ing. Ivan Gros, CSc. Vysoká škola chemicko-technologická v Praze Fakulta chemicko-inženýrská,
Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
Úvod do optimalizace Matematické metody pro ITS (11MAMY)
Úvod do optimalizace Matematické metody pro ITS (11MAMY) Jan Přikryl (volně dle M.T. Heathe) 10. přednáška 11MAMY úterý 22. března 2016 verze: 2016-04-01 16:10 Obsah Optimalizační problém 1 Definice 1
Parametrické programování
Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení
FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
4EK212 Kvantitativní management. 2. Lineární programování
4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení
Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.
Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Strategické plánování v obci proč a jak? Jana Kortanová 19. května 2011 Liberec
Strategické plánování v obci proč a jak? Jana Kortanová 19. května 2011 Liberec Obsah prezentace proč strategicky plánovat základní fáze strategický plán a jeho realizace vazba strategického plánu na územní
Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0).
1. Základní pojmy www.cz-milka.net Systém neprázdná, účelově definovaná množina prvků a vazeb mezi nimi, která se zachycením vstupů a výstupů vykazuje kvantifikovatelné chování v čase. Model formalizovaný
Modelování a optimalizace vozidel, linek a dopravní infrastruktury města. Zdeněk Peroutka, Jan Přikryl, Radim Dudek, Pavel Drábek
Modelování a optimalizace vozidel, linek a dopravní infrastruktury města Zdeněk Peroutka, Jan Přikryl, Radim Dudek, Pavel Drábek Co a proč řešíme? Motivace a cíle Plná elektrifikace MHD optimální skladba
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Obecná úloha lineárního programování
Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné
f ( x) = 5x 1 + 8x 2 MAX, 3x x ,
4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova
PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods
CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
e-mail: RadkaZahradnikova@seznam.cz 1. července 2010
Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení
Výběr lokality pro bydlení v Brně
Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis
Řízení projektového cyklu. představení oboru
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Řízení projektového cyklu (PCM - project cycle management) představení oboru Co je projekt? 2 Projekt Co je možno vlastně
UPLATŇOVÁNÍ MODELOVÝCH PŘÍSTUPŮ V PRAXI ROZHODOVÁNÍ
UPLATŇOVÁNÍ MODELOVÝCH PŘÍSTUPŮ V PRAXI ROZHODOVÁNÍ Jan Získal ČZU, PEF, KOSA, Kamýcká, 165 21 Praha 6-Suchdol, tel.: 02/ 3382354 Summary: The paper deals with the task of model approaches in turbulent
2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.
2. část: Základy matematického programování, dopravní úloha. 1 Úvodní pojmy Metody na podporu rozhodování lze obecně dělit na: Eaktní metody metody zaručující nalezení optimální řešení, např. Littlův algortimus,
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
Lineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008
Colosseum, a.s. ÚTIA AV ČR, v.v.i. 21. května 2008 Osnova presentace 1 Úvod 2 3 4 Hodnocení výsledků Budoucnost projektu Úvod Futures trhy Cíle obchodování s kontrakty Vyvinout původní, ucelenou, široce
Úvod do celočíselné optimalizace
Úvod do celočíselné optimalizace Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní aspekty optimalizace Martin Branda (KPMS
ROZHODOVÁNÍ ROZHODOVACÍ PROBLÉM A PROCES
ROZHODOVÁNÍ ROZHODOVACÍ PROBLÉM A PROCES doc. Ing. Monika MOTYČKOVÁ (Grasseová), Ph.D. Univerzita obrany Fakulta ekonomika a managementu Katedra vojenského managementu a taktiky Kounicova 44/1. patro/kancelář
STRA TEGICKY MANAGEMENT ZMEN A ZNALOSTI
Prof. Ing. Zdenek Častorál, DrSc. STRA TEGICKY MANAGEMENT ZMEN A ZNALOSTI v,, UNIVERZIT A JANA AMOSE KOMENSKÉHO PRAHA 2010 OBSAH ÚVOD ~.. 1. VSTUP DO MANAGEMENTU ZMEN 1.1 Promenlivost ekonomické reality
Matematika IV 9. týden Vytvořující funkce
Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení
Optimalizace vláknového kompozitu
Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního
Otázky ke II. části písemné zkoušky Úvod do operačního výzkumu 1. Popište proces operačního výzkumu a uveďte typy rozhodovacích situací.
Otázky ke II. části písemné zkoušky Úvod do operačního výzkumu 1. Popište proces operačního výzkumu a uveďte typy rozhodovacích situací. Rozhodovací situace můžeme klasifikovat podle následujících hledisek
Základy spojité optimalizace
Základy spojité optimalizace 2. ledna 2013 Obsah 1 Přehled 2 1.1 Obecná úloha........................... 2 1.2 Dělení úloh............................ 2 1.3 Volný extrémem......................... 3 1.4
Ekonomická formulace. Matematický model
Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
1 Jednoduchý makroekonomický model
MAMO podzim 2015 Přednáška 2 Lit: W-MT, ch1 K-QM, ch 3 1 Jednoduchý makroekonomický model Reprezentativní firma, reprezentativní domácnost optimalizace (maximalizace cílové funkce vzhledem k rozpočtovému
Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl
Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský
4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I
Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci
Ing. Alena Šafrová Drášilová, Ph.D.
Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách
Lineární programování(optimalizace) a soustavy lineárních nerovností
Lineární programování(optimalizace) a soustavy lineárních nerovností 2017 tuma@karlin.mff.cuni.cz 0-1 Příklad úlohy lineárního programování najdětemaximálníhodnotufunkce x 1 +x 2 přesvšechnyvektoryx =
Management. Ing. Jan Pivoňka
Management Ing. Jan Pivoňka Stanovení osobní vize V souladu s kotvou Konkrétní představa Citový náboj Stimul pro aktivní jednání Krátkodobější cíle motivace Výjimky Jasná vize Pohodoví lidé Úspěch bez
Státnicová otázka 6, okruh 1
Státnicová otázka 6, okruh 1 Vojtěch Franc, xfrancv@electra.felk.cvut.cz 7. února 2000 1 Zadání Statické optimalizace. Lineární a nelineární programování. Optimální řízení a rozhodování v dynamických systémech,
Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]
Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů
PROJEKTOVÝ MANAGEMENT A FUNDRAISING II.
PROJEKTOVÝ MANAGEMENT A FUNDRAISING II. Mgr. Dušan Kučera, Ph.D., MBA ZS 2016/2017 1 Opakování: Vlastní projekt (1, 2-3 studenti): PREZENTACE na CVIČENÍ (oponentura) PÍSEMNÁ seminární práce (mailem) Představte
Základy algoritmizace
Základy algoritmizace Matematické algoritmy (11MAG) Jan Přikryl 1. přednáška 11MAG pondělí 5. října 2014 verze: 2014-11-10 10:35 Obsah 1 Algoritmy a algoritmizace 1 1.1 Vlastnosti algoritmů..................................
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Zadání projektů k modulu: 1. Základy integrální logistiky
projektů k modulu: 1. Základy integrální logistiky Identifikace cílů pro firemní politiku logistiky P01 Aplikujte definici pojmu firemní politika logistiky a navrhněte smysluplné cíle pro politiku logistiky
4EK213 Lineární modely. 10. Celočíselné programování
4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a
ení spolehlivosti elektrických sítís
VŠB - TU Ostrava Fakulta elektrotechniky a informatiky Katedra elektroenergetiky, Katedra informatiky Inteligentní metody pro zvýšen ení spolehlivosti elektrických sítís (Program MCA8 pro výpočet metodami
Ing.Bc. Jitka Homolová, Doc.Ing. Ivan Nagy, CSc. regulátoru
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation VÝZKUMNÁ ZPRÁVA Ing.Bc. Jitka Homolová, Doc.Ing.
www.elvac.eu Energie pro budoucnost, MSV 2015 Měření a řízení energetických toků nutný předpoklad pro hospodárnost Jan Grossmann
www.elvac.eu Energie pro budoucnost, MSV 2015 Měření a řízení energetických toků nutný předpoklad pro hospodárnost Jan Grossmann Měření a řízení energetických toků (1) V každém objektu nebo komplexu budov
Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů
Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky
01 Teoretické disciplíny systémové vědy
01 Teoretické disciplíny systémové vědy (systémový přístup, obecná teorie systému, systémová statika a dynamika, úlohy na statických a dynamických systémech, kybernetika) Systémová věda je vědní disciplínou
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Celočíselné lineární programování(ilp)
Celočíselné lineární programování(ilp) Zdeněk Hanzálek, Přemysl Šůcha {hanzalek}@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 2. března 2010 Z. Hanzálek (ČVUT FEL) Celočíselné lineární programování(ilp)
Příklady modelů lineárního programování
Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených
4EK311 Operační výzkum. 2. Lineární programování
4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x
OPTIMÁLNÍ ÚROVEŇ VEŘEJNÉHO STATKU
OPTIMÁLNÍ ÚROVEŇ VEŘEJNÉHO STTKU lexandr Soukup KET, PEF, Česká zemědělská univerzita Praha The article is interested in a determination of the optimal level of the common good. It uses Pareto s model