Lineární programování(optimalizace) a soustavy lineárních nerovností

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární programování(optimalizace) a soustavy lineárních nerovností"

Transkript

1 Lineární programování(optimalizace) a soustavy lineárních nerovností 2017 tuma@karlin.mff.cuni.cz 0-1

2 Příklad úlohy lineárního programování najdětemaximálníhodnotufunkce x 1 +x 2 přesvšechnyvektoryx = (x 1,x 2 ) T R 2 kterésplňujípodmínky x 1 0 x 2 0 x 2 x 1 1 x 1 +6x x 1 x

3 Geometrická interpretace K úloze si můžete nakreslit obrázek- každá z omezujících nerovností popisuje nějakou polorovinu. Body x, které splňují všechny omezující nerovnosti, tvoří průnik těchto polorovin. V našem případě je to konvexní pětiúhelník. Body splňující všechny omezující nerovnosti(také se jim říká omezující podmínky) jsou přípustná řešení. Mezi všemi přípustnými řešeními x hledáme to, které má maximálnístandardnískalárnísoučinsvektorem (1,1) T, neboli největší orientovanou projekci do směru tohoto vektoru. Takovému přípustnému řešení říkáme optimální řešení. Pokud si vše nakreslíme, vyjde nám maximální hodnota účelovéfunkcex 1 +x 2 rovná5adosahujesejívoptimálním bodě (3,2) T,kterýjevrcholempětiúhelníkuvšechpřípustných řešení. 0-3

4 Česko-anglický slovníček účelová funkce cost function omezující podmínky constraints přípustné řešení feasible solution množina přípustných řešení feasible set optimální řešení optimal solution optimální hodnota optimal value 0-4

5 Obecná formulace úlohy lineárního programování najdětemaximálníhodnotufunkce f (x) =c T x přesvšechnyvektoryx R n splňujícími podmínky Ax b, kdec R n,b R m jsoudanévektoryaa R m n jedanámatice. Prodvavektoryd = (d 1,d 2,...,d m ) T,e = (e 1,e 2,...,e m ) T R m píšeme c d právěkdyž c i d i prokaždé i =1,2,...,m. 0-5

6 Nepřípustná úloha Množina všech přípustných řešení je průnik uzavřených poloprostorůvr n.pokudjeneprázdná,nazývásekonvexní polyedr.tenmůžebýtidegenerovaný,tj.mítmenšídimenzinežn, vextrémnímpřípaděmůžejítojedinýbod. Můžeme nějak poznat, kdy je množina přípustných řešení prázdná, tj.kdyjeúlohanepřípustná? ŘádkyvmaticiAoznačímejakoobvykleã T 1,ãT 2,...,ãT m. Chceme poznat, kdy je neřešitelná soustava lineárních nerovností ã T 1 x b 1 ã T 2 x b 2. ã T mx b m. 0-6

7 Jak dokážeme neřešitelnost soustavy nerovností? Odvodíme z předpokladu řešitelnosti spor. Jestliženějakéx R n splňujevšechnynerovnosti,jakédalší nerovnosti musí splňovat? Očividněmůžemekaždounerovnostã T ix b i vynásobit libovolnýmčíslem λ i 0adostanemedůsledek λ i (ã T ix) λ i b i. Dále můžeme všechny tyto nerovnosti sečíst(přes i) a dostaneme m λ i (ã T ix) i=1 m λ i b i. i=1 0-7

8 Odvození sporu Levou stranu poslední nerovnosti upravíme ( m m m λ i (ã T ix) = (λ i ã T i )x = λ i ã T i i=1 i=1 i=1 kde λ = (λ 1, λ 2,...,λ m ) T. ) x = ( ) λ T A x, Také pravou stranu si přepíšeme m λ i b i = λ T b. i=1 Takžekaždýx R n splňujícípůvodnísoustavulineárních nerovností musí splňovat také každou nerovnost ( ) λ T A x λ T b, prolibovolnývektor λ

9 Nutná podmínka neřešitelnosti Kdyžádnéx R n poslednínerovnostnesplňuje? Zjevněpokudprovektor λ 0platí,že λ T A =0 T ma λ T b <0. Odvodili jsme tak nutnou podmínku pro neřešitelnost soustavy lineárních nerovností: je-li řešitelná následující soustava lineárních nerovností(a rovnic) λ i 0, i =1,...,m, λ T b < 0, A T λ = 0 m, pak je neřešitelná soustava lineárních nerovností Ax b. 0-9

10 Věta o alternativě pro soustavy lineárních nerovností Svět je takový, jaký má být, takže právě uvedená nutná podmínka pro neřešitelnost soustavy lineárních nerovností Ax b je také postačující(důkaz je ale obtížnější). A protože soustava lineárních nerovností Ax b je buď řešitelná nebo neřešitelná, platí následující věta o alternativě pro soustavy lineárních nerovností. ProkaždoumaticiA R m n avektorb R n nastáváprávějedna z následujících možností je řešitelná soustava lineárních nerovností Ax b, je řešitelná soustava lineárních nerovností λ i 0, i =1,...,m, λ T b < 0, A T λ = 0 m. 0-10

11 Příklad úlohy na lineární programování Příklad je převzatý ze skript Jiřího Matouška. Na základě regulací ministerstva zdravotnictví musí každé jídlo podávané v restauracích obsahovat dostatek vitamínů A, C a vlákniny. Doporučená denní množství jsou 0,5mg vitamínu A, 15mgvitamínuCa4gvlákniny.Vnašírestauracisesregulacemi chtějí vypořádat přidáváním zeleninového salátu ze syrové mrkve, nakládaných okurek a kysaného bílého zelí jako přílohy ke každému jídlu. Současně je snahou majitele zajistit tímto způsobem požadované množství vitamínů a vlákniny co nejlevněji. Potřebné údaje jsou v následující tabulce. 0-11

12 Tabulka surovina syrová kysané nakládané požadováno mrkev zelí okurky na 1 porci vitamín A[mg/kg] mg vitamín C[mg/kg] mg vláknina[g/kg] g cena[kč/kg] Nakládané okurky mají zjevně prošlou trvanlivost. Označímesix M,x Z ax O množstvímrkve,zelíaokurekv kilogramech na jednu porci. Tatomnožstvíjsoupřirozeněomezenapodmínkamix M 0, x Z 0,x O

13 Formulace pomocí lineárního programování Požadavek ministerstva zdravotnictví na dostatečné množství vitamínu A v každé porci zapíšeme jako nerovnost 35x M +0.5x Z +0.5x O 0.5. Podobně zapíšeme další dva požadavky Cena takového salátu je 60x M +300x Z +10x O 15, 30x M +20x Z +10x O 4. 15x M +10x Z +3x O. Požadavky ministerstva splníme za minimální možnou cenu vyřešením úlohy lineárního programování na následující straně. 0-13

14 Řešení minimalizujtefunkci 15x M +10x Z +3x O zapodmínek x M 0 x Z 0 x O 0 35x M +0.5x Z +0.5x O x M +300x Z +10x O 15 30x M +20x Z +10x O 4. Standardní algoritmus pro řešení takových úloh je simplexová metoda. Jeho autorem je George Dantzig, jeden ze zakladatelů lineárního programování. Pochází(ten algoritmus) z roku Nejlevnějším řešením požadavků ministerstva zdravotniství je salát za1,40kčsloženýz9,5gmrkve,38gzelía290gokurek. 0-14

15 Současný stav Simplexová metoda postupně probírá vrcholy polyedru přípustných řešení, až najde to optimální. Problém může nastat ve chvíli, kdy algoritmus musí probrat všechnyvrcholypolyedru,kterýchmůžebýttaké2 n vpřípadě,kdy optimalizovaný vektor x má n složek(např. n-dimenzionální krychle). Novější a teoreticky rychlejší algoritmy jsou např. metody vnitřního bodu. V současnosti je řešení úlohy s desetitisíci proměnných a statisíci omezujících podmínek záležitostí vteřin na běžném stolním počítači. Metody vnitřního bodu jsou navíc použitelné na mnohem širší třídy úloh, kdy jak omezující podmínky tak účelová funkce nejsou lineární(jsou např. kvadratické nebo obecněji konvexní). 0-15

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

4EK201 Matematické modelování. 2. Lineární programování

4EK201 Matematické modelování. 2. Lineární programování 4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených

Více

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 2 Katedra ekonometrie FEM UO Brno Euklidovský prostor E n Pod pojmem n-rozměrný euklidovský prostor budeme rozumnět prostor, jehož prvky jsou uspořádané n-tice reálných čísel X = (x 1, x 2,...,

Více

4EK311 Operační výzkum. 2. Lineární programování

4EK311 Operační výzkum. 2. Lineární programování 4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

4EK212 Kvantitativní management. 2. Lineární programování

4EK212 Kvantitativní management. 2. Lineární programování 4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení

Více

2.3.9 Lineární nerovnice se dvěma neznámými

2.3.9 Lineární nerovnice se dvěma neznámými .3.9 Lineární nerovnice se dvěma neznámými Předpoklady: 308 Př. 1: Najdi všechna řešení nerovnice 6x + 1 10. Zkusíme jako u rovnice. 6x + 1 10 3y 9 6x 9 6x y = 3 x 3 Jak zapsat množinu všech řešení? K

Více

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb

Více

Matematický model. omezující podmínky. Tab. 2.1 Prvky ekonomického a matematického modelu

Matematický model. omezující podmínky. Tab. 2.1 Prvky ekonomického a matematického modelu 16 Čeho chceme dosáhnout? Co můžeme ovlivnit? Jaké jsou překážky? Ekonomický model cíl analýzy procesy činitelé Matematický model účelová funkce proměnné omezující podmínky Příklady maximalizace zisku

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

Problém lineární komplementarity a kvadratické programování

Problém lineární komplementarity a kvadratické programování Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

O rovnicích s parametry

O rovnicích s parametry O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

6 Simplexová metoda: Principy

6 Simplexová metoda: Principy 6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

2.2 Grafické ešení úloh LP

2.2 Grafické ešení úloh LP 2. Lineární programování 21 zabránili záporným hodnotám produkce, nezabývali jsme se pípady, kdy jako výsledný objem produkce získáme desetinné číslo. Nápravu lze snadno sjednat zahrnutím tzv. podmínek

Více

4EK213 Lineární modely. 4. Simplexová metoda - závěr

4EK213 Lineární modely. 4. Simplexová metoda - závěr 4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924 5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět

Více

Soustavy rovnic pro učební obory

Soustavy rovnic pro učební obory Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic

Více

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme

Více

1 Duální simplexová metoda

1 Duální simplexová metoda 1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

7.5.1 Středová a obecná rovnice kružnice

7.5.1 Středová a obecná rovnice kružnice 7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

Zadání zkoušky z konvexní optimalizace dne

Zadání zkoušky z konvexní optimalizace dne Zadání zkoušky z konvexní optimalizace dne 10.2.2017 Termín odevzdání: do 9,00 hodin dne 11.2.2017, buď mailem nebomnědorukounakatedřealgebryvsobotumezi8,45-9,00 Celkově je ze zkoušky možné získat 52 bodů.

Více

Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Systémové modelování. Ekonomicko matematické metody I. Lineární programování Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

Základy spojité optimalizace

Základy spojité optimalizace Základy spojité optimalizace 2. ledna 2013 Obsah 1 Přehled 2 1.1 Obecná úloha........................... 2 1.2 Dělení úloh............................ 2 1.3 Volný extrémem......................... 3 1.4

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK213 Lineární modely. 5. Dualita v úlohách LP 4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického

Více

x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0).

x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0). Opáčko - Řešení. a) Podíl vlevo není definovaný pro x 8 = 0, a tedy dostáváme podmínku na řešení x. Jedničku převedeme na levou stranu nerovnosti, převedeme na společný jmenovatel a dostáváme Nerovnost

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Grafické řešení rovnic a jejich soustav

Grafické řešení rovnic a jejich soustav .. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

4.3.3 Goniometrické nerovnice

4.3.3 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY UNIVERZITA OBRANY KATEDRA EKONOMETRIE UČEBNÍ TEXT PRO DISTANČNÍ STUDIUM EKONOMICKO-MATEMATICKÉ METODY RNDr. Michal ŠMEREK doc. RNDr. Jiří MOUČKA, Ph.D. B r n o 2 0 0 8 Anotace: Skriptum Ekonomicko-matematické

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

Soustavy rovnic pro učební obor Kadeřník

Soustavy rovnic pro učební obor Kadeřník Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy

Více

Variace. Lineární rovnice

Variace. Lineární rovnice Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je

Více

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního

Více

4EK213 Lineární modely. 10. Celočíselné programování

4EK213 Lineární modely. 10. Celočíselné programování 4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením

Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením J. Machalová, P. Ženčák, R. Kučera Katedra matematické analýzy a aplikací matematiky PřF UP Olomouc Katedra matematiky a deskriptivní

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Soustavy rovnic diskuse řešitelnosti

Soustavy rovnic diskuse řešitelnosti Tématická oblast Datum vytvoření 22. 8. 2012 Ročník Stručný obsah Způsob využití Autor Kód Matematika - Rovnice a slovní úlohy 4. ročník osmiletého gymnázia Řešení soustav dvou rovnic o dvou neznámých

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více